
1 /* CS202 −− handout 1
2 * compile and run this code with:
3 * $ gcc −g −Wall −o example example.c
4 * $./example
5 *
6 * examine its assembly with:
7 * $ gcc −O0 −S example.c
8 * $ [editor] example.s
9 */

10

11 #include <stdio.h>
12 #include <stdint.h>
13

14 uint64_t f(uint64_t* ptr);
15 uint64_t g(uint64_t a);
16 uint64_t* q;
17

18 int main(void)
19 {
20 uint64_t x = 0;
21 uint64_t arg = 8;
22
23 x = f(&arg);
24
25 printf("x: %lu\n", x);
26 printf("dereference q: %lu\n", *q);
27

28 return 0;
29 }
30

31 uint64_t f(uint64_t* ptr)
32 {
33 uint64_t x = 0;
34 x = g(*ptr);
35 return x + 1;
36 }
37

38 uint64_t g(uint64_t a)
39 {
40 uint64_t x = 2*a;
41 q = &x; // <−− THIS IS AN ERROR (AKA BUG)
42 return x;
43 }

Jan 26, 22 0:40 Page 1/1example.c
1 2. A look at the assembly...
2

3 To see the assembly code that the C compiler (gcc) produces:
4 $ gcc −O0 −S example.c
5 (then look at example.s.)
6 NOTE: what we show below is not exactly what gcc produces. We have
7 simplified, omitted, and modified certain things.
8

9 main:
10 pushq %rbp # prologue: store caller’s frame pointer
11 movq %rsp, %rbp # prologue: set frame pointer for new frame
12
13 subq $16, %rsp # make stack space
14

15 movq $0, −8(%rbp) # x = 0 (x lives at address rbp − 8)
16 movq $8, −16(%rbp) # arg = 8 (arg lives at address rbp − 16)
17
18 leaq −16(%rbp), %rdi # load the address of (rbp−16) into %rdi
19 # this implements "get ready to pass (&arg)
20 # to f"
21

22 call f # invoke f
23

24 movq %rax, −8(%rbp) # x = (return value of f)
25

26 # eliding the rest of main()
27

28 f:
29 pushq %rbp # prologue: store caller’s frame pointer
30 movq %rsp, %rbp # prologue: set frame pointer for new frame
31
32 subq $32, %rsp # make stack space
33 movq %rdi, −24(%rbp) # Move ptr to the stack
34 # (ptr now lives at rbp − 24)
35 movq $0, −8(%rbp) # x = 0 (x’s address is rbp − 8)
36

37 movq −24(%rbp), %r8 # move ’ptr’ to %r8
38 movq (%r8), %r9 # dereference ’ptr’ and save value to %r9
39 movq %r9, %rdi # Move the value of *ptr to rdi,
40 # so we can call g
41

42 call g # invoke g
43

44 movq %rax, −8(%rbp) # x = (return value of g)
45 movq −8(%rbp), %r10 # compute x + 1, part I
46 addq $1, %r10 # compute x + 1, part II
47 movq %r10, %rax # Get ready to return x + 1
48

49 movq %rpb, %rsp # epilogue: undo stack frame
50 popq %rbp # epilogue: restore frame pointer from caller
51 ret # return
52

53 g:
54 pushq %rbp # prologue: store caller’s frame pointer
55 movq %rsp, %rbp # prologue: set frame pointer for new frame
56

57
58

59 movq %rbp, %rsp # epilogue: undo stack frame
60 popq %rbp # epilogue: restore frame pointer from caller
61 ret # return

Jan 26, 22 0:40 Page 1/1as.txt

Printed by Michael Walfish

Wednesday January 26, 2022 1/1example.c, as.txt

