
New York University
CSCI-UA.202: Operating Systems (Undergrad): Fall 2019

Midterm Exam

• This exam is 75 minutes. Stop writing when “time” is called. You must turn in your exam; we will
not collect it. Do not get up or pack up in the final ten minutes. The instructor will leave the room 78
minutes after the exam begins and will not accept exams outside the room.

• There are 13 problems in this booklet. Many can be answered quickly. Some may be harder than
others, and some earn more points than others. You may want to skim all questions before starting.

• This exam is closed book and notes. You may not use electronics: phones, tablets, calculators,
laptops, etc. You may refer to ONE two-sided 8.5x11” sheet with 10 point or larger Times New
Roman font, 1 inch or larger margins, and a maximum of 55 lines per side.

• Do not waste time on arithmetic. Write answers in powers of 2 if necessary.

• If you find a question unclear or ambiguous, be sure to write any assumptions you make.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any important
assumptions. Write brief, precise answers. Rambling brain dumps will not work and will waste
time. Think before you start writing so that you can answer crisply. Be neat. If we can’t understand
your answer, we can’t give you credit!

• If the questions impose a sentence limit, we will not read past that limit. In addition, a response that
includes the correct answer, along with irrelevant or incorrect content, will lose points.

• Don’t linger. If you know the answer, give it, and move on.

• Write your name and NetId on this cover sheet and on the bottom of every page of the exam.

Do not write in the boxes below.

I (xx/18) II (xx/15) III (xx/32) IV (xx/21) V (xx/14) Total (xx/100)

Name: Solutions

NetId:

page 2 of 15

I Mechanics (18 points total)

1. [5 points] In the code below, x is an 8-bit, or single-byte, data type (an unsigned char, in C).

x = x + 1;

What does the above line of code do? Hint: remember the Therac-25.

The question is asking about overflow, and is intended as a reminder that even simple operations can
have complexity, when working close to the machine’s level of abstraction.

Solution: It adds one to x, unless x starts as 255 = 28−1 in which case it sets x to 0. Or, call the value
of x prior to this line x′. If 0≤ x′ < 255, then x is set to x′+1, whereas if x′ = 255, then x is set to 0.
More concisely, x← (x+1) mod 28.

2. [5 points] Consider the following program; read it carefully:

#include <stdio.h>

void func(int* p) {

int q = 2;

p = &q;

*p = 5;

}

int main() {

int a = 9;

func(&a);

printf("%d\n", a);

return 0;

}

What does this program print?

9. Reason: func resets its argument, a pointer, to be the address of a local variable (q). So in the line
*p=5, the variable that is changed is int q. This leaves int a unaffected.

Name: Solutions NYU NetId:

page 3 of 15

3. [8 points] Consider the program below, which makes use of fork() and exec(). As a reminder,
the Unix command echo outputs its arguments.

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/wait.h>

#include <errno.h>

int main()

{

int rc = fork();

if (rc < 0) {

fprintf(stderr, "fork: %s\n", strerror(errno));

exit(1);

} else if (rc == 0) {

char* argv[3];

argv[0] = "echo";

argv[1] = "xyz";

argv[2] = NULL; // tells execvp() that there are no more arguments

// below, execvp() is a variant of exec()

if (execvp(argv[0], argv) < 0)

fprintf(stderr, "exec: %s\n", strerror(errno));

printf("abc");

} else {

wait(NULL);

printf("def");

}

return 0;

}

What is the output when this program is run?

xyz
def

Name: Solutions NYU NetId:

page 4 of 15

II ls lab and debugging (15 points total)

4. [15 points] Your friend is taking a CS class. They are given an assignment but implement it
buggily. We will state the assignment, then give you a sample run, then ask you to find and fix the bug.

Your friend’s assignment is to write simplels, which is a version of ls. simplels takes one argument,
a directory name. There are no command-line flags. So the form is:

$./simplels <dirname>

Your friend’s assignment specified that simplels must operate as follows:

– First print out the directory name.

– Then, for each entry in that directory:

• Skip entries that begin with . (the “dot” character);
• Print the entry name;
• Print a trailing / if the entry is a directory (as in lab2);

– In case of error, simplels’s behavior is undefined, meaning students are free to handle errors (or
not) however they want.

