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The University of Texas at Austin
CS 372H Introduction to Operating Systems: Honors: Spring 2011

Midterm Exam

• This exam is 75 minutes. Stop writing when “time” is called. You must turn in your exam; we will
not collect it. Do not get up or pack up between 70 and 75 minutes. The instructor will leave the
room 78 minutes after the exam begins and will not accept exams outside the room.

• There are 13 questions in this booklet. Many can be answered quickly. Some may be harder than
others, and some earn more points than others. You may want to skim all questions before starting.

• This exam is closed book and notes. You may not use electronics: phones, calculators, laptops,
etc. You may refer to ONE two-sided 8.5x11” sheet with 10 point or larger Times New Roman font,
1 inch or larger margins, and a maximum of 55 lines per side.

• If you find a question unclear or ambiguous, be sure to write any assumptions you make.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any im-
portant assumptions. Write brief, precise answers. Rambling brain dumps will not work and
will waste time. Think before you start writing so you can answer crisply. Be neat. If we can’t
understand your answer, we can’t give you credit!

• To discourage guessing and brain dumps, we will give 15%-20% of the credit for any problem left
completely blank. If you attempt a problem, you start at zero points for the problem. Note that by
problem we mean numbered questions for which a point total is listed. Sub-problems with no points
listed are not eligible for this treatment. Thus, if you attempt any sub-problem, you may as well
attempt the other sub-problems in the problem.

• The exception is the True/False problems. There, we grade by individual True/False item: cor-
rect items earn positive points, blank items earn 0 points, and incorrect items earn negative points.
However, the minimum score on any question—that is, any group of True/False items—is 0.

• Don’t linger. If you know the answer, give it, and move on.

• Write your name and UT EID on this cover sheet and on the bottom of every page of the exam.

Do not write in the boxes below.

I (xx/31) II (xx/31) III (xx/18) IV (xx/20) Total (xx/100)

Name: Solutions UT EID:
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I Short answer (31 points total)

1. [10 points] This question is about deadlock and other coding errors. Assume that the programmer
uses a kernel-level threading package and monitors (mutexes and conditional variables).

Circle True or False for each item below:

True / False To guarantee no deadlock, it is sufficient to negate just one of the four conditions that
contribute to deadlock.

True. Unfortunately, for many programming problems, negating even just one of the conditions is
hard.

True / False In practice, one way to guarantee no deadlock is to acquire mutexes in the same partial
order.

False. I think almost everyone got this wrong, but the statement as literally worded is false. Acquiring
mutexes in the same partial order does not guarantee no deadlock. For most reasonable cases, ac-
quiring mutexes in a partial order is necessary to avoid deadlock but not sufficient. The reason is that
condition variables are part of the mix (per the given above). Thus, deadlock can happen despite fol-
lowing the partial order. One way is through the nested monitor example. Another example is in lab T
(where you all followed the partial order but wherein your code deadlocked). Here is a third example:
while(something) wait (cv1); signal(cv2); then in another thread: while(somethingelse) wait(cv2);
signal(cv1);

True / False The existence of a race condition in the code implies that there is an execution schedule
that will result in deadlock.

False. Race conditions and deadlocks are separate kinds of coding errors.

True / False If the code is vulnerable to starvation, then there is an execution schedule that will
result in deadlock.

False. Deadlock can result in starvation, but starvation can happen without deadlock, as in the unfair
readers-writers lock that we saw.

True / False If there is an execution schedule that will result in deadlock, then the code has a liveness
error.

True. Code that can deadlock is not live, as such code is not guaranteed to make progress in all cases.

2. [8 points] This question is about cache replacement. Suppose that there is a page reference
string (also known as a reference pattern; in class, these were strings of the form A, B, C, A, . . .). You
don’t know anything about the reference string except that it has length p and has n distinct pages
occurring in it. Suppose also that there is a cache (of pages) that these page references will encounter.
You don’t know anything about the cache except that it has m entries and that it starts out empty. From
this description, p ≥ n. Also, suppose n > m and m > 0.

