
New York University
CSCI-UA.0202-002: Operating Systems (Undergrad): Fall 2024

Midterm Exam (Token: V0)

• Write your name and NetId on this cover sheet (where indicated, at the bottom). Write your
name, NetId, and token on the cover of your blue book.

• Put all of your answers in the blue book; we will grade only the blue book. At the end, turn in
both the blue book and the exam print-out. “Orphaned” blue books with no corresponding exam
print-out will not be graded.

• This exam is 75 minutes. Stop writing when “time” is called. You must turn in your print-out and
blue books; we will not collect them. Do not get up or pack up in the final ten minutes. The instructor
will leave the room 78 minutes after the exam begins and will not accept exams outside the room.

• There are 9 problems in this booklet. Some may be harder than others, and some earn more points
than others. You may want to skim all questions before starting.

• This exam is closed book and notes. You may not use electronics: phones, tablets, calculators,
laptops, etc. You may refer to ONE two-sided 8.5x11” sheet with 10 point or larger Times New
Roman font, 1 inch or larger margins, and a maximum of 55 lines per side.

• Do not waste time on arithmetic. Write answers in powers of 2 if necessary.

• If you find a question unclear or ambiguous, state any assumptions you make.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any important
assumptions. Write brief, precise answers. Rambling brain dumps will not work and will waste
time. Think before you start writing so that you can answer crisply. Be neat. If we can’t understand
your answer, we can’t give you credit!

• If the questions impose a sentence limit, we will not read past that limit. In addition, a response that
includes the correct answer, along with irrelevant or incorrect content, will lose points.

Do not write in the boxes below.

I (xx/8) II (xx/7) III (xx/26) IV (xx/7) V (xx/4) VI (xx/6) VII (xx/12) Total (xx/70)

Name:

NetId:

page 2 of 14

,

I Buggy compiler (8 points)

1. [8 points] Consider this C code: f() is supposed to return 2*x + (x+5), for x set to 17. (We
do not show the C code for the functions that f() calls.) The C code is not buggy:

// computes and returns 2*x + (x + 5), for x = 17

int f() {

int x, y, z;

x = 17;

y = double_x(x);

z = x_plus_5(x);

z += y; // equivalent to: z = z + y

return z;
}

But f() returns the wrong answer because the compiler has a bug! The compiler produces the buggy
x86-64 code given on the next page.

Identify specifically what the code does wrong. If you cannot pinpoint it, then for partial credit
state both (1) what a correct f() would return and (2) what the compiled f() does return.

Name: NYU NetId:

page 3 of 14

Hints:

– The arguments to movq are in the order movq SOURCE, DESTINATION.

– When a function is called, %rdi holds the first argument to it. When a function returns, it places
the return value in %rax.

– Because we know that x is 17, the bug here is not any kind of overflow.

– If a line is commented, then the bug is guaranteed not to be in that line.

1 f: # f has no prolog, but that is fine (not a bug)

2 movq $17, %rdi

3 call double_x

4 movq %rax, %rbx

5
6 movq $17, %rdi

7 call x_plus_5

8
9 addq %rbx, %rax # this means "%rax <-- %rax + %rbx" (adds %rbx to %rax)

10
11 ret

12
13 double_x:

14 pushq %rbp # Standard beginning of prolog

15 movq %rsp, %rbp # Standard second line of prolog

16
17 imul $2, %rdi # Multiplies %rdi by 2, puts result in %rdi

18 movq %rdi, %rax # The return value of double_x will be the contents of %rdi

19
20 movq %rbp, %rsp

21 popq %rbp

22 ret

23
24 x_plus_5:

25 pushq %rbp # Standard beginning of prolog

26 movq %rsp, %rbp # Standard second line of prolog

27
28 movq %rdi, %rbx

29 addq $5, %rbx # Adds 5 to %rbx, puts result in %rbx

30 movq %rbx, %rax # The return value of x_plus_5 will be the contents of %rbx

31
32 movq %rbp, %rsp

33 popq %rbp

34 ret

Name: NYU NetId:

page 4 of 14

II Memory consistency (7 points)

2. [7 points] In the code below, assume that that the compiler does not reorder instructions. Assume
that x and y are variables in memory that are initialized to 0 and shared between two threads. One
thread runs f(), and the other thread concurrently runs g().

int x = 0;

int y = 0;

int main(int argc, char **argv)

{

sthread_t tid_f, tid_g;

sthread_create(&tid_f, f, NULL);

sthread_create(&tid_g, g, NULL);

sthread_join(tid_f);

sthread_join(tid_g);

return 0;

}

void* f(void*) {

int r1; // local variable

x = 1;

r1 = y;

printf("r1: %d\n", r1);

sthread_exit(); return NULL;

}

void* g(void*) {

int r2; // local variable

y = 1;

r2 = x;

printf("r2: %d\n", r2);

sthread_exit(); return NULL;

}

Consider the following outputs, which we have labeled with boldface A through D.

