
1 Handout for CS 480
2 Class 23
3 21 April 2016
4

5 1. Example to illustrate interleavings: say that thread A executes f()
6 and thread B executes g(). (Here, we are using the term "thread"
7 abstractly, to refer to execution contexts that share memory.)
8

9 a.
10

11 int x;
12

13 f() { x = 1; }
14

15 g() { x = 2; }
16

17 What are possible values of x after A has executed f() and B has
18 executed g()?
19

20 b.
21 int y = 12;
22

23 f() { x = y + 1; }
24 g() { y = y * 2; }
25

26 What are the possible values of x?
27

28 c.
29 int x = 0;
30 f() { x = x + 1; }
31 g() { x = x + 2; }
32

33 What are the possible values of x?
34

35 2. Linked list example
36

37 struct List_elem {
38 int data;
39 struct List_elem* next;
40 };
41

42 List_elem* head = 0;
43

44 insert(int data) {
45 List_elem* l = new List_elem;
46 l−>data = data;
47 l−>next = head;
48 head = l;
49 }
50

51 What happens if two threads execute insert() at once and we get the
52 following interleaving?
53

54 thread 1: l−>next = head
55 thread 2: l−>next = head
56 thread 2: head = l;
57 thread 1: head = l;
58

Apr 21, 16 12:03 Page 1/8c23−handout.txt
59

60 3. Producer/consumer example:
61

62 /*
63 "buffer" stores BUFFER_SIZE items
64 "count" is number of used slots. a variable that lives in memory
65 "out" is next empty buffer slot to fill (if any)
66 "in" is oldest filled slot to consume (if any)
67 */
68

69 void producer (void *ignored) {
70 for (;;) {
71 /* next line produces an item and puts it in nextProduced */
72 nextProduced = means_of_production();
73 while (count == BUFFER_SIZE)
74 ; // do nothing
75 buffer [in] = nextProduced;
76 in = (in + 1) % BUFFER_SIZE;
77 count++;
78 }
79 }
80

81 void consumer (void *ignored) {
82 for (;;) {
83 while (count == 0)
84 ; // do nothing
85 nextConsumed = buffer[out];
86 out = (out + 1) % BUFFER_SIZE;
87 count−−;
88 /* next line abstractly consumes the item */
89 consume_item(nextConsumed);
90 }
91 }
92

93 /*
94 what count++ probably compiles to:
95 reg1 <−− count # load
96 reg1 <−− reg1 + 1 # increment register
97 count <−− reg1 # store
98

99 what count−− could compile to:
100 reg2 <−− count # load
101 reg2 <−− reg2 − 1 # decrement register
102 count <−− reg2 # store
103 */
104

105 What happens if we get the following interleaving?
106

107 reg1 <−− count
108 reg1 <−− reg1 + 1
109 reg2 <−− count
110 reg2 <−− reg2 − 1
111 count <−− reg1
112 count <−− reg2
113

Apr 21, 16 12:03 Page 2/8c23−handout.txt

Printed by Michael Walfish

Thursday April 21, 2016 1/4c23−handout.txt

114 4. Protecting the linked list......
115

116 Lock list_lock;
117

118 insert(int data) {
119 List_elem* l = new List_elem;
120 l−>data = data;
121
122 acquire(&list_lock);
123

124 l−>next = head; // A
125 head = l; // B
126

127 release(&list_lock);
128 }
129

130 5. How can we implement list_lock, acquire(), and release()?
131

132 Here is A BADLY BROKEN implementation:
133

134 struct Lock {
135 int locked;
136 }
137

138 void [BROKEN] acquire(Lock *lock) {
139 while (1) {
140 if (lock−>locked == 0) { // C
141 lock−>locked = 1; // D
142 break;
143 }
144 }
145 }
146

147 void release (Lock *lock) {
148 lock−>locked = 0;
149 }
150

151 What’s the problem? Two acquire()s on the same lock on different
152 CPUs might both execute line C, and then both execute D. Then
153 both will think they have acquired the lock. This is the same
154 kind of race that we were trying to eliminate in insert(). But
155 we have made a little progress: now we only need a way to
156 prevent interleaving in one place (acquire()), not for many
157 arbitrary complex sequences of code.
158

Apr 21, 16 12:03 Page 3/8c23−handout.txt
159 5a. Test−and−set spinlock
160
161 Relies on atomic instruction on the CPU. For example, on the x86,
162 doing
163 "xchg addr, %eax"
164 atomically swaps the contents of %eax with the contents of
165 (virtual) memory address addr. No other instructions can be
166 interleaved. One can think of xchg like this:
167

168 (i) freeze all CPUs’ memory activity for address addr
169 (ii) temp = *addr
170 (iii) *addr = %eax
171 (iv) %eax = temp
172 (v) un−freeze memory activity
173

174 /* pseudocode */
175 int xchg_val(addr, value) {
176 %eax = value;
177 xchg (*addr), %eax
178 }
179

