
New York University
CSCI-UA.480-008: Advanced Computer Systems: Spring 2016

Midterm Exam

• This exam is 75 minutes. Stop writing when “time” is called. You must turn in your exam; we will
not collect it. Do not get up or pack up in the final ten minutes. The instructor will leave the room 78
minutes after the exam begins and will not accept exams outside the room.

• There are 10 problems in this booklet. Many can be answered quickly. Some may be harder than
others, and some earn more points than others. You may want to skim all questions before starting.

• This exam is open notes, as long as your notes do not include the posted class notes and the lab
source code. You may not use electronics: phones, tablets, calculators, laptops, etc.

• If you find a question unclear or ambiguous, state your assumptions.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any important
assumptions. Write brief, precise answers. Rambling brain dumps will not work and will waste
time. Think before you start writing so that you can answer crisply. Be neat. If we can’t understand
your answer, we can’t give you credit!

• If the questions impose a sentence limit, we will not read past that limit. In addition, a response that
includes the correct answer, along with irrelevant or incorrect content, will lose points.

• Don’t linger. If you know the answer, give it, and move on.

• Write your name and NetId on this cover sheet and on the bottom of every page of the exam.

Do not write in the boxes below.

I (xx/8) II (xx/23) III (xx/32) IV (xx/18) V (xx/19) Total (xx/100)
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I Networking (8 points total)

1. [8 points] A server executes the code below (assume the code has the correct headers):

int fd1, fd2, fd3;

struct sockaddr_in server_addr;

if ( (fd1 = socket(AF_INET, SOCK_STREAM, 0)) < 0)

exit(-1);

memset(&server_addr, 0, sizeof(struct sockaddr_in));

server_addr.sin_family = AF_INET;

server_addr.sin_addr.s_addr = htonl(INADDR_ANY);

server_addr.sin_port = htons(50002);

if ( bind(fd1, (struct sockaddr*)&server_addr, sizeof(server_addr)) < 0)

exit(-1);

if ( listen(fd1, 50) < 0)

exit(-1);

fd2 = accept(fd1, NULL, NULL);

if (fd2 < 0)

exit(-1);

/* Marker A */

fd3 = accept(fd1, NULL, NULL);

if (fd3 < 0)

exit(-1);

/* Marker B */

Which of the following statements is correct?

Circle the BEST answer:

A The flow of execution cannot reach Marker A.

B The flow of execution can reach Marker A but not Marker B.

C The flow of execution can reach Marker B; at that point, the variables fd1, fd2, and fd3 are all
equal.

D The flow of execution can reach Marker B; at that point, the variables fd2 and fd3 are equal to
each other but different from fd1.

E The flow of execution can reach Marker B; at that point, the variables fd1 and fd2 are equal to
each other but different from fd3.

F The flow of execution can reach Marker B; at that point, the variables fd1, fd2, and fd3 are all
different.
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II Buffer overflow attacks and defenses (23 points total)

2. [8 points] In the function translate() below, src is guaranteed to be null-terminated. However,
the content and length of src are determined by a network client (and thus potentially supplied by an
attacker). translate() has a buffer overflow vulnerability. Your job is to fix it.

Fix the vulnerability, by crossing out and rewriting. Note that you may need to change the
interface to the function. You should preserve the original purpose of the function as much as
possible.

void translate(char* dst, const char* src,)

{

while (1) {

if (*src == ’a’)

*dst = ’A’;

else

*dst = *src;

if (*dst == 0)

break;

src++;

dst++;

}

}
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3. [15 points] In the multiple choice questions below, unless specified otherwise, assume a single
process, single-threaded server written in C, with no defenses (stack canaries, WˆX, and so forth).

If the server is bug-free, an adversary can successfully do which of the following?

Circle the BEST answer below:

A Mount a stack smashing attack that crashes the server

B Mount a stack smashing attack that execs a shell

C Both A and B
D Neither A nor B

Now assume that the server has a stack overflow vulnerability. The server runs with a non-executable
stack. Using the kind of attacks described in AlephOne’s paper, an adversary can successfully do which
of the following?