Below is a sample run of your friend’s simplels implementation. The mkdir line creates a directory
called foo, and the line after creates some files in that directory: abcd, mnopq, etc.

$ mkdir foo

$ touch foo/abcd foo/mnopq foo/rstuv foo/wxyz

$./simplels foo

foo:

$ echo $?

2

This run gives you some debugging hints. For example, notice that simplels runs and does so without
dumping core. Thus, the bug is not a syntax or memory error. And notice that while simplels
produces some output, it wrongly fails to print the files within foo.

Your friend’s buggy implementation is on the next page, followed by some useful definitions.

Name: Solutions NYU NetId:

page 5 of 15

1 int main(int argc, char* argv[]) {
2 struct stat sb;
3 struct dirent* direntp;
4 DIR* d;

5
6 if (argc != 2) {
7 printf("error\n");

8 exit(2);

9 }

10
11 d = opendir(argv[1]);

12 if (d == NULL)
13 exit(2);

14
15 printf("%s:\n", argv[1]);

16
17 // assign result of readdir() to direntp, and check for NULL

18 while ((direntp = readdir(d)) != NULL) {

19
20 if (direntp->d_name[0] == ’.’)
21 continue;
22
23 if (stat(direntp->d_name, &sb) < 0)
24 exit(2);

25
26 printf("%s", direntp->d_name);

27
28 if (S_ISDIR(sb.st_mode)) // is directory?
29 printf("/");

30 printf("\n");

31 }

32 return 0;
33 }

// Useful definitions:

struct dirent {

char d_name[256]; /* Null-terminated filename */

... /* Other members; aren’t needed here */

};

// opendir() opens a directory stream corresponding to the directory name,
// and returns a pointer to the directory stream.

DIR *opendir(const char *name);

// readdir() returns a pointer to a dirent structure representing the next
// directory entry in the directory stream pointed to by dirp. It returns NULL

// on reaching the end of the directory stream or if an error occurred.

struct dirent *readdir(DIR *dirp);

// stat() retrieves information about the file pointed to by
// name, placing the information in the stat structure.

int stat(const char *name, struct stat *statbuf);

Name: Solutions NYU NetId:

page 6 of 15

What is the bug in the code? State the line number(s) and the problem. You don’t need more
than one sentence.

Line 23 (inferrable from the sample run). stat() is being passed only the filename, but stat()
requires the full pathname. Most of you would have run into this issue in lab 2; in fact, the lab 2
template code is structured a particular way, in part to help you get around this issue.

State the fix below, with reference to line number(s). Use syntactically correct C. There is much
more space below than you need.

Name: Solutions NYU NetId:

page 7 of 15

III Concurrency (32 points total)

5. [6 points] Let cv be a condition variable, and let mutex be a mutex. Assume that there are only
two threads, and a single CPU. Consider this pattern:

acquire(&mutex);

if (not_ready_to_proceed()) {

wait(&mutex, &cv);

}

release(&mutex);

Under the above assumptions, when is this pattern correct? Follow the concurrency command-
ments. Your answer should not be longer than one sentence.

Never.

6. [6 points] Consider the implementation of the spinlock that we saw in class. This implementation
relies on which of the following mechanisms?

Circle ALL that apply:

A A mutex

B An atomic processor instruction

C A queue of quiescent waiters

D An implicit memory barrier

E Deadlock detection

F A ticketing algorithm

G Busy-waiting

H A monitor

B,D,G

Name: Solutions NYU NetId:

page 8 of 15

7. [20 points] In this problem, you will synchronize access to a cross-roads traveled by bicycles.
Bicycles travel in straight lines. Each bicycle is headed north, south, east, or west. (If a bicycle is
headed east, for example, then it approaches the cross-roads from the west.)

North

| |

| |

| |

| |

W ------- ------- E

e <-B a

s B-> s

t ------- ------- t

| ˆ |

| B |

| |

| |

South

The cross-roads can be in east-west mode: this means that east and west bicycles can go, and the north
and south bicycles must wait. Or it can be in north-south mode, which is the other way around. The
mode changes if and only if the cross-roads is empty and an orthogonal (to the current mode) bicycle
wishes to enter. The cross-roads can hold 5 bicycles in each of the two current directions. For example,
if the cross-roads is in east-west mode, it can accommodate 5 bicycles going east and 5 going west.