What is the minimum possible number of cache misses, over all combinations of reference pat-
tern and cache replacement policy? You do not need to justify your answer.
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Each page must certainly generate a cache miss (the first time that the page is presented to the cache).
Thus, the minimum is n. The best that could happen is that each of these cache misses is the only one
for that page. To pick one of many examples of how the minimum could be achieved (independent of
cache replacement policy), imagine that the access pattern is A, A, A, A, A, A, A, B, B, B, B, B, C, C, ....., Z, Z, Z, Z, Z,
with, say, 10 entries in the cache. The number of misses will be n = 26, even though p > n.

What is the maximum possible number of cache misses, over all combinations of reference pat-
tern and cache replacement policy? You do not need to justify your answer.

The worst thing that could happen is that every single reference generates a cache miss. Thus, the
maximum is p. Here’s a case that encounters that behavior (independent of cache replacement policy).
Imagine that the access pattern is A, B, C, ...., Z, A, B, C, ..., Z, and imagine that m = 1. Then all p
references generate a miss. Here is another one. Say that m = 25 and that the access pattern is
A, B, C, ..., Z. The number of misses is p = n = 26.
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3. [5 points] In class, we said that whereas test-and-set (or test and test-and-set) spinlocks are not
fair, MCS spinlocks are fair. This question asks: what is the precise reason that MCS spinlocks, as
implemented on an x86, are fair? (NOTE: the answer is not that a thread trying to acquire a lock is
spinning on nearby or cached memory. That fact is true, but it is not the fundamental reason that MCS
spinlocks are fair.)

State briefly below the precise reason that MCS spinlocks are fair.

The precise reason is that a would-be acquirer on a contended lock adds itself to the tail of a queue.
The would-be acquirers thus get the lock in FIFO order.

4. [8 points] This question is about scheduling. Assume that the jobs to be scheduled each take
finite time.

Circle True or False for each item below:

True / False Round-robin scheduling optimizes (minimizes) average completion time (defined as
the time from when a process enters the system to when it completes). False. Round-robin is not
optimized to get jobs out of the system quickly.

True / False Priority scheduling optimizes (minimizes) average waiting time. False. If the high
priority jobs takes a long time and the low priority jobs take less time, then priority scheduling will
do worse on the waiting time metric.

True / False If Shortest Remaining Time to Completion First (a preemptive scheduling discipline of-
ten written as SRTCF) could be implemented, it would optimize (maximize) CPU utilization (defined
as fraction of CPU cycles that are dedicated to process execution). False. SRTCF might have to spend
time in context switches that a discipline that runs jobs to completion does not have to spend. The key
here is that SRTCF was listed as preemptive. Any preemptive discipline pays a context switching cost.
As discussed in class and the book, SRTCF optimizes average waiting time, not CPU utilization.

True / False During periods when the processor spends all of its cycles handling interrupts, the
process scheduler is irrelevant to the machine’s performance. True. If the OS is always executing in
the interrupt handler, then it is not running processes.

Name: Solutions UT EID:
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II JOS and virtual memory (31 points total)

5. [9 points] Consider a JOS environment: struct Env e. Suppose the JOS kernel first sets up
the page directory and page tables for e and then executes the following line:

e->env_pgdir[0] = e->env_cr3 | PTE_P | PTE_W | PTE_U;

Fill in the three blanks below, and note that the definition below the question may be helpful:

The above line exposes e’s (i) to e’s user-space code; that code sees the exposed
data or data structures at virtual addresses (ii) through 222− 1 (4 megabytes minus
one), with the following associated memory permissions: (iii) .

