Printed by Michael Walfish

Page 1/4

Feb 09, 22 1:26

handout05.txt

Page 2/4

Feb 09, 22 1:26 handout05.txt
1 CS 202, Spring 2022

2 Handout 5 (Class 6)

3

4 The previous handout demonstrated the use of mutexes and condition
s variables. This handout demonstrates the use of monitors (which combine
6 mutexes and condition variables).

7

8 1. The bounded buffer as a monitor

9

10 // This is pseudocode that is inspired by C++.
1 // Don’t take it literally.

12

13 class MyBuffer ({

14 public:

15 MyBuffer();

16 ~MyBuffer();

17 void Enqueue (Item);

18 Item = Dequeue();

19 private:

20 int count;

21 int in;

22 int out;

23 Item buffer [BUFFER_SIZE];

24 Mutex* mutex;

25 Cond* nonempty;

26 Cond* nonfull;

27 }

28

29 void

30 MyBuffer: :MyBuffer ()

31 {

32 in = out = count = 0;

33 mutex = new Mutex;

3 nonempty = new Cond;

35 nonfull = new Cond;

36 }

37

38 void

39 MyBuffer: :Enqueue (Item item)

40 {

41 mutex.acquire () ;

42 while (count == BUFFER_SIZE)

43 cond_wait (&nonfull, &mutex);
44

45 buffer[in] = item;

6 in = (in + 1) % BUFFER_SIZE;

47 ++count;

48 cond_signal (&nonempty, &mutex);
49 mutex.release();

50 }

51

52 Item

53 MyBuffer: :Dequeue ()

54 {

55 mutex.acquire () ;

56 while (count == 0)

57 cond_wait (&§nonempty, &mutex);
58

59 Item ret = buffer[out];

60 out = (out + 1) % BUFFER_SIZE;
61 ——count;

62 cond_signal (&nonfull, &mutex);
63 mutex.release();

64 return ret;

65 }
66

67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

int main (int, char**)
{
MyBuffer buf;
int dummy;
tidl = thread_create (producer, &buf);
tid2 = thread_create (consumer, &buf);

// never reach this point
thread_join(tidl);
thread_join (tid2);

return -1;

}

void producer (void* buf)
{

MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*> (buf);

for (;;) |

/* next line produces an item and puts it in nextProduced */

Item nextProduced = means_of_production ()
sharedbuf->Enqueue (nextProduced) ;

}

void consumer (void* buf)

{

MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*> (buf);

for (;;) |
Item nextConsumed = sharedbuf->Dequeue();

/* next line abstractly consumes the item */

consume_item (nextConsumed) ;

}

Key point: *Threads* (the producer and consumer)
shared object (MyBuffer).
shared object.

The synchronization happens in the

7

are separate from

Wednesday February 09, 2022

handout05.txt

1/4

Printed by Michael Walfish

Feb 09, 22 1:26 handout05.txt

Page 3/4

Feb 09, 22 1:26

handout05.txt

Page 4/4

106 2. This monitor is a model of a database with multiple readers and

10 example, this one is expressed in pseudocode.

107 writers. The high-level goal here is (a) to give a writer exclusive
108 access (a single active writer means there should be no other writers
109 and no readers) while (b) allowing multiple readers. Like the previous

112 // assume that these variables are initialized in a constructor
113 state variables:

114 AR = 0; // # active readers

115 AW = 0; // # active writers

116 WR = 0; // # waiting readers

117 WW = 0; // # waiting writers

118

119 Condition okToRead = NIL;

120 Condition okToWrite = NIL;

121 Mutex mutex = FREE;

122

123 Database::read () {

124 startRead(); // first, check self into the system
125 Access Data

126 doneRead () ; // check self out of system

127 }

128

129 Database::startRead () {

130 acquire (&mutex) ;

131 while ((AW + WW) > 0){

132 WR++;

133 wait (&okToRead, &mutex);

134 WR-——;

135 }

136 AR++;

137 release (&mutex) ;

138 }

139

140 Database: :doneRead () {

141 acquire (&mutex) ;