The cross-roads is a monitor; you will complete the implementation of this monitor. Each bicycle is a
thread that calls into the monitor before entering the cross-roads; this call may cause the bicycle to
wait. A bicycle also invokes the monitor after exiting the cross-roads. Pseudocode for a bicycle is on
the next page. Some notes about your task:

– Your solution must allow multiple bicycles to be using the intersection at once, and should not
make any assumptions about the number of bicycles.

– You must follow the concurrency commandments. You must use only one mutex. You must not
have busy waiting or spin loops.

– We have given you some helper functions that may be useful.

Below, write down the conditions under which a bicycle can and cannot enter the cross-roads.
Informal text is fine. This exercise will help you with the rest of the problem.

Name: Solutions NYU NetId:

page 9 of 15

In the remainder of the problem, complete the implementation of the Xroads monitor.

typedef enum {NORTH=0, SOUTH=1, EAST=2, WEST=3} dir_t;

typedef enum {NORTHSOUTH=0, EASTWEST=1} mode_t;

void bicycle(thread_id tid, Xroads* xr, dir_t direction)

{

/* you should not modify this function */

Ride_up_to_crossroads();

xr->Enter(direction);

Ride();

xr->Exit(direction);

Ride_after_crossroads();

}

class Xroads {

public:

Xroads(); // You will complete this

˜Xroads() { }

void Enter(dir_t d); // You will implement this

void Exit(dir_t d); // You will implement this

private:

bool IsEmpty();

mode_t Dir2Mode(dir_t d);

mode_t mode;

uint32_t num[4];

// ADD MATERIAL BELOW THIS LINE

};

// HELPER FUNCTIONS

bool Xroads::IsEmpty()

{

return num[0] == 0 && num[1] == 0 && num[2] == 0 && num[3] == 0;

}

mode_t Xroads::Dir2Mode(dir_t d)

{

if (d == NORTH || d == SOUTH) return NORTHSOUTH;

else return EASTWEST;

}

Name: Solutions NYU NetId:

page 10 of 15

// Below, complete the implementation of

// Xroads::Xroads()

// and give the implementations of

// void Xroads::Enter(dir_t d)

// void Xroads::Exit(dir_t d)

// Reminder: you need to add to the definition of Xroads on the previous page

Xroads::Xroads()

{

memset(num, 0, sizeof(num));

mode = NORTHSOUTH;

// ADD SOME STUFF HERE

}

Additional data members in Xroads:

class Xroads {

....

private:

...

Mutex m;

Cond cv;

};

Methods:

Xroads::Xroads()

{

....

m.init();

cv.init();

}

void

Xroads::Enter(dir_t d)

{

m.acquire();

Name: Solutions NYU NetId:

page 11 of 15

while (!IsEmpty() && (dir2mode(d) != mode || num[d] >= 5))

cv.wait(&m);

if (IsEmpty())

mode = dir2mode(d);

++num[d];

m.release();

}

void

Xroads::Exit(dir_t d)

{

m.acquire();

--num[d];

cv.broadcast(&m);

m.release();

}

Name: Solutions NYU NetId:

page 12 of 15

IV Virtual memory (21 points total)

8. [5 points] Consider a (small) machine with a 11-bit virtual addresses, in which 8 bits are used
for the VPN. (Assume that the machine is byte-addressable, as with all of the examples we have seen.)

What is the size of the virtual address space, in bytes?

211, or 2048, bytes.

9. [7 points] Consider a (huge) machine that has 60-bit virtual addresses, a page size of 1 terabyte
(1 TB, or 240 bytes), and 52-bit physical addresses.

How many bits is the VPN (virtual page number)?

60−40 = 20.

How many bits is the PPN (physical page number)?

52−40 = 12.

How many bits is the offset?

40.

Name: Solutions NYU NetId:

page 13 of 15

10. [9 points] Now consider the x86-64 architecture. Below we are asking about the physical pages
consumed by a process, including the page tables themselves. As you answer the question, assume
that any allocated memory consumes physical pages in RAM; that is, there is no swapping or demand
paging. Note that it may be helpful for you to draw pictures (but you don’t have to).

