
New York University
CSCI-UA.0202: Operating Systems (Undergrad): Spring 2024

Midterm Exam (Token: V0)

• Write your name, NetId, and token on this cover sheet and on the cover of your blue book.

• Put all of your answers in the blue book; we will grade only the blue book. Thus, if the blue
book answer is blank or incorrect, you will not get credit, regardless of the exam print-out.

• At the end, turn in both the blue book and the exam print-out. “Orphaned” blue books with no
corresponding exam print-out will not be graded.

• This exam is 75 minutes. Stop writing when “time” is called. You must turn in your print-out and
blue books; we will not collect them. Do not get up or pack up in the final ten minutes. The instructor
will leave the room 78 minutes after the exam begins and will not accept exams outside the room.

• There are 11 problems in this booklet. Many can be answered quickly. Some may be harder than
others, and some earn more points than others. You may want to skim all questions before starting.

• This exam is closed book and notes. You may not use electronics: phones, tablets, calculators,
laptops, etc. You may refer to ONE two-sided 8.5x11” sheet with 10 point or larger Times New
Roman font, 1 inch or larger margins, and a maximum of 55 lines per side.

• Do not waste time on arithmetic. Write answers in powers of 2 if necessary.

• If you find a question unclear or ambiguous, be sure to write any assumptions you make.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any important
assumptions. Write brief, precise answers. Rambling brain dumps will not work and will waste
time. Think before you start writing so that you can answer crisply. Be neat. If we can’t understand
your answer, we can’t give you credit!

• If the questions impose a sentence limit, we will not read past that limit. In addition, a response that
includes the correct answer, along with irrelevant or incorrect content, will lose points.

Do not write in the boxes below.

I (xx/8) II (xx/18) III (xx/28) IV (xx/10) V (xx/7) VI (xx/8) VII (xx/19) Fb (x/2) Total (xx/100)

Name: Solutions

NetId:

page 2 of 18

I Follow the machine (8 points)

1. [8 points] In the code below, main() is written in C. The function f() is written in assembly, in
an unusual way; for example, it has no prolog or epilog.

What does main() print?

Hints:

– Draw the stack as the program executes, and think about what each line is doing

– Recall that the C compiler expects a function’s return value to be in %rax.

– The arguments to movq are in the order movq SOURCE, DESTINATION.

1 #include <stdio.h>

2
3 extern int f();
4
5 int main()
6 {

7 int a;
8 a = f();

9 printf("%d\n", a);

10 return 0;
11 }

12
13 ------Below here is assembly----

14 .global f

15
16 f:

17 # the next two lines take the address of the code at g, and push

18 # that address on the stack

19 movq $g, %rcx

20 pushq %rcx

21
22 # the next two lines take the address of the code at h, and push

23 # that address on the stack

24 movq $h, %rcx

25 pushq %rcx

26
27 movq $0x4, %rax

28
29 ret

30
31 g: movq $0x5, %rax

32 ret

33
34 h: movq $0x6, %rax

35 ret

Name: Solutions NYU NetId:

page 3 of 18

5. This is a (simplified) instance of return-oriented programming, a technique used by attackers, and
which we will come back to later in the semester. In this case, at the end of f, the relevant contents of
the stack, going downward, are:

return address within main (because f was called)
address of g
address of h

The ret in f brings execution to h, the ret in h brings execution to g, and the ret in g brings control
back to main. The last function to set %rax is g, which moves 5 into %rax, thereby returning that value
in a.

Name: Solutions NYU NetId:

page 4 of 18

II Lab 2: ls (18 points)

2. [18 points] Write a function print_ownership in syntactically valid C:

static int err_code;

void print_ownership(struct stat* statbuf)
{

// YOUR CODE HERE

}

The specifications are as follows:

– print_ownership takes as input an already-filled struct stat, passed as a pointer. This
argument represents a given file. The function should print the username and group name of the
file in the following format:

u: <username>

g: <group name>

– If there are no errors, then <username> and <group name> should simply be the username and
group name that ls would print in a long-listing of the file. If there is an error obtaining either
one, then print the string error instead. For example, if your code obtains the username as
mwalfish but fails in getting the group name, then the output should be:

u: mwalfish

g: error

– As in lab 2, there is a variable err_code. If there is an error obtaining the username, set bit 0
of err_code; if there is an error obtaining the group name, set bit 1 of err_code. You cannot
make any assumptions about whether these bits of err_code were set previously.