142 AR-—;

143 if (AR == 0 && WW > 0) { // if no other readers still
144 signal (&okToWrite, &mutex); // active, wake up writer
145 }

146 release (&mutex) ;

147 }

148

149 Database::write(){ // symmetrical

150 startWrite(); // check in

151 Access Data

152 doneWrite(); // check out

153 }

154

155 Database: :startWrite () {

156 acquire (&mutex) ;

157 while ((AW + AR) > 0) { // check if safe to write.
158 // if any readers or writers, wait
159 WW++;

160 wait (&okToWrite, &mutex);

161 WW——;

162 }

163 AW++;

164 release (&mutex) ;

165 }

166

167 Database: :doneWrite () {

168 acquire (&mutex) ;

169 AW-——;

170 if (WWw > 0) |

171 signal (¢okToWrite, &mutex); // give priority to writers
172 } else if (WR > 0) {

173 broadcast (&okToRead, &mutex);

174 }

175 release (&mutex) ;

176 }

177

178 NOTE: what is the starvation problem here?

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

3. Shared locks

struct sharedlock {
int i;
Mutex mutex;
Cond c;

Vi

void AcquireExclusive (sharedlock *sl) {
acquire (&sl->mutex) ;
while (sl->1i) {
wait (&sl->c, &sl->mutex);
}
sl->i = -1;
release (&sl->mutex);

}

void AcquireShared (sharedlock *sl) {
acquire (&sl->mutex) ;
while (sl->i < 0) {
wait (&sl->c, &sl->mutex);
}
sl->i++;
release (&sl->mutex) ;

}

void ReleaseShared (sharedlock *sl) {
acquire (&sl->mutex) ;
if (!--sl->1i)
signal (&sl->c, &sl->mutex);
release (&sl->mutex) ;

}

void ReleaseExclusive (sharedlock *sl) {
acquire (&sl->mutex);
sl->i = 0;
broadcast (&sl->c, &sl->mutex);
release (&sl->mutex) ;

}

QUESTIONS:

A. There is a starvation problem here. What is it? (Readers can keep
writers out if there is a steady stream of readers.)

B. How could you use these shared locks to write a cleaner version
of the code in the prior item? (Though note that the starvation
properties would be different.)

Wednesday February 09, 2022

handout05.txt

2/4

Printed by Michael Walfish

Feb 09, 22 1:21

spinlock—-mutex.txt Page 1/3

Feb 09, 22 1:21

spinlock—-mutex.txt

Page 2/3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Implementation of spinlocks and mutexes

1.

Here is a BROKEN spinlock implementation:
struct Spinlock {
int locked;
}

void acquire (Spinlock *lock) {

while (1) {
if (lock->locked == 0) { // A
lock->locked = 1; // B
break;

}
}

void release (Spinlock *lock) {
lock—->locked = 0;
}

What’s the problem? Two acquire()s on the same lock on different
CPUs might both execute line A, and then both execute B. Then
both will think they have acquired the lock. Both will proceed.
That doesn’t provide mutual exclusion.

2
27
28
29
30
31
32
33

34
35

36
37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
o1
92
93
9%

2. Correct spinlock implementation

Relies on atomic hardware instruction. For example, on the x86-64,
doing
"xchg addr, %rax"
does the following:

(i) freeze all CPUs’ memory activity for address addr
(ii) temp <-- *addr

(iii) *addr <—-- %$rax

(iv) $rax <-- temp

(v) un-freeze memory activity

/* pseudocode */

int xchg_val (addr, value) {
$rax = value;
xchg (*addr), %rax

}

/* bare-bones version of acquire */
void acquire (Spinlock *lock) {

pushcli () ; /* what does this do? */
while (1) {
if (xchg_val (&lock->locked, 1) == 0)
break;

}

void release (Spinlock *lock) {
xchg_val (&lock—->locked, 0);

popcli(); /* what does this do? */
}
/* optimization in acquire; call xchg_val() less frequently */
void acquire (Spinlock* lock) {
pushcli();
while (xchg_val (&lock->locked, 1) == 1) {

while (lock->locked) ;
}
}

The above is called a *spinlock* because acquire() spins. The
bare-bones version is called a "test-and-set (TAS) spinlock"; the
other is called a "test-and-test-and-set spinlock".

