Class 6 CS 202 27 September 2021 On the board ------------ 1. Last time 2. Condition variables 3. Monitors and standards --------------------------------------------------------------------------- 1. Last time - critical sections - mutexes 2. Condition variables A. Motivation [see handout] --producer/consumer queue --very common paradigm. also called "bounded buffer": --producer puts things into a shared buffer --consumer takes them out --producer must wait if buffer is full; consumer must wait if buffer is empty --shows up everywhere --Soda machine: producer is delivery person, consumer is soda drinkers, shared buffer is the machine --OS implementation of pipe() --DMA buffers --producer/consumer queue using mutexes (see handout04, 2a) --what's the problem with that? --answer: a form of *busy waiting* --It is convenient to break synchronization into two types: --*mutual exclusion*: allow only one thread to access a given set of shared state at a time --*scheduling constraints*: wait for some other thread to do something (finish a job, produce work, consume work, accept a connection, get bytes off the disk, etc.) B. Usage --API --void cond_init (Cond *, ...); --Initialize --void cond_wait(Cond *c, Mutex* m); --Atomically unlock m and sleep until c signaled --Then re-acquire m and resume executing --void cond_signal(Cond* c); --Wake one thread waiting on c [in some pthreads implementations, the analogous call wakes *at least* one thread waiting on c. Check the the documentation (or source code) to be sure of the semantics. But, actually, your implementation shouldn't change since you need to be prepared to be "woken" at any time, not just when another thread calls signal(). More on this below.] --void cond_broadcast(Cond* c); --Wake all threads waiting on c C. Important points (1) We MUST use "while", not "if". Why? --Because we can get an interleaving like this: --The signal() puts the waiting thread on the ready list but doesn't run it --That now-ready thread is ready to acquire() the mutex (inside cond_wait()). --But a *different* thread (a third thread: not the signaler, not the now-ready thread) could acquire() the mutex, work in the critical section, and now invalidates whatever condition was being checked --Our now-ready thread eventually acquire()s the mutex... --...with no guarantees that the condition it was waiting for is still true --Solution is to use "while" when waiting on a condition variable --DO NOT VIOLATE THIS RULE; doing so will (almost always) lead to incorrect code --NOTE: NOTE: NOTE: There are two ways to understand while-versus-if: (a) It's the 'while' condition that actually guards the program. (b) There's simply no guarantee when the thread comes out of wait that the condition holds. (2) cond_wait releases the mutexes and goes into the waiting state in one function call (see panel 2b of handout 04). --QUESTION: Why? --Answer: can get stuck waiting. Producer: while (count == BUFFER_SIZE) Producer: release() Consumer: acquire() Consumer: ..... Consumer: cond_signal(&nonfull) Producer: cond_wait(&nonfull) --Producer will never hear the signal! 3. Monitors and standards Monitors = mutex + condition variables --High-level idea: an object (as in object-oriented systems) --in which methods do not execute concurrently; and --that has one or more condition variables --More detail --Every method call starts with acquire(&mutex), and ends with release(&mutex) --Technically, these acquire()/release() are invisible to the programmer because it is the programming language (i.e., the compiler+run-time) that is implementing the monitor --So, technically, a monitor is a programming language concept --But technical definition isn't hugely useful because no programming languages in widespread usage have true monitors --Java has something close: a class in which every method is set by the programmer to be "synchronized" (i.e., implicitly protected by a mutex) --Not exactly a monitor because there's nothing forcing every method to be synchronized --And we can *use* mutexes and condition variables to implement our own manual versions of monitors, though we have to be careful --Given the above, we are going to use the term "monitor" more loosely to refer to both the technical definition and also a "manually constructed" monitor, wherein: --all method calls are protected by a mutex (that is, the programmer inserts those acquire()/release() on entry and exit from every procedure *inside* the object) --synchronization happens with condition variables whose associated mutex is the mutex that protects the method calls --In other words, we will use the term "monitor" to refer to the programming conventions that you should follow when building multithreaded applications --you must follow these conventions on lab 3 --Example: see handout05, item 1 --Different styles of monitors: --Hoare-style: signal() immediately wakes the waiter --Hansen-style and what we will use: signal() eventually wakes the waiter. Not an immediate transfer B. Standards: why? --Mike Dahlin stands on the desk when proclaiming the standards --see Mike D's "Programming With Threads", linked from lab 3 --You are required to follow this document --You will lose points (potentially many!) on the lab and on the exam if you stray from these standards --Note that in his example in section 4, there needs to be another line: --right before mutex->release(), he should have: assert(invariants hold) --the primitives may seem strange, and the rules may seem arbitrary: why one thing and not another? --there is no absolute answer here --**However**, history has tested the approach that we're using. If you use the recommended primitives and follow their suggested use, you will find it easier to write correct code --For now, just take the recommended approaches as a given, and use them for a while. If you can come up with something better after that, by all means do so! --But please remember three things: a. lots of really smart people have thought really hard about the right abstractions, so a day or two of thinking about a new one or a new use is unlikely to yield an advance over the best practices. b. the consequences of getting code wrong can be atrocious. see for example: http://www.nytimes.com/2010/01/24/health/24radiation.html http://sunnyday.mit.edu/papers/therac.pdf http://en.wikipedia.org/wiki/Therac-25 c. people who tend to be confident about their abilities tend to perform *worse*, so if you are confident you are a Threading and Concurrency Ninja and/or you think you truly understand how these things work, then you may wish to reevaluate..... --Dunning-Kruger effect --http://www.nytimes.com/2000/01/23/weekinreview/january-16-22-i-m-no-doofus-i-m-a-genius.html C. The Commandments --RULE: --acquire/release at beginning/end of methods --RULE: --hold lock when doing condition variable operations --Some people [for example, Andrew Birrell in this paper: http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-35.pdf ] will say: "for experts only, no need to hold the lock when signaling". IGNORE THIS. Putting the signal outside the lock is only a small performance optimization, and it is likely to lead you to write incorrect code. --to get credit in Lab 3, you must hold the associated mutex when doing a condition variable operation --RULE: --a thread that is in wait() must be prepared to be restarted at any time, not just when another thread calls "signal()". --why? because the implementor of the threads and condition variables package *assumes* that the user of the threads package is doing while(){wait()}. --Can we replace SIGNAL with BROADCAST, given our monitor semantics? (Answer: yes, always.) Why? --while() condition tests the needed invariant. program doesn't progress pass while() unless the needed invariant is true. --result: spurious wake-ups are acceptable.... --...which implies you can always wakeup a thread at any moment with no loss of correctness.... --....which implies you can replace SIGNAL with BROADCAST [though it may hurt performance to have a bunch of needlessly awake threads contending for a mutex that they will then acquire() and release().] --Can we replace BROADCAST with SIGNAL? --Answer: not always. --Example: --memory allocator --threads allocate and free memory in variable-sized chunks --if no memory free, wait on a condition variable --now posit: --two threads waiting to allocate chunks of memory --no memory free at all --then, a third thread frees 10,000 bytes --SIGNAL alone does the wrong thing: we need to awaken both threads