– Assume that username and group name each fit in less than 256 ASCII characters (C type char).

– Some helpful definitions are on the next page. Note that there is more information than you need.

Name: Solutions NYU NetId:

page 5 of 18

/* Return information about the file given by pathname.

Places the returned information in the buffer pointed to by statbuf.

On success, return 0. On error, return -1. */

int stat(const char* pathname, struct stat *statbuf);

/*

* This is the same as the macro that you were given in lab2. Take as

* input ’info’ and prints the given ’ch’ if the permission ’mask’ exists,

* or "-" otherwise.

*/

#define PRINT_PERM_CHAR(info, mask, ch) printf("%s", (info & mask) ? ch : "-");

/* convert the mode field in a struct stat to a file type, for -l printing */

const char* ftype_to_str(mode_t mode);

/* Tests whether the argument refers to a directory */

bool is_dir(char* pathandname);

/* Get username for uid. Return 1 on failure, 0 otherwise. */

static int uname_for_uid(uid_t uid, char* buf, size_t buflen);

/* Get group name for gid. Return 1 on failure, 0 otherwise. */

static int group_for_gid(gid_t gid, char* buf, size_t buflen);

/* Open a directory */

DIR *opendir(const char *name);

/* Read a directory entry */

struct dirent *readdir(DIR *dirp);

/* A function that you may have filled in when implementing lab 2 */

void list_file(char* pathandname, char* name, bool list_long);

/* A function that you may have filled in when implementing lab 2 */

void list_dir(char* dirname, bool list_long, bool list_all, bool recursive);

struct stat {
dev_t st_dev;

ino_t st_ino;

mode_t st_mode;

nlink_t st_nlink;

uid_t st_uid;

gid_t st_gid;

dev_t st_rdev;

off_t st_size;

blksize_t st_blksize;

blkcnt_t st_blocks;

}

Name: Solutions NYU NetId:

page 6 of 18

extern int err_code;

void print_ownership(struct stat* statbuf)

{

char username[256];

char groupname[256];

int urc, grc;

urc = uname_for_uid(statbuf->st_uid, username, sizeof(username));

grc = group_for_gid(statbuf->st_gid, groupname, sizeof(groupname));

printf("u: ");

if (!urc) {

printf("%s\n", username);

} else {

printf("error\n");

err_code |= 0x1; /* or err = err | 0x1;

or err = err | 0b1 */

}

printf("g: ");

if (!grc) {

printf("%s\n", groupname);

} else {

printf("error\n");

err_code |= 0x2; /* or err = err | 0x2;

or err = err | 0b10; */

}

}

Name: Solutions NYU NetId:

page 7 of 18

III Lab 3 and Concurrent programming (28 points)

3. [8 points] This question asks you to write customer and supplier, as in lab 3. We include
comments to guide you. There are helper definitions on the next page, but there is more information
than you need. You can assume that the queues are already properly synchronized. Use syntactically
valid C and C++

/* --

* customer --

*

* The main customer thread. The argument is a pointer to the

* shared Simulation object.

*

* Dequeue Tasks from the customer queue and execute them.

*

* Results:

* Does not return.

*

* --

*/

static void*

customer(void* arg)

{

// TODO: Your code here

}

/* --

* supplier --

*

* The main supplier thread. The argument is a pointer to the

* shared Simulation object.

*

* Dequeue Tasks from the supplier queue and execute them.

*

* Results:

* Does not return.

*

* --

*/

static void*

supplier(void* arg)

{

// TODO: Your code here.

}

Name: Solutions NYU NetId:

page 8 of 18

typedef void (*handler_t) (void *);

struct Task {

handler_t handler;

void* arg;

};

class Simulation {

public:

TaskQueue supplierTasks;

TaskQueue customerTasks;

EStore store;

int maxTasks;

int numSuppliers;

int numCustomers;

explicit Simulation(bool useFineMode) : store(useFineMode) { }

};

class TaskQueue {

private:

// you filled in items here during lab 3 but do not need to do so for this

// problem.

public:

TaskQueue();

˜TaskQueue();

void enqueue(Task task);

Task dequeue();

private:

int size();

bool empty();

};

Solution elided; too close to lab code.