(i):

(ii):

(iii):

(i) e’s page tables. (ii) 0. (iii): user-writable (and hence readable). A lot of people, for (i), wrote “e’s
page directory”, but this is not quite right. As a result of the given line of code, the page directory
appears in the virtual address space at addresses 0 through 4KB (minus 1). But the problem mentioned
that the upper limit was 4MB, which is why “page directory” was not correct. This question used the
recursive page table trick, wherein the page directory contains a pointer back to itself as a way of
making all 4MB of page tables appear contiguously in virtual address space.

Here is a partial definition of struct Env:

struct Env {
struct Trapframe env_tf; // Saved registers
LIST_ENTRY(Env) env_link; // Free list link pointers
envid_t env_id; // Unique environment identifier

........

// Address space
pde_t *env_pgdir; // Kernel virtual address of page dir
physaddr_t env_cr3; // Physical address of page dir

};

Name: Solutions UT EID:



page 6 of 14

6. [6 points] In JOS, to enter kernel mode through a system call, a user-level environment executes:

int $0x30 ; this is in lib/syscall.c

Before the line above, the environment has placed the system call number in %ax and the system call
arguments in the other registers (%dx, %cx, etc.). If the JOS kernel has set up the IDT correctly, then,
after the int call above, the processor begins executing in kernel mode, with the value of %cr3 after
the transfer into kernel mode equal to the value of %cr3 before the transfer. Thus, after the transfer,
the processor’s %cr3 points to an environment-specific page directory. Yet, the processor can load
from, and store to, kernel memory—without generating page faults.

Why is there no page fault after the transfer? Which of the specific steps that you took, as
part of doing the labs, ensures that page faults do not happen? Assume that the IDT is set up
correctly (i.e., we are not asking about setting up the IDT). You do not need a lot of space; state
your answer briefly below:

The kernel maps its own memory (everything above UTOP) into every environment’s address space.
Thus, the kernel can run with any environment’s %cr3 value loaded on the processor.

7. [8 points] In lab 4a, you implemented the sys page map() system call. An environment makes
this call to request that the kernel map a given page of memory, P, into a target environment’s virtual
address space. The target environment can be the caller itself or any other environment. Which of the
following are arguments to this system call?

Circle ALL that apply:

A The environment id of the target.

B The target’s data segment descriptor.

C The physical address of the target’s page directory.

D The virtual address that P should have in the target.

E The physical address of P.

F The permissions that the kernel should associate to the mapping.

A, D, F. To rule out the others: B is about segmentation, which is distinct from paging. To rule out
C, E: user-level environments specify the arguments to system calls, yet user-level environments do
not see physical addresses so should not be telling the kernel where the target’s page directory is
located. Similarly, E is wrong because if environments were allowed to specify which physical pages
they could map, then chaos could result, as environments could map, and then overwrite, any physical
pages on the machine. (While it is possible to imagine an even more exokernelly design wherein
processes do in fact see and request physical addresses and wherein the kernel’s job is just to reject
invalid requests or requests with invalid permissions, JOS is not designed that way.)
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8. [8 points] Note that there are two sub-parts here. Suppose that %fs on the x86 is currently
referencing a segment descriptor for which the base is 0x1000 0000, the limit is 0x4000 0000, and
the permissions are maximally permissive. Now suppose that a process executes a memory store to
the segment given by %fs, using offset 0x3000. The code might look like this:

movl $0x3000, %eax
movl $0xdeadbeef, %fs:(%eax)

As a result of the instructions above, the processor stores the value 0xdeadbeef to which lin-
ear address? If the processor would raise an error, write “error”. If you do not have enough
information to answer the question, write “not enough information”.

0x10003000.

Now suppose that the descriptor pointed to by %fs has base set to 0xf000 0000 and the limit set to
0x1000, and suppose that the programmer’s intended offset is again 0x3000.

