Printed by Michael Walfish

Sep 20, 21 1:12 handout03.txt Page 1/4 Sep 20, 21 1:12 handout03.txt Page 2/4
1 CS 202, Fall 2021 64 Linked list example

2 Handout 3 (Class 4) 65

3 66 struct List_elem {

4 1. Example to illustrate interleavings: say that thread A executes f () 67 int data;

5 and thread B executes g(). (Here, we are using the term "thread" 68 struct List_elem* next;
6 abstractly. This example applies to any of the approaches that fall 69 }s;

7 under the word "thread".) 70

8 7 List_elem* head = 0;

9 a. [this is pseudocode] 72

10 73 insert (int data) {

11 int x; 74 List_elem* 1 = new List_elem;
12 75 l1->data = data;

13 int main(int argc, char** argv) { 76 1->next = head;

14 77 head = 1;

15 tid tidl = thread_create(f, NULL); 78 }

16 tid tid2 = thread_create(g, NULL); 79

17 80 What happens if two threads execute insert () at once and we get the
18 thread_join(tidl); 81 following interleaving?

19 thread_join (tid2); 82

20 83 thread 1: l->next = head

21 printf ("$d\n", x); 84 thread 2: 1l->next = head

22 } 85 thread 2: head = 1;

23 86 thread 1: head = 1;

24 void f () 87

25 {

26 x = 1;

27 thread_exit ();

28 }

29

30 void g()

31 {

32 X = 2;

33 thread_exit ();

34 }

35

36

37 What are possible values of x after A has executed f() and B has

executed g()? In other words, what are possible outputs of the
program above?

b. Same question as above, but f() and g() are now defined as
follows:

int y = 12;

y + 1;
y * 2; }

Q
=
{[]

What are the possible values of x?

c. Same question as above, but f() and g() are now defined as
follows:

int x = 0;

f({ x=x+1; }

g() { x=x+2; 1}

What are the possible values of x?

Monday September 20, 2021

handout03.txt

1/2

Printed by Michael Walfish

Sep 20, 21 1:12

handout03.txt Page 3/4

Sep 20, 21 1:12

handout03.txt Page 4/4

88
89
90
91
92
93
94
95
96
97
98
99

Producer/consumer example:

/*

"buffer" stores BUFFER_SIZE items

"count" is number of used slots. a variable that lives in memory
"out" is next empty buffer slot to fill (if any)

"in" is oldest filled slot to consume (if any)

*

/

void producer (void *ignored) {
for (;i) {
/* next line produces an item and puts it in nextProduced */
nextProduced = means_of_production();

while (count == BUFFER_SIZE)
; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}

void consumer (void *ignored) {
for (;;) {
while (count == 0)
i // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count——;
/* next line abstractly consumes the item */
consume_item (nextConsumed) ;

}

/*
what count++ probably compiles to:
regl <-- count # load
regl <-- regl + 1 # increment register
count <-- regl # store
what count-- could compile to:
reg2 <-- count # load
reg2 <-- reg2 -1 # decrement register
count <-- reg2 # store
*
/

What happens if we get the following interleaving?

regl <-- count
regl <-— regl + 1
reg2 <-- count
reg2 <-- reg2 -1
count <-- regl

count <-- reg2

Some other examples. What is the point of these?

[From S.V. Adve and K. Gharachorloo, IEEE Computer, December 1996,
66-76. http://rsim.cs.uiuc.edu/~sadve/Publications/computer96.pdf]

Can both "critical sections" run?
int flagl = 0, flag2 = 0;
int main () {
tid id = thread_create (pl, NULL);
p2 (); thread_join (id);
}

void pl (void *ignored) {

flagl = 1;
if (!flag2) {
critical_section_1 ();

}
}

void p2 (void *ignored) {

flag2 = 1;
if (!flagl) {
critical_section_2 ();

}
}

Can use () be called with value 0, if p2 and pl run concurrently?
int data = 0, ready = 0;

void pl () {
data = 2000;
ready = 1;

}

int p2 () {
while (!ready) {}
use (data) ;

}
Can use () be called with value 0?
int a = 0, b = 0;

void pl (void *ignored) { a = 1; }
void p2 (void *ignored) {

if (a 1)
b =1;

}

void p3 (void *ignored) {
if (b ==
use (a);

Monday September 20, 2021

handout03.txt

22

