
1 CS 202, Spring 2020
2 Handout 5 (Class 6)
3

4 The previous handout demonstrated the use of mutexes and condition
5 variables. This handout demonstrates the use of monitors (which combine
6 mutexes and condition variables).
7

8 1. The bounded buffer as a monitor
9

10 // This is pseudocode that is inspired by C++.
11 // Don’t take it literally.
12

13 class MyBuffer {
14 public:
15 MyBuffer();
16 ~MyBuffer();
17 void Enqueue(Item);
18 Item = Dequeue();
19 private:
20 int count;
21 int in;
22 int out;
23 Item buffer[BUFFER_SIZE];
24 Mutex* mutex;
25 Cond* nonempty;
26 Cond* nonfull;
27 }
28

29 void
30 MyBuffer::MyBuffer()
31 {
32 in = out = count = 0;
33 mutex = new Mutex;
34 nonempty = new Cond;
35 nonfull = new Cond;
36 }
37

38 void
39 MyBuffer::Enqueue(Item item)
40 {
41 mutex.acquire();
42 while (count == BUFFER_SIZE)
43 cond_wait(&nonfull, &mutex);
44

45 buffer[in] = item;
46 in = (in + 1) % BUFFER_SIZE;
47 ++count;
48 cond_signal(&nonempty, &mutex);
49 mutex.release();
50 }
51

52 Item
53 MyBuffer::Dequeue()
54 {
55 mutex.acquire();
56 while (count == 0)
57 cond_wait(&nonempty, &mutex);
58

59 Item ret = buffer[out];
60 out = (out + 1) % BUFFER_SIZE;
61 −−count;
62 cond_signal(&nonfull, &mutex);
63 mutex.release();
64 return ret;
65 }
66

Feb 13, 20 13:23 Page 1/4handout05.txt
67

68 int main(int, char**)
69 {
70 MyBuffer buf;
71 int dummy;
72 tid1 = thread_create(producer, &buf);
73 tid2 = thread_create(consumer, &buf);
74

75 // never reach this point
76 thread_join(tid1);
77 thread_join(tid2);
78 return −1;
79 }
80

81 void producer(void* buf)
82 {
83 MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*>(buf);
84 for (;;) {
85 /* next line produces an item and puts it in nextProduced */
86 Item nextProduced = means_of_production();
87 sharedbuf−>Enqueue(nextProduced);
88 }
89 }
90

91 void consumer(void* buf)
92 {
93 MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*>(buf);
94 for (;;) {
95 Item nextConsumed = sharedbuf−>Dequeue();
96

97 /* next line abstractly consumes the item */
98 consume_item(nextConsumed);
99 }

100 }
101

102 Key point: *Threads* (the producer and consumer) are separate from
103 *shared object* (MyBuffer). The synchronization happens in the
104 shared object.
105

Feb 13, 20 13:23 Page 2/4handout05.txt

Printed by Michael Walfish

Thursday February 13, 2020 1/4handout05.txt

106 2. This monitor is a model of a database with multiple readers and
107 writers. The high−level goal here is (a) to give a writer exclusive
108 access (a single active writer means there should be no other writers
109 and no readers) while (b) allowing multiple readers. Like the previous
110 example, this one is expressed in pseudocode.
111

112 // assume that these variables are initialized in a constructor
113 state variables:
114 AR = 0; // # active readers
115 AW = 0; // # active writers
116 WR = 0; // # waiting readers
117 WW = 0; // # waiting writers
118

119 Condition okToRead = NIL;
120 Condition okToWrite = NIL;
121 Mutex mutex = FREE;
122

123 Database::read() {
124 startRead(); // first, check self into the system
125 Access Data
126 doneRead(); // check self out of system
127 }
128

129 Database::startRead() {
130 acquire(&mutex);
131 while((AW + WW) > 0){
132 WR++;
133 wait(&okToRead, &mutex);
134 WR−−;
135 }
136 AR++;
137 release(&mutex);
138 }
139
140 Database::doneRead() {
141 acquire(&mutex);
142 AR−−;
143 if (AR == 0 && WW > 0) { // if no other readers still
144 signal(&okToWrite, &mutex); // active, wake up writer
145 }
146 release(&mutex);
147 }
148
149 Database::write(){ // symmetrical
150 startWrite(); // check in
151 Access Data
152 doneWrite(); // check out
153 }
154

