

1 CS 202, Spring 2021
2 Handout 3 (Class 4)
3
4 1. Example to illustrate interleavings: say that thread A executes f()
5 and thread B executes g(). (Here, we are using the term "thread"
6 abstractly. This example applies to any of the approaches that fall
7 under the word "thread".)
8
9 a. [this is pseudocode]

10
11 int x;
12
13 int main(int argc, char** argv) {
14
15 tid tid1 = thread_create(f, NULL);
16 tid tid2 = thread_create(g, NULL);
17
18 thread_join(tid1);
19 thread_join(tid2);
20
21 printf("%d\n", x);
22 }
23
24 void f()
25 {
26 x = 1;
27 thread_exit();
28 }
29
30 void g()
31 {
32 x = 2;
33 thread_exit();
34 }
35
36
37 What are possible values of x after A has executed f() and B has
38 executed g()? In other words, what are possible outputs of the
39 program above?
40
41
42
43 b. Same question as above, but f() and g() are now defined as
44 follows:
45
46 int y = 12;
47
48 f() { x = y + 1; }
49 g() { y = y * 2; }
50
51 What are the possible values of x?
52
53
54
55 c. Same question as above, but f() and g() are now defined as
56 follows:
57
58 int x = 0;
59 f() { x = x + 1; }
60 g() { x = x + 2; }
61
62 What are the possible values of x?
63

Feb 08, 21 13:29 Page 1/4handout03.txt
64 2. Linked list example
65
66 struct List_elem {
67 int data;
68 struct List_elem* next;
69 };
70
71 List_elem* head = 0;
72
73 insert(int data) {
74 List_elem* l = new List_elem;
75 l−>data = data;
76 l−>next = head;
77 head = l;
78 }
79
80 What happens if two threads execute insert() at once and we get the
81 following interleaving?
82
83 thread 1: l−>next = head
84 thread 2: l−>next = head
85 thread 2: head = l;
86 thread 1: head = l;
87

Feb 08, 21 13:29 Page 2/4handout03.txt

Printed by Michael Walfish

Monday February 08, 2021 1/2handout03.txt

88 3. Producer/consumer example:
89
90 /*
91 "buffer" stores BUFFER_SIZE items
92 "count" is number of used slots. a variable that lives in memory
93 "out" is next empty buffer slot to fill (if any)
94 "in" is oldest filled slot to consume (if any)
95 */
96
97 void producer (void *ignored) {
98 for (;;) {
99 /* next line produces an item and puts it in nextProduced */
100 nextProduced = means_of_production();
101 while (count == BUFFER_SIZE)
102 ; // do nothing
103 buffer [in] = nextProduced;
104 in = (in + 1) % BUFFER_SIZE;
105 count++;
106 }
107 }
108
109 void consumer (void *ignored) {
110 for (;;) {
111 while (count == 0)
112 ; // do nothing
113 nextConsumed = buffer[out];
114 out = (out + 1) % BUFFER_SIZE;
115 count−−;
116 /* next line abstractly consumes the item */
117 consume_item(nextConsumed);
118 }
119 }
120
121 /*
122 what count++ probably compiles to:
123 reg1 <−− count # load
124 reg1 <−− reg1 + 1 # increment register
125 count <−− reg1 # store
126
127 what count−− could compile to:
128 reg2 <−− count # load
129 reg2 <−− reg2 − 1 # decrement register
130 count <−− reg2 # store
131 */
132
133 What happens if we get the following interleaving?
134
135 reg1 <−− count
136 reg1 <−− reg1 + 1
137 reg2 <−− count
138 reg2 <−− reg2 − 1
139 count <−− reg1
140 count <−− reg2
141

Feb 08, 21 13:29 Page 3/4handout03.txt
142
143 4. Some other examples. What is the point of these?
144
145 [From S.V. Adve and K. Gharachorloo, IEEE Computer, December 1996,
146 66−76. http://rsim.cs.uiuc.edu/~sadve/Publications/computer96.pdf]
147
148 a. Can both "critical sections" run?
149
150 int flag1 = 0, flag2 = 0;
151
152 int main () {
153 tid id = thread_create (p1, NULL);
154 p2 (); thread_join (id);
155 }
156
157 void p1 (void *ignored) {
158 flag1 = 1;
159 if (!flag2) {
160 critical_section_1 ();
161 }
162 }
163
164 void p2 (void *ignored) {
165 flag2 = 1;
166 if (!flag1) {
167 critical_section_2 ();
168 }
169 }
170
171 b. Can use() be called with value 0, if p2 and p1 run concurrently?
172
173 int data = 0, ready = 0;
174
175 void p1 () {
176 data = 2000;
177 ready = 1;
178 }
179 int p2 () {
180 while (!ready) {}
181 use(data);
182 }
183
184 c. Can use() be called with value 0?
185
186 int a = 0, b = 0;
187
188 void p1 (void *ignored) { a = 1; }
189
190 void p2 (void *ignored) {
191 if (a == 1)
192 b = 1;
193 }
194
195 void p3 (void *ignored) {
196 if (b == 1)
197 use (a);
198 }

Feb 08, 21 13:29 Page 4/4handout03.txt

Printed by Michael Walfish

Monday February 08, 2021 2/2handout03.txt

1 CS 202, Spring 2021
2 Handout 4 (Class 5)
3
4 The handout from the last class gave examples of race conditions. The following
5 panels demonstrate the use of concurrency primitives (mutexes, etc.). We are
6 using concurrency primitives to eliminate race conditions (see items 1
7 and 2a) and improve scheduling (see item 2b).
8
9 1. Protecting the linked list......

