Printed by Michael Walfish

Apr 21, 16 12:03 c23—-handout.txt Page 1/8 Apr 21, 16 12:03 c23—-handout.txt Page 2/8
1 Handout for CS 480 59

> Class 23 60 3. Producer/consumer example:

3 21 April 2016 61

4 62 I*

s 1. Example to illustrate interleavings: say that thread A executes f() 63 "buffer" stores BUFFER_SIZE items

s and thread B executes g(). (Here, we are using the term "thread" 64 "count" is number of used slots. a variable that lives in memory
7 abstractly, to refer to execution contexts that share memory.) 65 "out" is next empty buffer slot to fill (if any)

8 66 "in" is oldest filled slot to consume (if any)

9 a. 67 */

10 68

1 int x; 69 void producer (void *ignored) {

12 70 for (;;) {

13 f0{x=1} 7 /* next line produces an item and puts it in nextProduced */
14 7 nextProduced = means_of_production();

15 g0 {x=2;} 73 while (count == BUFFER_SIZE)

16 74 ; 11 do nothing

17 What are possible values of x after A has executed f() and B has 75 buffer [in] = nextProduced;

18 executed g()? 76 in = (in + 1) % BUFFER_SIZE;

19 77 count++;

20 b. 78 }

21 inty =12; 79 }

22 80

23 f0{x=y+1;} 81 void consumer (void *ignored) {

24 90{y=y*2;} 82 for (;;) {

25 83 while (count == 0)

2 What are the possible values of x? 84 ; /I do nothing

27 85 nextConsumed = buffer[out];

28 c. 86 out = (out + 1) % BUFFER_SIZE;

29 intx=0; 87 count——;

30 fO{x=x+1;} 88 /* next line abstractly consumes the item */
a1 g {x=x+2;} 89 consume_item(nextConsumed);

32 % }

3 What are the possible values of x? o1 }

34 92

35 2. Linked list example 93 I*

36) what count++ probably compiles to:

a7 struct List_elem { 9 regl <--count # load

38 int data; % regl <--regl +1 # increment register
39 struct List_elem* next; 97 count<--regl # store

40 I3 98

2 99 what count—- could compile to:

42 List_elem* head = 0; 100 reg2 <--count # load

43 101 reg2 <--reg2 — 1 # decrement register

a4 insert(int data) { 102 count<-—reg2 # store

5 List_elem* | = new List_elem; 103 */

6 |->data = data; 104

47 |I->next = head; 108 What happens if we get the following interleaving?
8 head = 106

49 107 regl <—- count

50 108 regl <--regl+1

51 What happens if two threads execute insert() at once and we get the 109 reg2 <-- count

52 following interleaving? 110 reg2 <--reg2 -1

53 111 count <--regl

54 thread 1: I->next = head 112 count <--reg2

55 thread 2: I->next = head 113

56 thread 2: head =,

57 thread 1: head = |;

58

Thursday April 21, 2016 c23-handout.txt 1/4

Printed by Michael Walfish

Apr 21, 16 12:03 c23-handout.txt

Page 3/8 Apr 21, 16 12:03 c23—-handout.txt Page 4/8

130

4. Protecting the linked list......

Lock list_lock;

insert(int data) {
List_elem* | = new List_elem;
|->data = data;
acquire(&list_lock);

|I->next = head; IIA
head =1; /I B

release(&list_lock);

}

5. How can we implement list_lock, acquire(), and release()?

Here is A BADLY BROKEN implementation:

struct Lock {
int locked;

void [BROKEN] acquire(Lock *lock) {
while (1) {
if (lock—>locked == 0) {// C
lock—>locked =1; //D
break;
}
}
}

void release (Lock *lock) {
lock—>locked = 0;

What's the problem? Two acquire()s on the same lock on different
CPUs might both execute line C, and then both execute D. Then
both will think they have acquired the lock. This is the same

kind of race that we were trying to eliminate in insert(). But

we have made a little progress: now we only need a way to
prevent interleaving in one place (acquire()), not for many

arbitrary complex sequences of code.

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

5a. Test—and-set spinlock

Relies on atomic instruction on the CPU. For example, on the x86,
doing

"xchg addr, %eax"
atomically swaps the contents of %eax with the contents of
(virtual) memory address addr. No other instructions can be
interleaved. One can think of xchg like this:

(i) freeze all CPUs’ memory activity for address addr
(i) temp = *addr

(iir) *addr = %eax

(iv) %eax = temp

(v) un-freeze memory activity

/* pseudocode */

int xchg_val(addr, value) {
%eax = value;
xchg (*addr), %eax

struct Lock {
int locked;

/* bare—bones version of acquire */
void acquire (Lock *lock)

pushcli(); /* what does this do? */

while (1) {

if (xchg_val(&lock—>locked, 1) == 0)
break;