Name: Solutions NYU NetId:

page 9 of 18

4. [20 points] This question considers a simplified EStore, called EStoreSimple. This version has
no notion of discounts, budgets, or valid items. The store simply tracks a list of item quantities, stored
in an array called inventory; each item is identified by an integer, and its quantity is stored in the
corresponding slot in inventory.

This store has two methods:

– BuyTwoItems(int item1_id, int item2_id): This method buys one unit of item1_id
and one unit of item2_id. If either of the items is not available, the method has to wait.

– AddStock(int item_id, int count): This method adds count units of item item_id.

Fill in where it says to do so on the next page. There are four places to do so.

Some requirements and non-requirements:

– You may assume that there are threads calling these two methods through a single instance of
EStoreSimple.

– Follow the concurrency commandments. Follow also the coding pattern from the coarse-grained
locking section of lab 3.

– The store begins with 0 of each item.

– If progress is possible, threads should not wait or stay in a blocked state; on the other hand, do
not worry about needlessly waking threads.

Name: Solutions NYU NetId:

page 10 of 18

class EStoreSimple {

private:

int inventory[INVENTORY_SIZE];

// (1) FILL IN: MORE REQUIRED HERE

public:

void BuyTwoItems(int item1_id, int item2_id);

void AddStock(int item_id, int count);

};

EStoreSimple::EStoreSimple()

{

// (2) FILL THIS IN

//

// Initialize "inventory" and other state.

}

void

EStoreSimple::BuyTwoItems(int item1_id, int item2_id)

{

// (3) FILL THIS IN

}

void

EStoreSimple::AddStock(int item_id, int count)

{

// (4) FILL THIS IN

}

Name: Solutions NYU NetId:

page 11 of 18

// (1)

class EStoreSimple {

private:

int inventory[INVENTORY_SIZE];

mutex_t m;

cond_t c;

...

}

// (2)

EStoreSimple::EStoreSimple()

{

memset(inventory, 0, sizeof(inventory));

/* alt:

* for (int i = 0; i < INVENTORY_SIZE; i++) {

* inventory[i] = 0;

* }

*/

mutex_init(&m);

cond_init(&c);

}

// (3)

void

EStoresim::buyTwoItems(int item1_id, int item2_id)

{

m.acquire();

while (inventory[item1_id] == 0 || inventory[item2_id] == 0)

cv.wait(&m);

inventory[item1_id]--;

inventory[item2_id]--;

m.release();

}

// (4)

void

EStoresim::addStock(int item_id, int count)

{

m.acquire();

inventory[item_id] += count;

cv.broadcast(&m);

Name: Solutions NYU NetId:

page 12 of 18

m.release()

}

Name: Solutions NYU NetId:

page 13 of 18

IV Deadlock (10 points)

5. [10 points] Alice and Bob each have an account at a bank, and they are the only two people with
accounts at this bank. The bank implements transfer() as below:

850 // assume all the variables are initialized correctly

851 double balance[2]; // 0 for alice, 1 for bob
852 smutex_t mtx[2]; // 0 for alice, 1 for bob

853
854 bool transfer(int from, int to, double trans) {
855 smutex_lock(&mtx[from]);

856 smutex_lock(&mtx[to]);

857
858 bool result = false;

859 if (balance[from] > trans) {
860 balance[from] = balance[from] - trans;

861 balance[to] = balance[to] + trans;

862 result = true;

863 }

864
865 smutex_unlock(&mtx[to]);

866 smutex_unlock(&mtx[from]);

867 return result;
868 }

Write down an interleaving that results in deadlock.

T1 calls transfer(0, 1, 100)

T2 calls transfer(1, 0, 100)

T1: lock(&mutex[0])

T2: lock(&mutex[1])

T1: try to lock(&mutex[1])

T2: try to lock(&mutex[0])

Keeping the same data structures (the balance array and the mtx array), rewrite transfer() to
eliminate the possibility of deadlock.

State which lines you are replacing, and give the replacement, in code.

