Printed by Michael Walfish

Feb 05, 23 23:11 handout04.txt Page 1/4 Feb 05, 23 23:11 handout04.txt Page 2/4
1 CS 202, Spring 2023 25 2. Producer/consumer revisited [also known as bounded buffer]
2 Handout 4 (Class 5) 26
3 27 2a. Producer/consumer [bounded buffer] with mutexes
4 The handout from the last class gave examples of race conditions. The following 28
5 panels demonstrate the use of concurrency primitives (mutexes, etc.). We are 29 Mutex mutex;
6 using concurrency primitives to eliminate race conditions (see items 1 30
7 and 2a) and improve scheduling (see item 2b). 31 void producer (void *ignored) {
8 32 for (;;) {
9 1. Protecting the linked list...... 33 /* next line produces an item and puts it in nextProduced */
10 34 nextProduced = means_of_production () ;
11 Mutex list_mutex; 35
12 36 acquire (&mutex) ;
13 insert (int data) { 37 while (count == BUFFER_SIZE) {
14 List_elem* 1 = new List_elem; 38 release (&mutex) ;
15 l->data = data; 39 yield(); /* or schedule() */
16 40 acquire (&mutex) ;
17 acquire (&list_mutex) ; 41 }
18 42
19 1->next = head; 43 buffer [in] = nextProduced;
20 head = 1; 44 in = (in + 1) % BUFFER_SIZE;
21 45 count++;
22 release (&list_mutex); 46 release (&mutex) ;
23 } 47 }
24 48 }
49
50 void consumer (void *ignored) {
51 for (;;) {
52
53 acquire (&mutex) ;
54 while (count == 0) {
55 release (&mutex) ;
56 yield(); /* or schedule() */
57 acquire (&mutex) ;
58 }
59
60 nextConsumed = buffer[out];
61 out = (out + 1) % BUFFER_SIZE;
62 count——;
63 release (&mutex) ;
64
65 /* next line abstractly consumes the item */
66 consume_item (nextConsumed) ;

67 }
68 }
69

Sunday February 05, 2023 handout04.txt 1/2

Printed by Michael Walfish

Feb 05, 23 23:11 handout04.txt Page 3/4 Feb 05, 23 23:11 handout04.txt Page 4/4

70 122 2c. Producer/consumer [bounded buffer] with semaphores

71 2b. Producer/consumer [bounded buffer] with mutexes and condition variables 123

72 124 Semaphore mutex (1) ; /* mutex initialized to 1 */

73 Mutex mutex; 125 Semaphore empty (BUFFER_SIZE); /* start with BUFFER_SIZE empty slots */

74 Cond nonempty; 126 Semaphore full(0); /* 0 full slots */

75 Cond nonfull; 127

76 128 void producer (void *ignored) {

77 void producer (void *ignored) { 129 for (;;) {

78 for (;;) 130 /* next line produces an item and puts it in nextProduced */

79 /* next line produces an item and puts it in nextProduced */ 131 nextProduced = means_of_production();

80 nextProduced = means_of_production(); 132

81 133 /*

82 acquire (&mutex) ; 134 * next line diminishes the count of empty slots and

83 while (count == BUFFER_SIZE) 135 * waits if there are no empty slots

84 cond_wait (&nonfull, &mutex); 136 */

85 137 sem_down (&empty) ;

86 buffer [in] = nextProduced; 138 sem_down (&mutex); /* get exclusive access */

87 in = (in + 1) % BUFFER_SIZE; 139

88 count++; 140 buffer [in] = nextProduced;

89 cond_signal (&nonempty, &mutex); 141 in = (in + 1) % BUFFER_SIZE;

90 release (&mutex) ; 142

91 } 143 sem_up (&mutex) ;

92 } 144 sem_up (&full) ; /* we just increased the # of full slots */

93 145 }

94 void consumer (void *ignored) { 146 }

95 for (;;) { 147

96 148 void consumer (void *ignored) {

97 acquire (&mutex) ; 149 for (;;) {

98 while (count == 150

99 cond_wait (&§nonempty, &mutex); 151 /*

100 152 * next line diminishes the count of full slots and

101 nextConsumed = buffer[out]; 153 * waits if there are no full slots

102 out = (out + 1) % BUFFER_SIZE; 154 */

103 count—-—; 155 sem_down (&full);

104 cond_signal (&nonfull, &mutex); 156 sem_down (&mutex) ;

105 release (&mutex) ; 157

106 158 nextConsumed = buffer[out];

107 /* next line abstractly consumes the item */ 159 out = (out + 1) % BUFFER_SIZE;

108 consume_item(nextConsumed) ; 160

109 } 161 sem_up (&mutex) ;

110 } 162 sem_up (&empty) ; /* one further empty slot */

111 163

112 164 /* next line abstractly consumes the item */

113 Question: why does cond_wait need to both release the mutex and 165 consume_item (nextConsumed) ;

114 sleep? Why not: 166 }

115 167 }

116 while (count == BUFFER_SIZE) { 168

117 release (&mutex) ; 169 Semaphores *can* (not always) lead to elegant solutions (notice

118 cond_wait (&nonfull); 170 that the code above is fewer lines than 2b) but they are much

119 acquire (&mutex) ; 171 harder to use.

120 } 172

121 173 The fundamental issue is that semaphores make implicit (counts,
174 conditions, etc.) what is probably best left explicit. Moreover,
175 they *also* implement mutual exclusion.
176
177 For this reason, you should not use semaphores. This example is
178 here mainly for completeness and so you know what a semaphore
179 is. But do not code with them. Solutions that use semaphores in
180 this course will receive no credit.

Sunday February 05, 2023 handout04.txt 2/2

