4 Lash fime
0/ Advice ONE HANDOUT

'3/3. Pracjﬁce w’\H« cwncurrenAY ?roaromm'mcj
Q/Lk. ImP\em&n+&+{on o][S?'\V\loc_ks) ijeXgS

0 g D(’,CLCMOC\<
) C O‘Hr\(a_\/ ?roﬂre_% ssues

2 . /“\cl\/ice,

| Gelting stated
v

\¢, i 6/\7L.')[7 meS OFF Comcurfcnc/

b er\Jﬁi\ ctmnks cﬂc SJTaJE:
\C, \A/r‘ljf@/ OLOu)h %\5\'\"6\/@‘ naln)OO? QEQGCL _‘ere.mal

§€?ora € /HﬂreacJ\s fﬂ/om ;ﬁec S

Z, er+e Aﬁwn)H‘!e, Syﬂa}ﬂ‘oﬂl'fa‘hbh Cmsjfra)nj\j)
ar\ak fhe }(iﬂd\ <m1ﬂtua‘ eXc)us(on o Sc_Lealu"r\5>

2, Cf@ajfg O (oa\% o CV ﬂCor aac;)x (onS *a'\n‘y

L{f l/\/FiJV@ "Hf\e, mleLoatS/ MQ(H3 The locks and CVs

_——

3 Pra C,Jf\' as g
Ej@\dﬁ" %
- WOr\<gr§](\lirac%(w'fH\ o OKO:]'oLqS&

W@&A\ers never mw\‘uf
~l/\/r\’JrUS rE&d\ av\oL moZXnCy g/
- 5({\6\6 N\LLJFKX wom\A LC ’bo (¢ ;h(dtl.\/f,

— '\V\S%COA) V\/QV\+"
- r\/\ar\y re &Aerﬁ oﬂf 6N (e OR
- ON l\/ one Wrijre r [01\0\ No r6a0066>

ety Follow The advice oot .

G- . U\MJFS OWC Con curfency .
darabasze

e chls ket S
C. W AV AO@ main Wﬁuﬂc+i0A ‘Do\< \i\K@?

red O
5 " chedk w . wail | no wrifes

L>0C<e ss_ VRO)
— QL\GClQ OLL’?», .. W@l(e wg\'(J[(/\ﬁX WFHLLQBK ﬂ[ar\/

wthe Q

~— C/L\e_Cl< n __. l//\i_g% Mﬂ+l’\ no oNe @\Sﬂ
S 08y DB ()

— d\x@ck o(,j’ __,Waée up WQEAAB reaoPe@

or Wr 1'7L€f}

2, a,\(JI % 9}//\(}\@4@&7[{0(\ LoﬂstFa'lfﬂLS d/’\g(
gyf\cl/\ron@ajﬁor\ ofcj@

W QXC\).A(o{: /n\ﬂ S‘M{ J(fm\‘ lal.,s us +0
: *W&\ mr\erwe/arm chedein O [dreckoi 0.

do coown = Q rp@al (%j "o
O(Ja\\}ﬂ')ﬁ Wr\la no reac&ers 6€ ﬁjfffs' j@r%ﬁ DR

g\(ﬁ @ewb f@:v-)\er': No Wﬂ'\ifS E 945\6 1(0 ?WLZQJ\ \{' ne ac/‘"\'\rt 1,,/”-[-@;

al WrHLa ﬂ«e wﬁw%

’((\% /BKR - O/ //acjr(wa Veaa\eg
mj(AW = O/' / active wrﬂL&U
\ .

N e~ . //..‘l... ADA,\/)P/‘

IK\T WIN 7 wa) | R D
(/\‘\' \/\/\/\/ O / WaWL\V\S er%é/}

. —

L\ lmrkm‘l’a‘}\m g 5\"ﬂl00l<5 MJ mwleye s

L\ l\kvol l(t'f_r ce,. [DC\CD/UAIDCL[>

L\ow —I'b ‘:‘)rOV(AC. .

(a) ?&4’6%) o 6@!‘TH\M - LM?/ Uafh/lg ,S{Z'('lc LDW\A

(L) A(Salal& (n{?:rm[fk
() s\m\o&s

RAM
cvud O \OC\@J\ CPU;]_-‘
/ ror /raX
=1 -

- _

(CD mufexes 5?'\(\\«,\(<« queue

| ~+efl/l>06li ‘r‘\as oh imyp ’ema\:l'a’hof\
l ['\al\Aocd’ L\aﬁ C\V\o/H'\E"—

/

04 (Km /’<>Nr o "‘iac? @m@)'_}
&% (((M\%/ VQC? (Xm/w/'f
el z&@n@'
weeece @»/6/
Harlw\s ul\e:\ al\ -(;ur 6{' /\L‘SO- Cow‘(‘l‘(’onﬁ
are F‘e%"’l':