}

}

void release(Lock *lock){
xchg_val(&lock—>locked, 0);
popcli(); /* what does this do? */

5b. Test-and-test-and-set lock

/* optimization in acquire; call xchg_val() less frequently */
void acquire(Lock* lock) {
pushcli();
while (xchg_val(&lock->locked, 1) == 1) {
while (lock—>locked) ;

Thursday April 21, 2016

c23-handout.txt

2/4

Printed by Michael Walfish

Apr 21, 16 12:03 c23-handout.txt Page 5/8 Apr 21, 16 12:03 c23-handout.txt Page 6/8
210 6. Ticket locks 28 7. MCS locks (a kind of queue lock)
211 259
212 The spinlocks presented above have fairness issues on NUMA machines 260 Ticket locks are fair, as noted above, but they (and baseline
213 (cores closer to the memory containing the ’locked’ variable are 261 spinlocks) have performance issues when there is a lot of
214 more likely to succeed in acquiring the lock). 262 contention. These issues fundamenally result from cross-talk among
215 263 CPUs (which undermines caching and generates traffic on the memory
216 Ticket locks address that issue. 264 bus). This phenomenon is investigated in depth in the "Scalable
217 265 Locks are Dangerous” paper.
218 They rely on an atomic primitive known as "“fetch and increment.” 266
219 On the x86, we implement fetch and increment with the XADD 267 The locks presented below address that issue. These are known as MCS
220 instruction, but note that this instruction is not atomic by 268 locks.
221 default, so we need the LOCK prefix. 269
222 270 Citation: Mellor-Crummey, J. M. and M. L. Scott. Algorithms for
223 Here's pseudocode: 271 Scalable Synchronization on Shared—Memory Multiprocessors, ACM
224 272 Transactions on Computer Systems, Vol. 9, No. 1, February, 1991,
225 int fetch_and_increment (int* addr) { 273 pp.21-65.
226 LOCK: // remember, this is pseudocode 274
227 int was = *addr; 275 A. CAS / CMPXCHG
228 *addr = was + 1; 276
229 return was; 217 Useful operation: compare-and-swap, known as CAS. Says: "atomically
230 } 278 check whether a given memory cell contains a given value, and if it
231 279 does, then replace the contents of the memory cell with this other
232 Here’s inline assembly: 280 value; in either case, return the original value in the memory
233 281 location”.
234 inline int fetch_and_increment(int *addr) { 282
235 intwas =1; 283 On the X86, we implement CAS with the CMPXCHG instruction, but note
236 asm volatile("lock xaddl %1, %0" 284 that this instruction is not atomic by default, so we need the LOCK
237 :"+m" (*addr), "=r" (was) // Output 285 prefix.
238 :"1" (was), "'m" (*addr) // Input 286
239 ; 287 Here’s pseudocode:
240 return was; 288
241 289 int cmpxchg_val(int* addr, int oldval, int newval) {
242 290 LOCK: // remember, this is pseudocode
243 struct Lock { 201 int was = *addr;
244 int current_ticket; 292 if (*faddr == oldval)
245 int next_ticket; 293 *addr = newval,
246 294 return was;
247 295
248 void acquire (Lock *lock) 206
249 297 Here’s inline assembly:
250 intt = fetch_and_increment (&lock—->next_ticket); 208
251 while (t != lock—>current_ticket) ; 299 uint32_t cmpxchg_val(uint32_t* addr, uint32_t oldval, uint32_t newval) {
252 300 uint32_t was;
253 301 asm volatile("lock cmpxchg %3, %0"
254 void release (Lock *lock) { 302 :"+m" (*addr), "=a" (was)
255 lock->current_ticket++; 303 :"a" (oldval), "r" (newval), "'m" (*addr)
256 304 1 '"cc");
257 305 return was;
306
307
308 B. The MCS lock
309
310 Each CPU has a gnode structure in *local* memory. Here, local can
311 mean local memory in NUMA machine or its own cache line that other
312 CPUs are not allowed to cache (i.e., the cache line is in exclusive
313 mode):
314
315 typedef struct gnode {
316 struct gnode* next;
317 bool someoneelse_locked;
318 } gnode;
319
320 typedef gnode* lock; // a lock is a pointer to a gnode
321
322 —-The lock itself is literally the *tail* of the list of CPUs holding
323 or waiting for the lock.
324
325 —-While waiting, a CPU spins on its local "locked" flag.
326
Thursday April 21, 2016 c23-handout.txt 3/4