With the new segment descriptor, the result of the above instructions is to store the value
0xdeadbeef to which linear address? If the processor would raise an error, write “error”. If
you do not have enough information to answer the question, write “not enough information”.

error.
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III The readings (18 points total)

9. [6 points] Note that this question consists of a multiple choice followed by another question.
Tanenbaum’s book has a section about The Ostrich Algorithm, as a way of addressing a particular
class of software errors. Which class of software errors is Tanenbaum proposing the algorithm for?

Circle the BEST answer below:

A Overflows from addition of fixed-width integers

B Starvation

C Deadlock

D Race conditions

E Priority inversion

F Performance problems from coarse-grained locking

G Broken modularity from locking

C.

State below how the algorithm works at a high level (you do not need to give pseudocode):

The Ostrich Algorithm means ignoring the problem. The idea is that the problem may occur so rarely
that it’s simply not worth it to address it in practice.

10. [8 points] This question is about the assigned paper on the Therac-25 (“An Investigation of the
Therac-25 Accidents”) and linear accelerator disasters.

Circle True or False for each item below:

True / False The authors of the paper explain the race conditions that they uncovered when they
read the source code for the Therac-25.

True / False The authors of the paper explain the liveness bugs that they uncovered when they read
the source code for the Therac-25.

Both of the above are false, as the authors did not have access to the source code for the Therac-25.

True / False Previous experience with the interface and operation of the machine led Therac-25
operators to expect the machine to malfunction.

True. (But they obviously did not expect the machine to malfunction in a way that would inflict
massive radiation burns.)

True / False The thesis of the New York Times articles on linear accelerator disasters is that software
developers should be licensed.

False.

11. [4 points] From which of our assigned readings is the following excerpt drawn?
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Throughout the paper I use examples written in Modula-2+. These should be readily understandable
by anyone familiar with the Algol and Pascal family of languages.

Identify the author or the reading: Andrew Birrell’s introduction to programming with threads.
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IV Shared memory multiprogramming (20 points total)

12. [8 points] This question is about the correctness of the pseudocode below. The programmer
intends that g() not execute unless f() has executed; the two functions are called by different threads.
Assume POSIX thread semantics (Hansen semantics); that is, the thread package provides the same
guarantees that it did in lab T. Read the code carefully.

int f_ran = FALSE;
Mutex mutex;
Cond cv;

// called by a thread
Monitor::t1() {

mutex.acquire();
if (f_ran == FALSE)

cv.wait(&mutex);

g(); /* <-- It is an error if g() executes before f() */

mutex.release();
}

// called by another thread
Monitor::t2() {

mutex.acquire();

f();
f_ran = TRUE;

cv.broadcast(&mutex);
mutex.release();

}

Under which conditions is the above pseudocode correct?

Circle the BEST answer:

A The code executes on a single processor.

B The memory model is sequential consistency.

C The threads are user-level threads.

D The system contains only two threads, one that calls t1() and one that calls t2().

E The broadcast() is replaced with a signal().

F The code is correct if conditions A, C, and D all hold simultaneously.

G The code is correct if conditions B and D both hold simultaneously.

H The code is correct if conditions A, C, D, and E all hold simultaneously.

I None of the above.
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I. This code is never correct; none of the proposed conditions in any combination makes it correct.
As we mentioned a number of times in lecture, the if (foo) cv.wait() pattern is always wrong.
Why? Several reasons. Beyond the fact that the coding standards ruled out this pattern, the threading
package is allowed to return from wait() at any time, a point that we discussed in lecture. (In fact,
the POSIX documentation says the same thing, and that waiters should thus spin in a while loop.)
This is true regardless of whether we have one or two threads, user-level or kernel-threads, signal or
broadcast, sequential consistency or not, etc. Since a thread can wake at any time, even when not
signaled, the code must check any required barrier conditions after waking from wait() and before
proceeding.
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13. [12 points] Consider the function doublecheck alloc() below, which is intended to be in-
voked from multiple threads on a multiprocessor machine. Its purpose is to avoid a mutex acquisition
in the common case that ptr is already initialized. The requirements for this function are:

(i) doublecheck alloc() must call alloc foo() no more than once over the whole execution.