Circle the BEST answer below:

A Mount an attack that crashes the server

B Mount an attack that execs a shell

C Both A and B
D Neither A nor B

Assume a multi-threaded server. Stack canaries can potentially be defeated by which of the following?

Circle ALL that apply:

A ASLR (address space layout randomization)

B Exploiting a bug in which a heap-allocated buffer can overflow

C Exploiting a bug in which an attacker can control the arguments to memcpy

D Stack reading, provided the server does not rerandomize its canaries after a crash and restart

E Stack reading, provided the server does rerandomize its canaries after a crash and restart
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III Return-oriented programming (32 points total)

4. [22 points] You will use return-oriented programming (ROP) to exploit a server. Although the
server is configured to never execute code located on the stack, it has a vulnerability that allows you, as
the attacker, to replace the contents of its stack, beginning at a location (call it X) where the server is
expecting a return address, and continuing indefinitely. Thus, if you overwrite this stack location with
your chosen code address, you will alter the programmer’s intended control flow. Also, the server is
running as root and can thus can be made to execute privileged operations.

Your goal is to cause the server to replace the machine’s password file, print an obnoxious message,
and then exit cleanly. Specifically, you need to cause the following to execute:

unlink("/etc/passwd");

link("/eviluser/passwd", "/etc/passwd");

printf("don’t run as root\n");

exit(0);

Although we used C syntax above, you will be coding with the building blocks listed below. Note that
we are assuming that you, as the attacker, have precise knowledge of the server’s address space (so only
ROP is needed here, not BROP). c1, . . . , c4 are the addresses of machine instruction sequences within
the server’s text (code) section; we have represented these instructions in terms of their function, rather
than their byte representation. d1, . . . , d3 are the addresses of useful data (you can imagine that the
attacker earlier placed these strings in memory); we have represented this data in terms of the ASCII
characters, with \0 representing the null terminator. p1 is the address of printf().

c1 pop %eax; ret d1 / e t c / p a s s w d \0

c2 pop %ebx; ret d2 / e v i l u s e r / p a s s w d \0

c3 pop %ecx; xorl %eax, %eax; ret d3 d o n ’ t r u n a s r o o t \n \0

c4 int 0x80; pop %edx; ret p1 pushl %ebp; ...; popl %ebp; ret

Important conventions:

– The platform is Linux, running on the 32-bit x86 architecture; this is the same as in our labs.

– Calling convention:

int 0x80 traps into the kernel to make a system call
%eax holds the system call number (see the table below)
%ebx holds the first argument to the system call
%ecx holds the second argument to the system call
%edx holds the third argument to the system call

– Relevant system call numbers:

exit() 1

unlink() 9

link() 10
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In the space below, write down what the attacker should place on the stack, beginning from
location X , to cause the execution of unlink("/etc/passwd").

X +24

X +8 arg2 (overwrite this)

X +4 arg1 (overwrite this)

X return address (overwrite this)

X −4 saved %ebp <--- %ebp

Below, draw the rest of the payload, beginning from location X +20 (you may wind up copying
over some of what you have above).

X +24

X +20

Name: NYU NetId:



page 7 of 10

5. [10 points] The operator of a server reads the BROP paper and grows concerned. The operator
adjusts the logic of the server so that, if the server crashes, it does not restart automatically.

Does this adjustment stop the BROP attack? Justify. Write no more than two sentences.

Does this adjustment have side effects? Justify. Write no more than two sentences.
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IV Passwords and privilege (18 points total)

6. [8 points] Consider the following threat model. There is a Web site (meaning a Web server and
its associated logic) on which you have previously set up a login id and password. An attacker knows
your login id but not your password, and is trying to impersonate you. The attacker is remote and can
interact with the Web site only through the site’s intended interface, meaning that the attacker can
submit (login, password) pairs. The attacker cannot subvert the control flow or logic of the Web site.