Rewrite lines 855–856 to be:

if (from < to) {

smutex_lock(&mtx[from]);

smutex_lock(&mtx[to]);

} else {

smutex_lock(&mtx[to]);

smutex_lock(&mutex[from]);

}

Name: Solutions NYU NetId:

page 14 of 18

/*

* continue as before. for good style, the unlock() should be

* done in the corresponding order, though that is not

* required.

*/

Or, if we know that there are only two mutexes, we could replace lines 855–856 with:

smutex_lock(&mtx[0]);

smutex_lock(&mtx[1]);

Name: Solutions NYU NetId:

page 15 of 18

V Therac-25 (7 points)

6. [4 points] When the Therac-25 overdosed patients, the physical position of the
was inconsistent with the machine’s settings for
.

Fill in the two blanks above.

(a) Turntable position and (b) beam type or energy.

7. [3 points] The inconsistency mentioned in the previous question would have been prevented by
hardware that the Therac-20 had but was not present in the Therac-25.

What hardware feature was that?

Hardware interlocks

Name: Solutions NYU NetId:

page 16 of 18

VI Scheduling (8 points)

8. [8 points] Consider a system with three jobs that arrive in the order A, B, C. Jobs A and B each
take 1000 seconds, if given sole access to the CPU. Job C takes 10 seconds, if given sole access to the
CPU. A context switch takes 5µs (5 microseconds, or 5×10−6 seconds).

Consider two scheduling disciplines: (a) FIFO and (b) Round-robin with a quantum of 1 millisecond.

Which of the two will have greater throughput for the stated workload? If they will result in the
same throughput, write “same.”

FIFO has greater throughput.

Justify your answer below. Use no more than two sentences.

Round-robin has more context switches, and context switches have a price. So the total time to get
everything out of the system is (slightly) higher under RR, and therefore the throughput is (slightly)
lower. Some students computed the throughput, but it was not necessary to do so to answer this
question.

Name: Solutions NYU NetId:

page 17 of 18

VII Virtual memory (19 points)

9. [7 points] Assume an architecture with a virtual address of 32 bits and pages of 4 KB.

How many virtual pages are in the system? Show your work.

220 pages. If pages are 4 KB, then there are 12 offset bits. The remaining bits range over all possible
pages. There are 32-12=20 such bits, and 220 possible settings. Another way to show work would have
been to draw a picture of the address, separate it into two rectangles, one of ”length” 12 bits and one of
”length” 20 bits.

10. [12 points] Assume our model architecture, x86-64. The operating system wants, for a particular
process p, to have virtual address 0x403000 map to physical address 0x5000, and for this virtual
address to be accessible in user space, and writable.

To avoid ambiguity, number indexes starting at 0 (index 0, index 1, and so on). Do not use words like
“first, second, third” and so on; those words are ambiguous in this context.

To answer the questions below, it may be helpful for you to draw pictures (but you don’t have to).

In the L1 page table for process p, what is the index of the entry that is relevant to the specified
mapping? What does this entry contain?

Index 0 is the relevant one. It contains the physical page number of an L2 page table, and the three
bottom permissions bits are set.

In the relevant L2 page table, what is the index of the entry that is relevant to the specified
mapping? What does this entry contain?

Index 0 is the relevant one. It contains the physical page number of an L3 page table, and the three
bottom permissions bits are set.

In the relevant L3 page table, what is the index of the entry that is relevant to the specified
mapping? What does this entry contain?

Index 2 is the relevant one. It contains the physical page number of an L4 page table, and the three
bottom permissions bits are set.

In the relevant L4 page table, what is the index of the entry that is relevant to the specified
mapping? What does this entry contain?

Index 3 is the relevant one. It contains 0x5 as the physical page number for the mapping, and the three
permissions bits are set.

VIII Feedback (2 points)

11. [2 points] This is to gather feedback. Any answer, except a blank one, will get full credit.

Please state the topic or topics in this class that have been least clear to you.

Name: Solutions NYU NetId:

page 18 of 18

Please state the topic or topics in this class that have been most clear to you.

End of Midterm
Enjoy Spring Break!!

Name: Solutions NYU NetId:

	I Follow the machine (8 points)
	II Lab 2: ls (18 points)
	III Lab 3 and Concurrent programming (28 points)
	IV Deadlock (10 points)
	V Therac-25 (7 points)
	VI Scheduling (8 points)
	VII Virtual memory (19 points)
	VIII Feedback (2 points)