As a reminder, the x86-64 imposes a multi-level page table structure: pages are 4KB, each page table
entry is 8 bytes, and each individual page table (a node in the “tree”) occupies one page. Thus, each
page table holds 4KB

8B = 512 = 29 entries. Recall that the structure is four levels; each level is indexed
by 9 bits of the virtual address.

What is the minimum number of physical pages consumed by a process that allocates 12KB (for
example, 1 page each for code, stack, and data)?

7 pages: 3 for the memory it’s allocated, and 4 to implement the paging structure.

What is the minimum number of physical pages consumed by a process that makes 29 +1 allo-
cations of size 4KB each? You can leave your answer in terms of powers of 2, and sums thereof.

29 +6, or 518 pages. Each L4 page table holds 29 mappings. So we need two L4 page tables. The total
is 1+1+1+2 for the page structures plus the 29 +1 pages themselves.

What is the minimum number of physical pages consumed by a process that makes 218 + 1
allocations of size 4KB each? You can leave your answer in terms of powers of 2, and sums thereof.

218 +29 +6. Each L3 page table points indirectly to 218 last-level page entries (each L3 page table has
29 entries, each of which points to an L4 page table with 29 entries). Thus, the question requires two
L3 page tables. The first L3 page table points to 29 L4 page tables; the second points to one L4 page
table, for a total of 29 +1 L4 page tables. Thus, the total is: 1+1+2+29 +1 for the page structures
plus 218 +1 for the pages themselves.

Name: Solutions NYU NetId:

page 14 of 15

V Scheduling and event-driven programming (14 points total)

11. [8 points] This question is about scheduling disciplines. MLFQ refers to the Multi-Level
Feedback Queue presented in the textbook (OSTEP, Chapter 8), rather than in class. We grade
True/False questions with positive points for correct items, 0 points for blank items, and negative points
for incorrect items. The minimum score on this question is 0 points. To earn exactly 1 point on this
question, cross out the question and write SKIP.

Circle True or False for each item below:
True / False MLFQ requires tracking how much CPU each process has used. True.

True / False Stride scheduling requires tracking how much CPU each process has used. True.

True / False With MLFQ scheduling, starvation is possible. False. Periodically, all processes are
bumped to the highest priority level, and then run round-robin.

True / False With priority scheduling, starvation is possible. True.

True / False In MLFQ, a job’s priority is enhanced when tickets are donated to it. False. MLFQ has
no notion of tickets.

True / False Round robin (RR) optimizes CPU throughput. False. RR necessarily has context
switches, which are overhead, and detract from throughput.

True / False Round robin (RR) optimizes average turn-around time. False. We saw counter-examples
in class.

True / False First-come, first-served (FIFO) is an unfair scheduling policy.

Full credit for True, False, or blank. Intended answer: True, because while the name sounds fair, it isn’t:
an earlier long job prevents later jobs from getting processor time at all, until the long job completes.
However, this answer is inconsistent with the course notes. According to the course notes, the answer
should be False because one definition of fairness is freedom from starvation, and FIFO meets that
definition since each job eventually runs. Given that we messed up the question, all answers received
credit.

12. [4 points] The following questions are about event-driven programming. Assume that the
machine has a single CPU and that the system supports asynchronous disk I/O. See above for our
instructions on True/False questions. Again, to earn 1 point on this question, cross out the question and
write SKIP.

Circle True or False for each item below:
True / False In event-driven programming, the functions dispatched by the event loop must be careful
to always block. False. They must never block.

True / False In an event-driven program, the implementation of the event loop does not require locks.
True. That is part of the point of the event-driven style.

True / False In an event-driven program, event handlers may need to acquire locks. False. Nothing
about the event-driven paradigm requires locks at application-level (threading isn’t required under the
assumptions).

Name: Solutions NYU NetId:

page 15 of 15

True / False Event-driven programming is compatible with asynchronous network I/O. True.

13. [2 points] This is to gather feedback. Any answer, except a blank one, will get full credit.

Please state the topic or topics in this class that have been least clear to you.

Please state the topic or topics in this class that have been most clear to you.

End of Midterm

Name: Solutions NYU NetId:

	I Mechanics (18 points total)
	II ls lab and debugging (15 points total)
	III Concurrency (32 points total)
	IV Virtual memory (21 points total)
	V Scheduling and event-driven programming (14 points total)

