
rs01 agenda

1. Intro
2. Logistics
3. Motivation
4. Lab infrastructure

a. Git/GitHub
b. Docker
c. Scripts and Makefiles

5. Lab 1 Overview
a. C basics
b. gdb

6. Q&A

git != GitHub

git: version control software

repository: “container” which holds files, tracks history of changes

working copy: current state of files in your repository

remote: repositories stored elsewhere (e.g. GitHub)

clone: copy a repository (usually from remote)

GitHub: website that stores git repositories (see alternatives: GitLab, Bitbucket,
etc.)

commit: save your changes to the git version history

checkout: switch working copy to a current version

push: update remote repo with local commits

fetch: copy commits from remote into local repo

pull: fetch AND update your working copy to reflect new commits

Makefile

Syntax:

target: dependencies

recipe

Ex:

$ make hello

Makefile:

hello: hello.c

gcc -Wall -g hello.c -o hello

C Basics

Declare a variable:

int x;

boolean b;

char * c;

Don’t forget to initialize!

x = 6;

int y = 3;

C Basics
Pointers:

“Point” to an address in memory

Syntax: type * name

Dereference with *

Get address of a variable with &

Examples:

int * int_p;

* int_p = 6;

int x = *int_p; // x =6

x = 3;

int_p = &x; // *int_p = 3. Note that the address of int_p has also changed!

C Basics

Pointers mental model:

 int a = 1;

 int* b = &a;

 int** c = &b;

var data addr

 a [1] 0x100

 b [0x100] 0x108

 c [0x108] 0x116

a = 1

*b = 1

*c = 0x100

**c = 1

C Basics

Strings: no built-in strings in C

Instead: use array of chars

“Null-terminated”: strings end with null character (‘\0’)

E.g.

// wrong but will compile sometimes
char name[5] = “Alice”;

// better
char name[6] = “Alice”;

char[] name = “Bob”; // mutable
char * name = “Bob”; // immutable
char * name = malloc(4 * sizeof(char));
*name = “Bob\0”; //mutable

GDB!! :)