Z. Mu u«‘ QXCluSion
CZ. ‘O\O\A &AJ WQ.I"L
(i(. no pre-emp ion

(. cicw\ar wai

Whd can we do obod deadleckS

(a\[nore T(’
(L) oé;%e&‘ ' recover

() a\/o'wl A brf"tvf\icﬂ((
(o\) feqdle je &*(’tﬁ?/"(chi?Zims

(c) 5(‘ eﬂl‘[c,/ o‘}m amic Af'/?ﬂtim _"w‘s

Printed by Michael Walfish

Sep 25, 24 9:47

spinlock—-mutex.txt Page 1/3

Sep 25, 24 9:47

spinlock—-mutex.txt

Page 2/3

1
2
3
4
5
6
7
8
9

"

Implementation of spinlocks and mutexes

1.

Here is a BROKEN spinlock implementation:
struct Spinlock {
int locked;
}

void acquire (Spinlock *lock) {

while (1) {
if (lock->locked == 0) { // A
lock->locked = 1; // B
break;

}
}

void release (Spinlock *lock) {
lock—->locked = 0;
}

What’s the problem? Two acquire()s on the same lock on different
CPUs might both execute line A, and then both execute B. Then
both will think they have acquired the lock. Both will proceed.
That doesn’t provide mutual exclusion.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
5

52
53
54
55
56
57
58
59
60
6

62
63
64
65
66
67
68
69
70
7

72
73
74
75
76
77
78
79
80
8

82
83
84
85
86
87
88
89
9
9

92
93
9%

2. Correct spinlock implementation

Relies on atomic hardware instruction. For example, on the x86-64,

(i) freeze all CPUs’ memory activity for address addr
(ii) temp <-- *addr

(iii) *addr <—-- %$rax .

(iv) S%rax <-— temp rué 9 nloc
(v) un-freeze memory activity

/* pseudocode */

int xchg_val (addr, value) {
$rax = value;
xchg (*addr), %rax

in"' ,ookCOK}

/* bare-bones version of acquire */
void acquire (Spinlock *lock) {

pushcli () ; /* what does this do? */
while (1) {
if (xchg_val (&lock->locked, 1) == 0)
break;

}

void release (Spinlock *lock) {
xchg_val (&lock—->locked, 0);

popcli(); /* what does this do? */
}
/* optimization in acquire; call xchg_val() less frequently */
void acquire (Spinlock* lock) {
pushcli();
while (xchg_val (&lock->locked, 1) == 1) {

while (lock->locked) ;
}
}

The above is called a *spinlock* because acquire() spins. The
bare-bones version is called a "test-and-set (TAS) spinlock"; the
other is called a "test-and-test-and-set spinlock".

The spinlock above is great for some things, not so great for
others. The main problem is that it *busy waits*: it spins,
chewing up CPU cycles. Sometimes this is what we want (e.g., if
the cost of going to sleep is greater than the cost of spinning
for a few cycles waiting for another thread or process to
relinquish the spinlock). But sometimes this is not at all what we
want (e.g., if the lock would be held for a while: in those

cases, the CPU waiting for the lock would waste cycles spinning
instead of running some other thread or process).

NOTE: the spinlocks presented here can introduce performance issues
when there is a lot of contention. (This happens even if the
programmer is using spinlocks correctly.) The performance issues
result from cross-talk among CPUs (which undermines caching and
generates traffic on the memory bus). If we have time later, we will
study a remediation of this issue (search the Web for "MCS locks").

ANOTHER NOTE: In everyday application-level programming, spinlocks
will not be something you use (use mutexes instead). But you should
know what these are for technical literacy, and to see where the
mutual exclusion is truly enforced on modern hardware.

Wednesday September 25, 2024

spinlock—mutex.ixt

1/4

Printed by Michael Walfish

Sep 25, 24 9:47 spinlock—-mutex.txt Page 3/3 Sep 25, 24 9:47 fair-mutex.c Page 1/1
95 3. Mutex implementation #include <sys/queue.h>

%

97 The intent of a mutex is to avoid busy waiting: if the lock is not typedef struct thread {

98 available, the locking thread is put to sleep, and tracked by a // Entries elided.

99 queue in the mutex. STAILQ_ENTRY (thread_t) gqlink; // Tail queue entry.

The next pii? has an implementation.