(ii) A caller of doublecheck alloc() must, after the function returns, observe ptr as non-zero.

The machine does not offer sequential consistency. Thus, a processor is not guaranteed to see the
memory operations of another processor in program order. However, each of mutex acquire()
and mutex release() is implemented correctly; in particular, each of them internally contains a
memory barrier (mfence on the x86). Recall that mfence ensures that all memory operations before
the mfence barrier appear to all processors to have executed before all memory operations after the
mfence barrier.

On the other hand, the compiler preserves program order (it does not reorder instructions).

struct foo {
int abc;
int def;

};
static int ready = 0;
static mutex_t mutex;
static struct foo* ptr = 0;

void
doublecheck_alloc()
{

if (!ready) { /* <-- accesses shared variable w/out holding mutex */
mutex_acquire(&mutex);
if (!ready) {

ptr = alloc_foo(); /* <-- sets ptr to be non-zero */
ready = 1;

}
mutex_release(&mutex);

}
return;

}

The above code certainly violates our coding standards, but this problem is about whether it violates
requirements (i) and (ii), above. The questions are given on the next page.
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Does the code above violate requirement (i)? In other words, can alloc foo() be called more than
once from doublecheck alloc()? If so, give an interleaved execution or an interleaving of memory
operations as observed by one of the threads. If not, argue from invariants.

The code abides by requirement (i). At most one thread can be in between acquire/release, and after
acquire, a thread either found ready==1 (in which case it does not call alloc foo), or it found ready==0,
calls alloc foo, and sets ready==1 ensuring that no other thread executes it. The total number of times
alloc foo can be executed is thus 1.

Does the code above violate requirement (ii)? In other words, can the caller of doublecheck alloc()
observe ptr == 0 after doublecheck alloc() returns? If so, give an interleaved execution or an
interleaving of memory operations as observed by one of the threads. If not, argue from invariants.
Yes, the code violates requirement (ii). From the vantage point of a processor not executing the
code above, the ready = 1 and ptr = alloc foo() lines can appear to happen out of order. The
execution might look like this to another thread:

void
doublecheck_alloc()
{

if (!ready) { /* <-- accesses shared variable w/out holding mutex */
mutex_acquire(&mutex);
if (!ready) {

ready = 1; /* <-- NOTE: THIS LINE LOOKS SWITCHED
ptr = alloc_foo(); /* <-- sets ptr to be non-zero */

}
mutex_release(&mutex);

}
return;

}

That means that another thread can find ready == 1 but not have observed the write to ptr. That
is actually enough to answer the question. Some of you thought that the thread that had acquired
the mutex needed to pause before releasing it, which will not lose points, but that interleaving is not
actually necessary to generate the counter-example. The memory barrier doesn’t say, “after a thread
crosses the barrier, everything before the barrier will be visible to all processors”; it just says, “if a
process observed a memory write that another process did after the barrier, then it has also observed
every memory access that the process issued before the barrier”. There’s a subtle difference.

Because of issues like this, doublecheck is broken. Unfortunately, double-checked initialization
(or double-checked locking as it’s sometimes known) is an extremely common coding pattern. Even
Birrell’s 1989 document suggests it! Still, it’s broken.

While you can fix it (in C) by adding another barrier (exercise: where?), this is not recommended,
as the code is tricky to reason about. One of the points of this example is to show you why it’s so
important to protect global data with a mutex, even if “all” one is doing is reading memory, and even
if the shortcut looks harmless.

Finally, here is a reference that explores issues with this pattern in C++ [http://www.aristeia.
com/Papers/DDJ_Jul_Aug_2004_revised.pdf] and here is “The Double-Checked Locking is
Broken” Declaration: [http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.
html]
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End of Midterm

Enjoy Spring Break!!
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