Printed by Michael Walfish

Jan 26, 22 0:40 example.c Page 1/1 Jan 26, 22 0:40 as.txt Page 1/1
1 /* CS202 -- handout 1 1 2. A look at the assembly...
2 * compile and run this code with: 2
3 * $ gcc —-g -Wall -o example example.c 3 To see the assembly code that the C compiler (gcc) produces:
4 * S ./example 4 $ gcc -00 -S example.c
5 * 5 (then look at example.s.)
6 * examine its assembly with: 6 NOTE: what we show below is not exactly what gcc produces. We have
7 * $ gcc -00 -S example.c 7 simplified, omitted, and modified certain things.
8 * S [editor] example.s 8
s */ 9 main:
10 10 pushg Srbp # prologue: store caller’s frame pointer
11 #include <stdio.h> 1 movqg %rsp, %rbp # prologue: set frame pointer for new frame
12 #include <stdint.h> 12
13 13 subg $16, %rsp # make stack space
14 uint64_t f(uint64_t* ptr); 14
15 uint64_t g(uint64_t a); 15 movqg $0, -8 (%rbp) # x = 0 (x lives at address rbp - 8)
16 uint64_t* qg; 16 movqg $8, -16(%rbp) # arg = 8 (arg lives at address rbp - 16)
17 17
18 Iint main (void) 18 leag -16 (%rbp), S%rdi # load the address of (rbp-16) into %$rdi
19 19 # this implements "get ready to pass (&arg)
20 uint64_t x = 0; 20 # to f"
21 uint64_t arg = 8; 21
22 22 call £ # invoke f
23 x = f(&arg); 23
24 24 movqg %$rax, -8 (%rbp) # x = (return value of f)
25 printf ("x: %lun", x); 25
26 printf ("dereference q: %lu\n", *q); 26 # eliding the rest of main()
27 27
28 return 0; 28 f:
2 } 29 pushqg $rbp # prologue: store caller’s frame pointer
30 30 movqg %rsp, S%rbp # prologue: set frame pointer for new frame
31 uint64_t f(uint64_t* ptr) 31
32 { 32 subg $32, S%rsp # make stack space
33 uint64_t x = 0; 33 movqg $rdi, -24 (%rbp) # Move ptr to the stack
34 x = g(*ptr); 34 # (ptr now lives at rbp - 24)
35 return x + 1; 35 movq $0, -8 (%rbp) # x = 0 (x's address is rbp - 8)
3%} 36
37 37 movqg -24 (%rbp), %r8 # move ’ptr’ to %r8
38 uint64_t g(uint64_t a) 38 movqg (%r8), %r9 # dereference ’'ptr’ and save value to %$r9
39 39 movq %$r9, %rdi # Move the value of *ptr to rdi,
40 uint64_t x = 2*a; 40 # so we can call g
a1 q = &x; // <-- THIS IS AN ERROR (AKA BUG) a
42 return x; 42 call g # invoke g
43} 43
a4 movqg $rax, -8 (%rbp) # x = (return value of g)
45 movqg -8 (%rbp), %rl0 # compute x + 1, part I
6 addgq $1, %rlo # compute x + 1, part II
47 movg $rl0, %rax # Get ready to return x + 1
48
49 movqg %rpb, S$rsp # epilogue: undo stack frame
50 popg $rbp # epilogue: restore frame pointer from caller
51 ret # return
52
53 g:
54 pushqg $rbp # prologue: store caller’s frame pointer
55 movqg %rsp, %rbp # prologue: set frame pointer for new frame
56
57
58
59 movqg %rbp, S%rsp # epilogue: undo stack frame
60 popg %rbp # epilogue: restore frame pointer from caller
61 ret # return

Wednesday January 26, 2022

example.c, as.txt

11