180 struct Lock {
181 int locked;
182 }
183

184 /* bare−bones version of acquire */
185 void acquire (Lock *lock) {
186 pushcli(); /* what does this do? */
187 while (1) {
188 if (xchg_val(&lock−>locked, 1) == 0)
189 break;
190 }
191 }
192

193 void release(Lock *lock){
194 xchg_val(&lock−>locked, 0);
195 popcli(); /* what does this do? */
196 }
197

198 5b. Test−and−test−and−set lock
199

200 /* optimization in acquire; call xchg_val() less frequently */
201 void acquire(Lock* lock) {
202 pushcli();
203 while (xchg_val(&lock−>locked, 1) == 1) {
204 while (lock−>locked) ;
205 }
206 }
207

208

209

Apr 21, 16 12:03 Page 4/8c23−handout.txt

Printed by Michael Walfish

Thursday April 21, 2016 2/4c23−handout.txt

210 6. Ticket locks
211

212 The spinlocks presented above have fairness issues on NUMA machines
213 (cores closer to the memory containing the ’locked’ variable are
214 more likely to succeed in acquiring the lock).
215

216 Ticket locks address that issue.
217

218 They rely on an atomic primitive known as "fetch and increment."
219 On the x86, we implement fetch and increment with the XADD
220 instruction, but note that this instruction is not atomic by
221 default, so we need the LOCK prefix.
222

223 Here’s pseudocode:
224

225 int fetch_and_increment (int* addr) {
226 LOCK: // remember, this is pseudocode
227 int was = *addr;
228 *addr = was + 1;
229 return was;
230 }
231

232 Here’s inline assembly:
233

234 inline int fetch_and_increment(int *addr) {
235 int was = 1;
236 asm volatile("lock xaddl %1, %0"
237 : "+m" (*addr), "=r" (was) // Output
238 : "1" (was), "m" (*addr) // Input
239);
240 return was;
241 }
242

243 struct Lock {
244 int current_ticket;
245 int next_ticket;
246 }
247

248 void acquire (Lock *lock)
249 {
250 int t = fetch_and_increment (&lock−>next_ticket);
251 while (t != lock−>current_ticket) ;
252 }
253

254 void release (Lock *lock) {
255 lock−>current_ticket++;
256 }
257

Apr 21, 16 12:03 Page 5/8c23−handout.txt
258 7. MCS locks (a kind of queue lock)
259

260 Ticket locks are fair, as noted above, but they (and baseline
261 spinlocks) have performance issues when there is a lot of
262 contention. These issues fundamenally result from cross−talk among
263 CPUs (which undermines caching and generates traffic on the memory
264 bus). This phenomenon is investigated in depth in the "Scalable
265 Locks are Dangerous" paper.
266

267 The locks presented below address that issue. These are known as MCS
268 locks.
269
270 Citation: Mellor−Crummey, J. M. and M. L. Scott. Algorithms for
271 Scalable Synchronization on Shared−Memory Multiprocessors, ACM
272 Transactions on Computer Systems, Vol. 9, No. 1, February, 1991,
273 pp.21−65.
274

275 A. CAS / CMPXCHG
276

277 Useful operation: compare−and−swap, known as CAS. Says: "atomically
278 check whether a given memory cell contains a given value, and if it
279 does, then replace the contents of the memory cell with this other
280 value; in either case, return the original value in the memory
281 location".
282

283 On the X86, we implement CAS with the CMPXCHG instruction, but note
284 that this instruction is not atomic by default, so we need the LOCK
285 prefix.
286

287 Here’s pseudocode:
288

289 int cmpxchg_val(int* addr, int oldval, int newval) {
290 LOCK: // remember, this is pseudocode
291 int was = *addr;
292 if (*addr == oldval)
293 *addr = newval;
294 return was;
295 }
296

297 Here’s inline assembly:
298

299 uint32_t cmpxchg_val(uint32_t* addr, uint32_t oldval, uint32_t newval) {
300 uint32_t was;
301 asm volatile("lock cmpxchg %3, %0"
302 : "+m" (*addr), "=a" (was)
303 : "a" (oldval), "r" (newval), "m" (*addr)
304 : "cc");
305 return was;
306 }
307

308 B. The MCS lock
309

310 Each CPU has a qnode structure in *local* memory. Here, local can
311 mean local memory in NUMA machine or its own cache line that other
312 CPUs are not allowed to cache (i.e., the cache line is in exclusive
313 mode):
314

315 typedef struct qnode {
316 struct qnode* next;
317 bool someoneelse_locked;
318 } qnode;
319

320 typedef qnode* lock; // a lock is a pointer to a qnode
321
322 −−The lock itself is literally the *tail* of the list of CPUs holding
323 or waiting for the lock.
324

325 −−While waiting, a CPU spins on its local "locked" flag.
326

Apr 21, 16 12:03 Page 6/8c23−handout.txt

Printed by Michael Walfish

Thursday April 21, 2016 3/4c23−handout.txt

326
327 Here’s the code for acquire:
328

329 // lockp is a qnode**. I points to our local qnode.
330 void acquire(lock* lockp, qnode* I) {
331