10
11 Mutex list_mutex;
12
13 insert(int data) {
14 List_elem* l = new List_elem;
15 l−>data = data;
16
17 acquire(&list_mutex);
18
19 l−>next = head;
20 head = l;
21
22 release(&list_mutex);
23 }
24

Feb 16, 21 22:06 Page 1/4handout04.txt
25 2. Producer/consumer revisited [also known as bounded buffer]
26
27 2a. Producer/consumer [bounded buffer] with mutexes
28
29 Mutex mutex;
30
31 void producer (void *ignored) {
32 for (;;) {
33 /* next line produces an item and puts it in nextProduced */
34 nextProduced = means_of_production();
35
36 acquire(&mutex);
37 while (count == BUFFER_SIZE) {
38 release(&mutex);
39 yield(); /* or schedule() */
40 acquire(&mutex);
41 }
42
43 buffer [in] = nextProduced;
44 in = (in + 1) % BUFFER_SIZE;
45 count++;
46 release(&mutex);
47 }
48 }
49
50 void consumer (void *ignored) {
51 for (;;) {
52
53 acquire(&mutex);
54 while (count == 0) {
55 release(&mutex);
56 yield(); /* or schedule() */
57 acquire(&mutex);
58 }
59
60 nextConsumed = buffer[out];
61 out = (out + 1) % BUFFER_SIZE;
62 count−−;
63 release(&mutex);
64
65 /* next line abstractly consumes the item */
66 consume_item(nextConsumed);
67 }
68 }
69

Feb 16, 21 22:06 Page 2/4handout04.txt

Printed by Michael Walfish

Tuesday February 16, 2021 1/2handout04.txt

70
71 2b. Producer/consumer [bounded buffer] with mutexes and condition variables
72
73 Mutex mutex;
74 Cond nonempty;
75 Cond nonfull;
76
77 void producer (void *ignored) {
78 for (;;) {
79 /* next line produces an item and puts it in nextProduced */
80 nextProduced = means_of_production();
81
82 acquire(&mutex);
83 while (count == BUFFER_SIZE)
84 cond_wait(&nonfull, &mutex);
85
86 buffer [in] = nextProduced;
87 in = (in + 1) % BUFFER_SIZE;
88 count++;
89 cond_signal(&nonempty, &mutex);
90 release(&mutex);
91 }
92 }
93
94 void consumer (void *ignored) {
95 for (;;) {
96
97 acquire(&mutex);
98 while (count == 0)
99 cond_wait(&nonempty, &mutex);
100
101 nextConsumed = buffer[out];
102 out = (out + 1) % BUFFER_SIZE;
103 count−−;
104 cond_signal(&nonfull, &mutex);
105 release(&mutex);
106
107 /* next line abstractly consumes the item */
108 consume_item(nextConsumed);
109 }
110 }
111
112
113 Question: why does cond_wait need to both release the mutex and
114 sleep? Why not:
115
116 while (count == BUFFER_SIZE) {
117 release(&mutex);
118 cond_wait(&nonfull);
119 acquire(&mutex);
120 }
121

Feb 16, 21 22:06 Page 3/4handout04.txt
122 2c. Producer/consumer [bounded buffer] with semaphores
123
124 Semaphore mutex(1); /* mutex initialized to 1 */
125 Semaphore empty(BUFFER_SIZE); /* start with BUFFER_SIZE empty slots */
126 Semaphore full(0); /* 0 full slots */
127
128 void producer (void *ignored) {
129 for (;;) {
130 /* next line produces an item and puts it in nextProduced */
131 nextProduced = means_of_production();
132
133 /*
134 * next line diminishes the count of empty slots and
135 * waits if there are no empty slots
136 */
137 sem_down(&empty);
138 sem_down(&mutex); /* get exclusive access */
139
140 buffer [in] = nextProduced;
141 in = (in + 1) % BUFFER_SIZE;
142
143 sem_up(&mutex);
144 sem_up(&full); /* we just increased the # of full slots */
145 }
146 }
147
148 void consumer (void *ignored) {
149 for (;;) {
150
151 /*
152 * next line diminishes the count of full slots and
153 * waits if there are no full slots
154 */
155 sem_down(&full);
156 sem_down(&mutex);
157
158 nextConsumed = buffer[out];
159 out = (out + 1) % BUFFER_SIZE;
160
161 sem_up(&mutex);
162 sem_up(&empty); /* one further empty slot */
163
164 /* next line abstractly consumes the item */
165 consume_item(nextConsumed);
166 }
167 }
168
169 Semaphores *can* (not always) lead to elegant solutions (notice
170 that the code above is fewer lines than 2b) but they are much
171 harder to use.
172
173 The fundamental issue is that semaphores make implicit (counts,
174 conditions, etc.) what is probably best left explicit. Moreover,
175 they *also* implement mutual exclusion.
176
177 For this reason, you should not use semaphores. This example is
178 here mainly for completeness and so you know what a semaphore
179 is. But do not code with them. Solutions that use semaphores in
180 this course will receive no credit.

Feb 16, 21 22:06 Page 4/4handout04.txt

Printed by Michael Walfish

Tuesday February 16, 2021 2/2handout04.txt