*Hou 5" execition loo)is hke S -

The

ilex acquire
A ";\jﬁ&\ o kel ek | |

5 l(\KDCk- ve
[@ﬁl\er WQA’ or con

R

1
2
3
4
5
6
7
8
9

1"

,\UL] i
A\a.\ :
1@ g

e o
uers| | =

?”’M“S
-

mujrcx ce\ease -
sP(Locc ac

{CrA’ cal sechen Tréfal'éﬁ]

9‘>'(y\\('>c\,<. (8\

Svln 54

55

} thread_t;

struct Mutex {

}i

void mutex_acquire (struct Mutex *m) {

}

void mutex_release (struct Mutex *m) {

}

// Current owner, or 0 when mutex is not held.

thread_t *owner;

// List of threads waiting on mutex
STAILQ (thread_t) waiters;

// A lock protecting the internals of the mutex.
Spinlock splock; // as in item 1, above

acquire (&m->splock) ;

// Check if the mutex is held;
if (m—>owner == 0)
m->owner = id_of_this_thread;
release (&m—>splock) ;
} else {
// Add thread to waiters.
STAILQ_INSERT_TAIL (sm—>waiters,

if not, current thread gets mutex and returns

id_of_this_thread, glink);
// Tell the scheduler to add current thread to the list
// of blocked threads. The scheduler needs to be careful
// when a corresponding sched_wakeup call is executed to
// make sure that it treats running threads correctly.
sched_mark_blocked(&id_of_this_thread);

// Unlock spinlock.
release (&m—>splock) ;

// Stop executing until woken.
sched_swtch () ;

When we get to this line, we are guaranteed to hold the mutex. This
is because we can get here only if context-switched-TO, which itself
can happen only if this thread is removed from the waiting queue,
marked "unblocked", and set to be the owner (in mutex_release ()
below). However, we might have held the mutex in lines 39-42

(if we were context-switched out after the spinlock release(),
followed by being run as a result of another thread’s release of the
mutex). But if that happens, it just means that we are
context-switched out an "extra" time before proceeding.

// Acquire the spinlock in order to make changes.
acquire (&m->splock) ;

// Assert that the
assert (m—>owner ==

current thread actually owns the mutex
id_of_this_thread);

// Check if anyone is waiting.
m->owner = STAILQ_ GET_HEAD (&m->waiters);

// If so, wake them up.

if (m—>owner) {
sched_wakeone (&m—->owner) ;
STAILQ_REMOVE_HEAD (&m—->waiters, glink);

}

// Release the internal spinlock
release (&m—>splock) ;

Wednesday September 25, 2024

spinlock—mutex.ixt, fair-mutex.c

2/4

Printed by Michael Walfish

Sep 25, 24 9:47

deadlock.txt

Page 1/3 Sep 25, 24 9:47 deadlock.txt Page 2/3

1
2
3
4
5
6
7
8
9

"

Deadlock examples

1.

Simple deadlock example

T1:

T2:

acquire (mutexa) ;
acquire (mutexB) ;

// do some stuff
release (mutexB);
release (mutexAa) ;
acquire (mutexB) ;
acquire (mutexa) ;
// do some stuff

release (mutexAa) ;
release (mutexB);

23
24
25
2
27
28
29
30
31
32
33
34
35
36
37
38
39
40
A
42
43
44
45
46
47
48
49
50
5

52
53
54
55
56
57
58
59
60
6

62
63
64
65
66
67
68
69
70
7

72
73
74
75
76
77
78
79
80
8

82
83
84

More subtle deadlock example

Let M be a monitor (shared object with methods protected by mutex)
Let N be another monitor

class M {
private:
Mutex mutex_m;

// instance of monitor N
N another_monitor;

// Assumption: no other objects in the system hold a pointer
// to our "another_monitor"

public:
M();
~M() ;
void methodA();
void methodB();
}i

class N {
private:
Mutex mutex_n;
Cond cond_n;
int navailable;

public:
N();
~N();
void* alloc (int nwanted);
void free(void*);
}
int
N::alloc (int nwanted) {
acquire (&mutex_n) ;
while (navailable < nwanted) {
wait (&cond_n, &mutex_n);
}
// peel off the memory
navailable -= nwanted;
release (&mutex_n);

}

void
N::free(void* returning_mem) {

acquire (&mutex_n) ;

// put the memory back
navailable += returning_mem;
broadcast (¢cond_n, &mutex_n);

release (&mutex_n) ;

Wednesday September 25, 2024

deadlock.txt

3/4

Sep 25, 24 9:47 deadlock.txt Page 3/3

85
86
87
88
89
90
91
92
93
94
95
96

110

void
M: :methodA () {

acquire (&mutex_m) ;
void* new_mem = another_monitor.alloc (int nbytes);

// do a bunch of stuff using this nice
// chunk of memory n allocated for us

release (&mutex_m) ;

}

void
M::methodB () {

acquire (&mutex_m) ;
// do a bunch of stuff
another_monitor.free (some_pointer) ;

release (&mutex_m) ;

}

QUESTION: What’s the problem?

Wednesday September 25, 2024 deadlock.txt

Printed by Michael Walfish

4/4