A r1: 0

r2: 0

B r1: 1

r2: 0

C r1: 0

r2: 1

D r1: 1

r2: 1

Name: NYU NetId:

page 5 of 14

Assume sequentially consistent hardware (equivalent to executing on a single processor). Which
of those options can be printed? Choose ALL that apply.

Now assume that the hardware does not provide sequential consistency. For example, assume
that there are multiple CPUs, providing Total Store Order. Which of the output options can be
printed? Choose ALL that apply.

Name: NYU NetId:

page 6 of 14

III Multithreaded ls (26 points)

3. [26 points] This problem considers a simplified, but multithreaded, version of ls, called mls,
which prints all files in a single directory (as when ls is in -a mode), non-recursively, prefixed by their
sizes. Here is sample output for a directory ˜/cs202-labs/ls-multi/foo:

cs202-user@108fdce95b64:˜/cs202-labs/ls-multi$./mls foo

6454 EStore.cpp

5457 RequestGenerator.cpp

3602 RequestHandlers.cpp

1714 TaskQueue.cpp

3801 sthread.cpp

352 .

576 ..

mls has multiple threads, each working on one file at a time within the given directory. (The motivation
is cases where reading a file’s information has high latency, and I/O throughput benefits from parallelism.
If this parenthetical confuses you, you can ignore it.) mls instantiates this idea with a monitor, called
Dispatcher, that hands out work to each caller. Dispatcher is constructed with a pointer to the
given directory, and has the following methods, which you will implement:

– start_item(): Returns a new directory entry (representing a file) for the calling thread to list,
or NULL if there are no more entries in the directory. If there are already WINDOW concurrent
workers, then wait; otherwise, allow concurrency.

– finish_item(): Informs the monitor that the thread is done processing the given work item.

You will also implement a function that uses one or more system calls to actually produce the output:

– file_printer(): For each call, print the size and name for a single file.

Here are further specifications:

– Your implementation of Dispatcher must ensure that each file within the given directory is
processed exactly once.

– Your code should not make any assumptions about the relationship between WINDOW and
NUM_THREADS. Both of them are constants that the code references.

– Follow the concurrency commandments.

– Write in syntactically valid C or C++, and use the sthread library.

– Don’t wake threads unnecessarily.

– You can assume that each individual call to printf() is atomic, and does not need to be protected
from concurrent access.

– Possibly helpful definitions, including the sthread library, are on page 10. Note that there is
more information than you need.

Code for the overall setup is on the next page, and the code that you will fill in is on the pages after that.

Name: NYU NetId:

page 7 of 14

#define NUM_THREADS 10
char* given_directory = NULL;

void* worker(void* arg);

// execution starts here, as a result of a user invoking "./mls <dir>"

int main(int argc, char **argv) {
sthread_t threads[NUM_THREADS];

DIR* dirp;

if (argc != 2) {
fprintf(stderr, "Usage: %s <dir>\n", argv[0]); exit(-1);

}

given_directory = argv[1];

if ((dirp = opendir(given_directory)) == NULL) {
perror("opendir"); exit(-1);

}

Dispatcher dispatcher(dirp);

for (int i = 0; i < NUM_THREADS; i++)
sthread_create(&threads[i], &worker, &dispatcher);

for (int i = 0; i < NUM_THREADS; i++)
sthread_join(threads[i]);

closedir(dirp);

return 0;
}

void* worker(void* arg) {
Dispatcher* dispatcher = (Dispatcher*)arg;

struct dirent* direntp;

do {
direntp = dispatcher->start_item();

if (direntp != NULL)
// you will implement this function on the next page

file_printer(given_directory, direntp->d_name);

dispatcher->finish_item();

} while (direntp);

sthread_exit();

return NULL;
}

Fill in the five places marked FILL IN on the next pages.

Name: NYU NetId:

page 8 of 14

// Print the file’s size and its name. On error, simply return.

// This function should do no synchronization; if dispatcher

// is doing its job, then no other thread is currently working on

// the file "name".

void file_printer(char* given_directory, char* name)

{

char buf[256];

snprintf(buf, sizeof(buf), "%s/%s", given_directory, name);

// (1) FILL IN, BASED ON THE SPECIFICATION AND THE COMMENT ABOVE

}

class Dispatcher {

public:

Dispatcher(DIR* dirp);

struct dirent* start_item();

void finish_item();

private:

const int WINDOW = 5;

DIR* m_dirp;

// (2) FILL IN: MORE REQUIRED HERE

};

Dispatcher::Dispatcher(DIR* dirp)

{

m_dirp = dirp;

// (3) FILL IN

}

Name: NYU NetId:

page 9 of 14

struct dirent*

Dispatcher::start_item()

{

struct dirent* e = NULL;

// (4) FILL IN, BASED ON THE SPECIFICATION

return e;

}

void

Dispatcher::finish_item()

{

// (5) FILL IN, BASED ON THE SPECIFICATION

}

Name: NYU NetId:

page 10 of 14

/* Return information about the file given by pathname.