Does the mechanism of salting provide protection against this attacker? If so, state what protec-
tion it provides. If not, explain why not. Write no more than three sentences.

7. [10 points] Assume a Unix system with a root user, who has uid and gid 0; further assume that
root is not compromised, and that all programs that run as root are bug-free. Assume that the system
has a binary, svc, and that the operator’s intent to run this specific binary as user id (uid) 63001 and
group id (gid) 63001. There is also a user account whose associated user id and group id are 300.

Consider four alternatives for the permissions and ownership of svc:

perms uid gid

-------------------------

Alternative A: r-xr-x--- 0 0

Alternative B: r-xr-xr-x 0 0

Alternative C: r-xr-x--- 0 63001

Alternative D: r-xr-x--- 63001 63001

Between alternatives A and B, which of the two corresponds to less privilege in this system?
Justify. Write no more than two sentences.

Between alternatives C and D, which of the two corresponds to less privilege in this system?
Justify. Write no more than two sentences.
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V SFI and feedback (19 points total)

In the questions below, assume a system that uses SFI on a 32-bit RISC architecture, with 4-bit segment
Ids. Make the following assumptions about this architecture:

– All instructions are four bytes.

– The instruction pointer is always four-byte aligned (that is, the CPU raises a fault if code tries to
jump into the middle of an instruction).

– There are no implicit stack manipulations: instructions like call, ret, push, pop do not exist.
(To implement stack frames, the compiler designates a register as the stack pointer. For example,
when returning from a function, code moves the return address into a register, increments the
stack pointer, and jumps to the address in the register.) If the parenthetical confuses you, ignore it.

8. [9 points] Recall that, in SFI, an indirect store instruction, such as Store R1, R0 (which in x86
syntax would be movl %r1, (%r0)), is sandboxed as follows, where Ra, Re, and Rf are dedicated
registers (which you should assume are initialized correctly on entry to a fault domain):

Ra <- R0 & Re // Re is 0x0fffffff, because we assume 4-bit segment Ids

Ra <- Ra | Rf // Rf is 0xI0000000, where I identifies the data segment

STORE R1, Ra

Above, the first line clears the top four bits of R0, placing the result in Ra; the second line places the
correct segment Id in Ra. (Note that sandboxing indirect jump instructions uses different registers in
place of Ra and Rf.)

Wishing to cut overhead from SFI, your friend proposes to eliminate the first line above. Specifically,
your friend proposes the following alternative sandboxing of Store R1, R0:

Ra <- Ra | Rf // Rf is 0xI0000000, where I identifies the data segment

STORE R1, Ra

What claim or claims are true of the proposed replacement? Circle the BEST answer.

A This approach would be accepted by the existing verification algorithm.

B All stores are guaranteed to remain within the data segment.

C This approach is an acceptable replacement.

D Claims A and B are correct.

E Claims A and C are correct.

F Claims B and C are correct.

G Claims A, B, and C are correct.

H All of the claims are incorrect.
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9. [8 points] This question asks whether and how SFI protects against various misbehaviors in the
untrusted fault domain. Make the following assumptions:

– The untrusted fault domain runs in the same OS process as the trusted domain.

– The untrusted fault domain accepts external input (which could be supplied by an attacker).

– The stack used by the untrusted fault domain is non-executable, and the WˆX policy is in effect.

– stores are sandboxed, but loads are not. (This is the configuration in many of the authors’
experiments.)

Fill in the blanks below with a few words indicating whether the SFI authors propose to protect
against the misbehavior and, if so, what the proposed protection is. If there is no protection for
the given issue, write NONE.

Untrusted fault domain reads the trusted domain’s memory

Untrusted fault domain dereferences a null pointer

Untrusted fault domain’s control flow subverted by an attacker

10. [2 points] This is to gather feedback. Any answer, except a blank one, will get full credit.

Please state the topic or topics in this class that have been least clear to you.

Please state the topic or topics in this class that have been most clear to you.
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