Printed by Michael Walfish

Apr 21, 16 12:03 c23-handout.txt Page 7/8 Apr 21, 16 12:03 c23-handout.txt Page 8/8
326 395 8. Mutexes
327 Here’s the code for acquire: 396
328 307 Motivation: all of the aforementioned locks were called spinlocks
329 /l'lockp is a gnode**. | points to our local gnode. 398 because acquire() spins. A mutex avoids busy waiting. Usually, in
330 void acquire(lock* lockp, gnode* 1) { 399 user space code, you want to be using mutexes, not spinlocks.
331 400
332 I->next = NULL; 401 Spinlocks are good for some things, not so great for others. The
333 gnode* predecessor; 402 main problem is that it *busy waits*: it spins, chewing up CPU
334 403 cycles. Sometimes this is what we want (e.g., if the cost of going
335 /I next line makes lockp point to | (that is, it sets *lockp <—- 1) 404 to sleep is greater than the cost of spinning for a few cycles
336 /I and returns the old value of *lockp. Uses atomic operation 405 waiting for another thread or process to relinquish the spinlock).
337 /I XCHG. see earlier in handout (or earlier handouts) 406 But sometimes this is not at all what we want (e.g., if the lock
338 /I for implementation of xchg_val. 407 would be held for a while: in those cases, the CPU waiting for the
339 408 lock would waste cycles spinning instead of running some other
340 predecessor = xchg_val(lockp, 1); //"A" 409 thread or process).
341 if (predecessor = NULL) { // queue was non—empty 410
342 I->someoneelse_locked = true; 211 With a mutex, if the lock is not available, the locking thread is
343 predecessor—>next = I; "B" 412 put to sleep, and tracked by a queue in the mutex.
344 while (I->someoneelse_locked) ; // spin 213
345 } 414 struct Mutex {
346 /I we hold the lock! 415 bool is_held; /* true if mutex held */
347 } 416 thread_id owner; /* thread holding mutex, if locked */
348 7 thread_list waiters; /* queue of thread TCBs */
349 What's going on? 418 Lock wait_lock; /* a spinlock, as above */
350 419
351 ——If the lock is unlocked, then *lockp == NULL. 420
352 421 The implementation of mutex_acquire() and mutex_release() would
353 —-If the lock is locked, and there are no waiters, then *lockp 422 be something like:
354 points to the gnode of the owner 423
355 424 void mutex_acquire(Mutex *m) {
356 ——If the lock is locked, and there are waiters, then *lockp points 425
357 to the gnode at the tail of the waiter list. 426 acquire(&m-—>wait_lock); /* we spin to acquire wait_lock */
358 427
359 —-Here’s the code for release: 428 while (m—>is_held) { /* someone else has the mutex */
360 429
361 void release(lock* lockp, gnode* 1) { 430 m—>waiters.insert(current_thread)
362 if (I->next) {// no known successor 431 release(&m->wait_lock);
363 if (cmpxchg_val(lockp, I, NULL) ==1){ /"C" 432
364 /I swap successful: lockp was pointing to I, so now 433 *
365 /I *lockp == NULL, and the lock is unlocked. we can 434 * NOTE! Right here, mutex_release() could execute. To
366 /I go home now. 435 * avoid "losing the wakeup"”, we check whether we are
367 return; 436 * on the scheduler’s ready list. If we are, we
368 } 437 * shouldn't yield().
369 /I if we get here, then there was a timing issue: we had 438 */
370 /I no known successor when we first checked, but now we 439
an /I have a successor: some CPU executed the line "A" 440 yield_if_we_are_not_ready();
a2 Il above. Wait for that CPU to execute line "B" above. 441
373 while (!I->next) ; 442 acquire(&m->wait_lock); /* we spin again */
374 1 443 m->waiters.remove(current_thread)
375 /I handing the lock off to the next waiter is as simple as 444
376 /I just setting that waiter's "someoneelse_locked" flag to false 445 }
377 I->next—>someoneelse_locked = false; 446
378 } 447 m->is_held = true; /* we now hold the mutex */
are 448 m->owner = self;
380 What's going on? 449
381 450 release(&m->wait_lock);
382 —=If I->next == NULL and *lockp == I, then no one else is 451 }
383 waiting for the lock. So we set *lockp == NULL. 452
384 453 void mutex_release(Mutex *m) {
385 ——If I->next == NULL and *lockp != I, then another CPU is in 454
386 acquire (specifically, it executed its atomic operation, namely 455 acquire(&m->wait_lock); /* we spin to acquire wait_lock */
387 line "A", before we executed ours, namely line "C"). So wait for 456
388 the other CPU to put the list in a sane state, and then drop 457 m—>is_held = false;
389 down to the next case: 458 m->owner = 0;
390 459
301 —=If I->next != NULL, then we know that there is a spinning 460 /* tell scheduler to run a waiter */
392 waiter (the oldest one). Hand it the lock by setting its flag to 461 place_a_waiter_on_ready_list(m—>waiters);
393 false. 462
394 463 release(&m->wait_lock);
464
465 }
466
Thursday April 21, 2016 c23-handout.txt 4/4