Places the returned information in the buffer pointed to by statbuf.

On success, return 0. On error, return -1. */

int stat(const char* pathname, struct stat *statbuf);

/* This is the same as the macro that you were given in lab2. */

#define PRINT_PERM_CHAR(info, mask, ch) printf("%s", (info & mask) ? ch : "-");

/* convert the mode field in a struct stat to a file type, for -l printing */

const char* ftype_to_str(mode_t mode);

/* Tests whether the argument refers to a directory */

bool is_dir(char* pathandname);

/* Open a directory */

DIR *opendir(const char *name);

/* Read a directory entry, representing a file within the directory */

struct dirent *readdir(DIR *dirp);

struct stat {
dev_t st_dev;

ino_t st_ino;

mode_t st_mode;

nlink_t st_nlink;

uid_t st_uid;

gid_t st_gid;

dev_t st_rdev;

off_t st_size;

blksize_t st_blksize;

blkcnt_t st_blocks;

}

void smutex_init(smutex_t *mutex);
void smutex_destroy(smutex_t *mutex);
void smutex_lock(smutex_t *mutex);
void smutex_unlock(smutex_t *mutex);

void scond_init(scond_t *cond);
void scond_destroy(scond_t *cond);

void scond_signal(scond_t *cond, smutex_t *mutex);
void scond_broadcast(scond_t *cond, smutex_t *mutex);
void scond_wait(scond_t *cond, smutex_t *mutex);

void sthread_create(sthread_t *thrd,
void* (*start_routine)(void*),
void *argToStartRoutine);

void sthread_exit(void);
void sthread_join(sthread_t thrd);

Name: NYU NetId:

page 11 of 14

IV Preemptive scheduling (7 points)

4. [7 points] Consider the setup below, which follows a format from class. Time is divided into
epochs. Jobs arrive at the very beginning of the epoch listed under “arrival epoch”; after they have been
given the CPU for the number of epochs listed under “length”, they leave.

process arrival epoch length

P1 0 6
P2 1 1
P3 2 3

The system runs preemptive priority scheduling: it schedules the highest-priority runnable (also known
as “ready”) process, preempting another running process if necessary.

The system administrator assigns priorities to processes as follows:

P1 low
P2 medium
P3 high

The processes have the following structure. Assume that releasing a lock is instantaneous, as is
acquiring the lock if it is available. Note that P1 and P3 share the same lock:

P1:

acquire(&lock);

run1(); // takes 6 epochs

release(&lock);

P2:

run2(); // takes 1 epoch

P3:

acquire(&lock);

run3(); // takes 3 epochs

release(&lock);

Write down the process scheduled for each epoch:

0 1 2 3 4 5 6 7 8 9

Name: NYU NetId:

page 12 of 14

V Lottery scheduling (4 points)

5. [4 points] Consider the statements below about lottery scheduling. Which of them is true?

Write down the letters of ALL that apply:

A Lottery scheduling is susceptible to starvation.

B Lottery scheduling, despite the name, is deterministic rather than random.

C With lottery scheduling, if there are two compute-bound processes, the administrator of the
system can arrange for one of those processes to get twice as much processor time, over the
long-term, as the other.

D Lottery scheduling attempts to allocate the processor proportionally.

E Lottery scheduling requires keeping scheduler state about past scheduling decisions.

Name: NYU NetId:

page 13 of 14

VI Therac-25 (6 points)

6. [3 points] How many turntable positions does the Therac-25 have?

7. [3 points] What are three non-software problems that led to the Therac-25 disasters?

Name: NYU NetId:

page 14 of 14

VII Virtual memory (12 points)

8. [6 points] Assume a 52-bit virtual address space, 42-bit physical address space, and page size of
2KB. Determine the number of bits in the VPN (virtual page number), PPN (physical page number),
and offset. Show your work, possibly by drawing pictures.

of VPN bits # of PPN bits # of offset bits

9. [6 points] This question is about the x86-64 page table structures.

What is the maximum number of physical pages that could be consumed by a process that allo-
cates a single virtual page of size 4KB? Show your work.

What is the maximum number of physical pages that could be consumed by a process that allo-
cates 29 virtual pages of size 4KB each? Show your work.

End of Midterm

Name: NYU NetId:

	I Buggy compiler (8 points)
	II Memory consistency (7 points)
	III Multithreaded ls (26 points)
	IV Preemptive scheduling (7 points)
	V Lottery scheduling (4 points)
	VI Therac-25 (6 points)
	VII Virtual memory (12 points)