332 I−>next = NULL;
333 qnode* predecessor;
334

335 // next line makes lockp point to I (that is, it sets *lockp <−− I)
336 // and returns the old value of *lockp. Uses atomic operation
337 // XCHG. see earlier in handout (or earlier handouts)
338 // for implementation of xchg_val.
339

340 predecessor = xchg_val(lockp, I); // "A"
341 if (predecessor != NULL) { // queue was non−empty
342 I−>someoneelse_locked = true;
343 predecessor−>next = I; // "B"
344 while (I−>someoneelse_locked) ; // spin
345 }
346 // we hold the lock!
347 }
348

349 What’s going on?
350

351 −−If the lock is unlocked, then *lockp == NULL.
352

353 −−If the lock is locked, and there are no waiters, then *lockp
354 points to the qnode of the owner
355

356 −−If the lock is locked, and there are waiters, then *lockp points
357 to the qnode at the tail of the waiter list.
358

359 −−Here’s the code for release:
360

361 void release(lock* lockp, qnode* I) {
362 if (!I−>next) { // no known successor
363 if (cmpxchg_val(lockp, I, NULL) == I) { // "C"
364 // swap successful: lockp was pointing to I, so now
365 // *lockp == NULL, and the lock is unlocked. we can
366 // go home now.
367 return;
368 }
369 // if we get here, then there was a timing issue: we had
370 // no known successor when we first checked, but now we
371 // have a successor: some CPU executed the line "A"
372 // above. Wait for that CPU to execute line "B" above.
373 while (!I−>next) ;
374 }
375 // handing the lock off to the next waiter is as simple as
376 // just setting that waiter’s "someoneelse_locked" flag to false
377 I−>next−>someoneelse_locked = false;
378 }
379

380 What’s going on?
381

382 −−If I−>next == NULL and *lockp == I, then no one else is
383 waiting for the lock. So we set *lockp == NULL.
384

385 −−If I−>next == NULL and *lockp != I, then another CPU is in
386 acquire (specifically, it executed its atomic operation, namely
387 line "A", before we executed ours, namely line "C"). So wait for
388 the other CPU to put the list in a sane state, and then drop
389 down to the next case:
390

391 −−If I−>next != NULL, then we know that there is a spinning
392 waiter (the oldest one). Hand it the lock by setting its flag to
393 false.
394

Apr 21, 16 12:03 Page 7/8c23−handout.txt
395 8. Mutexes
396

397 Motivation: all of the aforementioned locks were called spinlocks
398 because acquire() spins. A mutex avoids busy waiting. Usually, in
399 user space code, you want to be using mutexes, not spinlocks.
400

401 Spinlocks are good for some things, not so great for others. The
402 main problem is that it *busy waits*: it spins, chewing up CPU
403 cycles. Sometimes this is what we want (e.g., if the cost of going
404 to sleep is greater than the cost of spinning for a few cycles
405 waiting for another thread or process to relinquish the spinlock).
406 But sometimes this is not at all what we want (e.g., if the lock
407 would be held for a while: in those cases, the CPU waiting for the
408 lock would waste cycles spinning instead of running some other
409 thread or process).
410

411 With a mutex, if the lock is not available, the locking thread is
412 put to sleep, and tracked by a queue in the mutex.
413
414 struct Mutex {
415 bool is_held; /* true if mutex held */
416 thread_id owner; /* thread holding mutex, if locked */
417 thread_list waiters; /* queue of thread TCBs */
418 Lock wait_lock; /* a spinlock, as above */
419 }
420

421 The implementation of mutex_acquire() and mutex_release() would
422 be something like:
423

424 void mutex_acquire(Mutex *m) {
425

426 acquire(&m−>wait_lock); /* we spin to acquire wait_lock */
427

428 while (m−>is_held) { /* someone else has the mutex */
429

430 m−>waiters.insert(current_thread)
431 release(&m−>wait_lock);
432

433 /*
434 * NOTE! Right here, mutex_release() could execute. To
435 * avoid "losing the wakeup", we check whether we are
436 * on the scheduler’s ready list. If we are, we
437 * shouldn’t yield().
438 */
439

440 yield_if_we_are_not_ready();
441

442 acquire(&m−>wait_lock); /* we spin again */
443 m−>waiters.remove(current_thread)
444

445 }
446

447 m−>is_held = true; /* we now hold the mutex */
448 m−>owner = self;
449

450 release(&m−>wait_lock);
451 }
452

453 void mutex_release(Mutex *m) {
454

455 acquire(&m−>wait_lock); /* we spin to acquire wait_lock */
456

457 m−>is_held = false;
458 m−>owner = 0;
459

460 /* tell scheduler to run a waiter */
461 place_a_waiter_on_ready_list(m−>waiters);
462

463 release(&m−>wait_lock);
464

465 }
466

Apr 21, 16 12:03 Page 8/8c23−handout.txt

Printed by Michael Walfish

Thursday April 21, 2016 4/4c23−handout.txt

