

CS 202, NYU
Spring 2015

Potentially useful (if convoluted) example to exercise your understanding of how
to use mutexes and conditional variables. This is a well-known concurrency
problem. The writeup and solution below are due to Mike Dahlin (who used to be
on the faculty at The University of Texas at Austin). He asked this question on a
midterm in 2002 (for CS372, the undergraduate OS class at UT).

Example: Sleeping Barber (Midterm 2002)
The shop has a barber, a barber chair, and a waiting room with NCHAIRS chairs. If there are no customers
present, the barber sits in the barber chair and falls asleep. When a customer arrives, he wakes the sleeping
barber. If an additional customer arrives while the barber is cutting hair, he sits in a waiting room chair if
one is available. If no chairs are available, he leaves the shop. When the barber finishes cutting a
customer’s hair, he tells the customer to leave; then, if there are any customers in the waiting room he
announces that the next customer can sit down. Customers in the waiting room get their hair cut in FIFO
order.

The barber shop can be modeled as 2 shared objects, a BarberChair with the methods napInChair(),
wakeBarber(), sitInChair(), cutHair(), and tellCustomerDone(). The BarberChair must have a state variable
with the following states: EMPTY, BARBER_IN_CHAIR, LONG_HAIR_CUSTOMER_IN_CHAIR,
SHORT_HAIR_CUSTOMER_IN_CHAIR. Note that neither a customer or barber should sit down until the
previous customer is out of the chair (state == EMPTY). Note that cutHair() must not return until the
customer is sitting in the chair (LONG_HAIR_CUSTOMER_IN_CHAIR). And note that a customer
should not get out of the chair (e.g., return from sit in chair) until his hair is cut
(SHORT_HAIR_CUSTOMER_IN_CHAIR). The barber should only get in the chair
(BARBER_IN_CHAIR) if no customers are waiting. You may need additional state variables.

The WaitingRoom has the methods enter() which immediately returns WR_FULL if the waiting room is
full or (immediately or eventually) returns MY_TURN when it is the caller’s turn to get his hair cut, and it
has the method callNextCustomer() which returns WR_BUSY or WR_EMPTY depending on if there is a
customer in the waiting room or not. Customers are served in FIFO order.

Thus, each customer thread executes the code:

Customer(WaitingRoom *wr, BarberChair *bc)
{
 status = wr->enter();
 if(status == WR_FULL){
 return;
 }
 bc->wakeBarber();
 bc->sitInChair(); // Wait for chair to be EMPTY
 // Make state LONG_HAIR_CUSTOMER_IN_CHAIR
 // Wait until SHORT_HAIR_CUSTOMER_IN_CHAIR
 // then make chair EMPTY and return
 return;
}

The barber thread executes the code:
Barber(WaitingRoom *wr, BarberChair *bc)
{
 while(1){ // A barber’s work is never done
 status = wr->callNextCustomer();

 if(status == WR_EMPTY){
 bc->napInChair(); // Set state to BARBER_IN_CHAIR; return with state EMPTY
 }
 bc->cutHair(); // Block until LONG_HAIR_CUSTOMER_IN_CHAIR;
 // Return with SHORT_HAIR_CUSTOMER_IN_CHAIR
 bc->tellCustomerDone(); // Return when EMPTY
 }
}

Write the code for the WaitingRoom class and the BarberChair class. Use locks and condition
variables for synchronization and follow the coding standards specified in Mike Dahlin’s write-up.

Hint and requirement reminder: remember to start by asking for each method “when can a
thread wait?” and writing down a synchronization variable for each such situation.

List the member variables of class WaitingRoom including their type, their name, and their initial
value. Then write the methods for WaitingRoom

List the member variables of class BarberChair including their type, their name, and their initial
value. Then write the methods for BarberChair

(Solutions on next page)

Waitiing Room Solution:

 Type Name Initial Value (if applicable)
 mutex lock
 cond cond
 int nfull 0
 int ticketAvail 0
 int ticketTurn -1

int WaitingRoom::custEnter()

lock.acquire();
int ret;
if(nfull == NCHAIRS){
 ret = WR_FULL;
}
else{
 ret = MY_TURN;
 myTicket = ticketAvail++;
 nfull++;
 while(myTicket > ticketTurn){
 cond.wait(&lock);
 }
 nfull--;
}
lock.release();
return ret;

int WaitingRoom::callNextCustomer()

lock.acquire();
 ticketTurn++;

if(nfull == 0){
 ret = EMPTY;
}
else{
 ret = BUSY;
 cond.broadcast();
}
lock.release();
return ret;

Barber Chair Solution:
 Type Name Initial Value (if applicable)
 mutex lock
 cond custUp
 cond barberGetUp
 cond sitDown
 cond seatFree
 cond cutDone
 int state EMPTY
 int custWalkedIn 0

void BarberChair::napInChair()
 lock.acquire();
 if(custWalkedIn == 0){ // Cust could arrive before I sit down
 state = BARBER_IN_CHAIR;
 }

 while(custWalkedIn == 0){
 barberGetUp.wait(&lock);
 }

 custWalkedIn = 0;
 if(state == BARBER_IN_CHAIR){ // Cust could have beaten us
 state = EMPTY
 seatFree.signal(&lock);
 }
 lock.release();

void BarberChair::wakeBarber()

lock.acquire();
custWalkedIn = 1;
barberGetUp.signal(&lock);
lock.release()

void BarberChair::sitInChair()
lock.acquire()
while(state != EMPTY){
 seatFree.wait(&lock);
}
state = LONG_HAIR_CUSTOMER_IN_CHAIR;
sitDown.signal(&lock);
while(state != SHORT_HAIR_CUSTOMER_IN_CHAIR){
 cutDone.wait(&lock);
}
state = EMPTY;
custUp.signal(&lock);
lock.release();

}

void BarberChair::cutHair()

lock.acquire();
while(state != LONG_HAIR_CUSTOMER_IN_CHAIR){
 sitDown.wait(&lock);
}
state = SHORT_HAIR_CUSTOMER_IN_CHAIR;
cutDone.signal(&lock);
lock.release();

void BarberChair::tellCustomerDone()

lock.acquire();
while(state != EMPTY){ // NOTE: No other cust can arrive until I call call_next_cust()
 custUp.wait(&lock);
}

lock.release();

