
1 CS 202, Spring 2022
2 Handout 4 (Class 5)
3

4 The handout from the last class gave examples of race conditions. The following
5 panels demonstrate the use of concurrency primitives (mutexes, etc.). We are
6 using concurrency primitives to eliminate race conditions (see items 1
7 and 2a) and improve scheduling (see item 2b).
8

9 1. Protecting the linked list......
10

11 Mutex list_mutex;
12

13 insert(int data) {
14 List_elem* l = new List_elem;
15 l−>data = data;
16
17 acquire(&list_mutex);
18

19 l−>next = head;
20 head = l;
21

22 release(&list_mutex);
23 }
24

Feb 07, 22 0:30 Page 1/4handout04.txt

25 2. Producer/consumer revisited [also known as bounded buffer]
26

27 2a. Producer/consumer [bounded buffer] with mutexes
28

29 Mutex mutex;
30

31 void producer (void *ignored) {
32 for (;;) {
33 /* next line produces an item and puts it in nextProduced */
34 nextProduced = means_of_production();
35

36 acquire(&mutex);
37 while (count == BUFFER_SIZE) {
38 release(&mutex);
39 yield(); /* or schedule() */
40 acquire(&mutex);
41 }
42

43 buffer [in] = nextProduced;
44 in = (in + 1) % BUFFER_SIZE;
45 count++;
46 release(&mutex);
47 }
48 }
49

50 void consumer (void *ignored) {
51 for (;;) {
52
53 acquire(&mutex);
54 while (count == 0) {
55 release(&mutex);
56 yield(); /* or schedule() */
57 acquire(&mutex);
58 }
59

60 nextConsumed = buffer[out];
61 out = (out + 1) % BUFFER_SIZE;
62 count−−;
63 release(&mutex);
64

65 /* next line abstractly consumes the item */
66 consume_item(nextConsumed);
67 }
68 }
69

Feb 07, 22 0:30 Page 2/4handout04.txt

Printed by Michael Walfish

Monday February 07, 2022 1/2handout04.txt

70

71 2b. Producer/consumer [bounded buffer] with mutexes and condition variables
72

73 Mutex mutex;
74 Cond nonempty;
75 Cond nonfull;
76

77 void producer (void *ignored) {
78 for (;;) {
79 /* next line produces an item and puts it in nextProduced */
80 nextProduced = means_of_production();
81

82 acquire(&mutex);
83 while (count == BUFFER_SIZE)
84 cond_wait(&nonfull, &mutex);
85

86 buffer [in] = nextProduced;
87 in = (in + 1) % BUFFER_SIZE;
88 count++;
89 cond_signal(&nonempty, &mutex);
90 release(&mutex);
91 }
92 }
93

94 void consumer (void *ignored) {
95 for (;;) {
96

97 acquire(&mutex);
98 while (count == 0)
99 cond_wait(&nonempty, &mutex);
100

101 nextConsumed = buffer[out];
102 out = (out + 1) % BUFFER_SIZE;
103 count−−;
104 cond_signal(&nonfull, &mutex);
105 release(&mutex);
106

107 /* next line abstractly consumes the item */
108 consume_item(nextConsumed);
109 }
110 }
111

112

113 Question: why does cond_wait need to both release the mutex and
114 sleep? Why not:
115

116 while (count == BUFFER_SIZE) {
117 release(&mutex);
118 cond_wait(&nonfull);
119 acquire(&mutex);
120 }
121

Feb 07, 22 0:30 Page 3/4handout04.txt

122 2c. Producer/consumer [bounded buffer] with semaphores
123

124 Semaphore mutex(1); /* mutex initialized to 1 */
125 Semaphore empty(BUFFER_SIZE); /* start with BUFFER_SIZE empty slots */
126 Semaphore full(0); /* 0 full slots */
127

128 void producer (void *ignored) {
129 for (;;) {
130 /* next line produces an item and puts it in nextProduced */
131 nextProduced = means_of_production();
132
133 /*
134 * next line diminishes the count of empty slots and
135 * waits if there are no empty slots
136 */
137 sem_down(&empty);
138 sem_down(&mutex); /* get exclusive access */
139

140 buffer [in] = nextProduced;
141 in = (in + 1) % BUFFER_SIZE;
142

143 sem_up(&mutex);
144 sem_up(&full); /* we just increased the # of full slots */
145 }
146 }
147

148 void consumer (void *ignored) {
149 for (;;) {
150
151 /*
152 * next line diminishes the count of full slots and
153 * waits if there are no full slots
154 */
155 sem_down(&full);
156 sem_down(&mutex);
157

158 nextConsumed = buffer[out];
159 out = (out + 1) % BUFFER_SIZE;
160

161 sem_up(&mutex);
162 sem_up(&empty); /* one further empty slot */
163

164 /* next line abstractly consumes the item */
165 consume_item(nextConsumed);
166 }
167 }
168

169 Semaphores *can* (not always) lead to elegant solutions (notice
170 that the code above is fewer lines than 2b) but they are much
171 harder to use.
172

173 The fundamental issue is that semaphores make implicit (counts,
174 conditions, etc.) what is probably best left explicit. Moreover,
175 they *also* implement mutual exclusion.
176

177 For this reason, you should not use semaphores. This example is
178 here mainly for completeness and so you know what a semaphore
179 is. But do not code with them. Solutions that use semaphores in
180 this course will receive no credit.

Feb 07, 22 0:30 Page 4/4handout04.txt

Printed by Michael Walfish

Monday February 07, 2022 2/2handout04.txt