155 Database::startWrite() {
156 acquire(&mutex);
157 while ((AW + AR) > 0) { // check if safe to write.
158 // if any readers or writers, wait
159 WW++;
160 wait(&okToWrite, &mutex);
161 WW−−;
162 }
163 AW++;
164 release(&mutex);
165 }
166

167 Database::doneWrite() {
168 acquire(&mutex);
169 AW−−;
170 if (WW > 0) {
171 signal(&okToWrite, &mutex); // give priority to writers
172 } else if (WR > 0) {
173 broadcast(&okToRead, &mutex);
174 }
175 release(&mutex);
176 }
177

178 NOTE: what is the starvation problem here?

Feb 13, 20 13:23 Page 3/4handout05.txt
179

180 3. Shared locks
181

182 struct sharedlock {
183 int i;
184 Mutex mutex;
185 Cond c;
186 };
187

188 void AcquireExclusive (sharedlock *sl) {
189 acquire(&sl−>mutex);
190 while (sl−>i) {
191 wait (&sl−>c, &sl−>mutex);
192 }
193 sl−>i = −1;
194 release(&sl−>mutex);
195 }
196

197 void AcquireShared (sharedlock *sl) {
198 acquire(&sl−>mutex);
199 while (sl−>i < 0) {
200 wait (&sl−>c, &sl−>mutex);
201 }
202 sl−>i++;
203 release(&sl−>mutex);
204 }
205

206 void ReleaseShared (sharedlock *sl) {
207 acquire(&sl−>mutex);
208 if (!−−sl−>i)
209 signal (&sl−>c, &sl−>mutex);
210 release(&sl−>mutex);
211 }
212

213 void ReleaseExclusive (sharedlock *sl) {
214 acquire(&sl−>mutex);
215 sl−>i = 0;
216 broadcast (&sl−>c, &sl−>mutex);
217 release(&sl−>mutex);
218 }
219

220 QUESTIONS:
221 A. There is a starvation problem here. What is it? (Readers can keep
222 writers out if there is a steady stream of readers.)
223 B. How could you use these shared locks to write a cleaner version
224 of the code in the prior item? (Though note that the starvation
225 properties would be different.)

Feb 13, 20 13:23 Page 4/4handout05.txt

Printed by Michael Walfish

Thursday February 13, 2020 2/4handout05.txt

1 Implementation of spinlocks and mutexes
2

3 1. Here is a BROKEN spinlock implementation:
4

5 struct Spinlock {
6 int locked;
7 }
8

9 void acquire(Spinlock *lock) {
10 while (1) {
11 if (lock−>locked == 0) { // A
12 lock−>locked = 1; // B
13 break;
14 }
15 }
16 }
17

18 void release (Spinlock *lock) {
19 lock−>locked = 0;
20 }
21

22 What’s the problem? Two acquire()s on the same lock on different
23 CPUs might both execute line A, and then both execute B. Then
24 both will think they have acquired the lock. Both will proceed.
25 That doesn’t provide mutual exclusion.
26

Feb 13, 20 13:23 Page 1/3spinlock−mutex.txt
26

27 2. Correct spinlock implementation
28

29 Relies on atomic hardware instruction. For example, on the x86 (32−bit),
30 doing
31 "xchg addr, %rax"
32 does the following:
33

34 (i) freeze all CPUs’ memory activity for address addr
35 (ii) temp <−− *addr
36 (iii) *addr <−− %rax
37 (iv) %rax <−− temp
38 (v) un−freeze memory activity
39

40 /* pseudocode */
41 int xchg_val(addr, value) {
42 %rax = value;
43 xchg (*addr), %rax
44 }
45

46 /* bare−bones version of acquire */
47 void acquire (Spinlock *lock) {
48 pushcli(); /* what does this do? */
49 while (1) {
50 if (xchg_val(&lock−>locked, 1) == 0)
51 break;
52 }
53 }
54

55 void release(Spinlock *lock){
56 xchg_val(&lock−>locked, 0);
57 popcli(); /* what does this do? */
58 }
59

60

61 /* optimization in acquire; call xchg_val() less frequently */
62 void acquire(Spinlock* lock) {
63 pushcli();
64 while (xchg_val(&lock−>locked, 1) == 1) {
65 while (lock−>locked) ;
66 }
67 }
68

69 The above is called a *spinlock* because acquire() spins. The
70 bare−bones version is called a "test−and−set (TAS) spinlock"; the
71 other is called a "test−and−test−and−set spinlock".
72