The spinlock above is great for some things, not so great for
others. The main problem is that it *busy waits*: it spins,
chewing up CPU cycles. Sometimes this is what we want (e.g., if
the cost of going to sleep is greater than the cost of spinning
for a few cycles waiting for another thread or process to
relinquish the spinlock). But sometimes this is not at all what we
want (e.g., if the lock would be held for a while: in those

cases, the CPU waiting for the lock would waste cycles spinning
instead of running some other thread or process).

NOTE: the spinlocks presented here can introduce performance issues
when there is a lot of contention. (This happens even if the
programmer is using spinlocks correctly.) The performance issues
result from cross-talk among CPUs (which undermines caching and
generates traffic on the memory bus). If we have time later, we will
study a remediation of this issue (search the Web for "MCS locks").

ANOTHER NOTE: In everyday application-level programming, spinlocks
will not be something you use (use mutexes instead). But you should
know what these are for technical literacy, and to see where the
mutual exclusion is truly enforced on modern hardware.

Wednesday February 09, 2022

spinlock—mutex.txt

3/4

Printed by Michael Walfish

Feb 09, 22 1:21

spinlock—-mutex.txt

Page 3/3

Feb 09, 22 1:27

fair-mutex.c Page 1/1

95
96
97
98
99
100
101

3. Mutex implementation

The intent of a mutex is to avoid busy waiting:
available, the locking thread is put to sleep, and tracked by a
queue in the mutex. The next page has an implementation.

if the lock is not

17 };

53}

73}

#include <sys/queue.h>

typedef struct thread {

} thread_t;

struct Mutex {

Spinlock splock; // as in item 1, above
19 void mutex_acquire (struct Mutex *m) {
acquire (&m->splock) ;
// Check if the mutex is held; if not, current thread gets mutex and returns

55 void mutex_release (struct Mutex *m) {

// Entries elided.

STAILQ_ENTRY (thread_t) glink; // Tail queue entry.

// Current owner, or 0 when mutex is not held.

thread_t *owner;

// List of threads waiting on mutex
STAILQ (thread_t) waiters;

// A lock protecting the internals of the mutex.

if (m—>owner == 0)
m->owner = id_of_this_thread;
release (&m—>splock) ;
} else {
// Add thread to waiters.
STAILQ_ INSERT_TAIL (&m->waiters, id_of_this_thread, glink);
// Tell the scheduler to add current thread to the list
// of blocked threads. The scheduler needs to be careful
// when a corresponding sched_wakeup call is executed to
// make sure that it treats running threads correctly.
sched_mark_blocked(&id_of_this_thread);

// Unlock spinlock.
release (&m—>splock) ;

// Stop executing until woken.
sched_swtch () ;

When we get to this line, we are guaranteed to hold the mutex. This
is because we can get here only if context-switched-TO, which itself
can happen only if this thread is removed from the waiting queue,

// marked "unblocked",/ and set to be the owner (in mutex_release()
// below). However, we might have held the mutex in lines 39-42
// (if we were context-switched out after the spinlock release(),

followed by being run as a result of another thread’s release of the
mutex). But if that happens, it just means that we are
context-switched out an "extra" time before proceeding.

// Acquire the spinlock in order to make changes.
acquire (&m->splock) ;

// Assert that the
assert (m—->owner ==

current thread actually owns the mutex
id_of_this_thread);

// Check if anyone is waiting.
m->owner = STAILQ_ GET_HEAD (&m->waiters);

// If so, wake them up.
if (m—>owner) {
sched_wakeone (&m—->owner) ;
STAILQ_REMOVE_HEAD (&m—->waiters, glink);
}

// Release the internal spinlock
release (&m—>splock) ;

Wednesday February 09, 2022

spinlock—mutex.txt, fair-mutex.c

4/4