73 The spinlock above is great for some things, not so great for
74 others. The main problem is that it *busy waits*: it spins,
75 chewing up CPU cycles. Sometimes this is what we want (e.g., if
76 the cost of going to sleep is greater than the cost of spinning
77 for a few cycles waiting for another thread or process to
78 relinquish the spinlock). But sometimes this is not at all what we
79 want (e.g., if the lock would be held for a while: in those
80 cases, the CPU waiting for the lock would waste cycles spinning
81 instead of running some other thread or process).
82

83 NOTE: the spinlocks presented here can introduce performance issues
84 when there is a lot of contention. (This happens even if the
85 programmer is using spinlocks correctly.) The performance issues
86 result from cross−talk among CPUs (which undermines caching and
87 generates traffic on the memory bus). If we have time later, we will
88 study a remediation of this issue (search the Web for "MCS locks").
89
90 ANOTHER NOTE: In everyday application−level programming, spinlocks
91 will not be something you use (use mutexes instead). But you should
92 know what these are for technical literacy, and to see where the
93 mutual exclusion is truly enforced on modern hardware.
94

Feb 13, 20 13:23 Page 2/3spinlock−mutex.txt

Printed by Michael Walfish

Thursday February 13, 2020 3/4spinlock−mutex.txt

95 3. Mutex implementation
96

97 The intent of a mutex is to avoid busy waiting: if the lock is not
98 available, the locking thread is put to sleep, and tracked by a
99 queue in the mutex. The next page has an implementation.

100

101

Feb 13, 20 13:23 Page 3/3spinlock−mutex.txt
1 #include <sys/queue.h>
2

3 typedef struct thread {
4 // ... Entries elided.
5 STAILQ_ENTRY(thread_t) qlink; // Tail queue entry.
6 } thread_t;
7

8 struct Mutex {
9 // Current owner, or 0 when mutex is not held.

10 thread_t *owner;
11

12 // List of threads waiting on mutex
13 STAILQ(thread_t) waiters;
14

15 // A lock protecting the internals of the mutex.
16 Spinlock splock; // as in item 5, above
17 };
18

19 void mutex_acquire(struct Mutex *m) {
20

21 acquire(&m−>splock);
22
23 // Check if the mutex is held, if not current thread gets mutex and returns
24 if (m−>owner == 0) {
25 m−>owner = id_of_this_thread;
26 release(&m−>splock);
27 } else {
28 // Add thread to waiters.
29 STAILQ_INSERT_TAIL(&m−>waiters, id_of_this_thread, qlink);
30

31 // Tell the scheduler to add current thread to the list
32 // of blocked threads. The scheduler needs to be careful
33 // when a corresponding sched_wakeup call is executed to
34 // make sure that it treats running threads correctly.
35 sched_mark_blocked(&id_of_this_thread);
36

37 // Unlock spinlock.
38 release(&m−>splock);
39

40 // Stop executing until woken.
41 sched_swtch();
42

43 // When we get to this line, we are guaranteed to hold the mutex. This
44 // is because we can get here only if context−switched−TO, which itself
45 // can happen only if this thread is removed from the waiting queue,
46 // marked "unblocked",/ and set to be the owner (in mutex_release()
47 // below). However, we might actually have held the mutex at line 43 or
48 // 44 (if we were context−switched out after the spinlock release(),
49 // followed by being run as a result of another thread’s release of the
50 // mutex). But if that happens, it just means that we are
51 // context−switched out an "extra" time before proceeding.
52 }
53 }
54

55 void mutex_release(struct Mutex *m) {
56 // Acquire the spinlock in order to make changes.
57 acquire(&m−>splock);
58

59 // Assert that the current thread actually owns the mutex
60 assert(m−>owner == id_of_this_thread);
61
62 // Check if anyone is waiting.
63 m−>owner = STAILQ_GET_HEAD(&m−>waiters);
64

65 // If so, wake them up.
66 if (m−>owner) {
67 sched_wakeone(&m−>owner);
68 STAILQ_REMOVE_HEAD(&m−>waiters, qlink);
69 }
70
71 // Release the internal spinlock
72 release(&m−>splock);
73 }

Feb 09, 20 14:51 Page 1/1fair−mutex.c

Printed by Michael Walfish

Thursday February 13, 2020 4/4spinlock−mutex.txt, fair−mutex.c

