
Threads Cannot Be Implemented As a Library

Hans-J. Boehm
HP Laboratories
Palo Alto, CA

Hans.Boehm@hp.com

Abstract
In many environments, multi-threaded code is written in a language
that was originally designed without thread support (e.g. C), to
which a library of threading primitives was subsequently added.
There appears to be a general understanding that this is not the right
approach. We provide specific arguments that a pure library ap-
proach, in which the compiler is designed independently of thread-
ing issues, cannot guarantee correctness of the resulting code.

We first review why the approach almost works, and then ex-
amine some of the surprising behavior it may entail. We further
illustrate that there are very simple cases in which a pure library-
based approach seems incapable of expressing an efficient parallel
algorithm.

Our discussion takes place in the context of C with Pthreads,
since it is commonly used, reasonably well specified, and does not
attempt to ensure type-safety, which would entail even stronger
constraints. The issues we raise are not specific to that context.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Concurrent programming structures; D.3.4 [Program-
ming Languages]: Optimization

General Terms Languages, Performance

Keywords Threads, data race, optimization, Pthreads, register
promotion

1. Introduction
Multi-threaded programs are rapidly becoming pervasive, driven
primarily by two considerations:

• Many programs need to carry on several different logically con-
current interactions. For example, they may need to concur-
rently serve several different client programs, or provide sev-
eral related services which can progress asynchronously, usu-
ally in separate windows, to a single user. Threads provide a
clean structuring mechanism for such programs.

• Multiprocessors are finally becoming mainstream. Many of the
most popular processors in desktop computers support multiple
hardware contexts in a single processor, making them logically
multiprocessors. In addition, essentially every microprocessor

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI ’05, June 12–15, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-056-6/05/0006...$5.00.

manufacturer who is not already shipping chip-level multipro-
cessors has announced the intention to do so within a year.
This even applies to some intended for embedded applications,
where multiprocessors can provide more compute throughput
with less total power consumption (cf. [4]).

In many cases, there is no way to effectively utilize the per-
formance of the additional processor cores or hardware threads
without writing explicitly multi-threaded programs.1

Most multi-threaded programs communicate through memory
shared between the threads. Many such programs are written in a
language such as Java, C#, or Ada, which provides threads as part
of the language specification. Recent experience has shown that
it is quite tricky to correctly specify such a language, particularly
when type-safety and security considerations are involved. How-
ever, these issues are becoming reasonably well-understood.[23]

Here we focus on another large set of applications which are
written in languages such as C or C++ that do not provide for mul-
tiple threads as part of the language specification. Instead thread
support is provided by add-on libraries. In order to focus these dis-
cussions, we concentrate on what is arguably the best specified rep-
resentative of these, Posix[16] threads.2

We argue that these environments are as under-specified as
the original Java memory model[27], though for somewhat differ-
ent reasons. In particular, essentially any application must rely on
implementation-defined behavior for its correctness. Implementa-
tions appear to have converged on characteristics that make it pos-
sible to write correct multi-threaded applications, though largely,
we believe, based on painful experiences rather than strict adher-
ence to standards. We believe that there is little general understand-
ing on what those characteristics are, nor the exact constraints that
language implementations need to obey. Several recent papers sug-
gest that these issues are also not fully appreciated by the research
community.

Here we point out the important issues, and argue that they lie
almost exclusively with the compiler and the language specification
itself, not with the thread library or its specification. Hence they

1 Other alternatives include running multiple independent processes, auto-
matically parallelizing existing sequential code, or using a hardware context
to prefetch data for the main sequential thread[9]. The first two are clearly
significant in certain important domains, e.g. to many network server or nu-
merical applications, but are generally less applicable to, for example, typ-
ical desktop or hand-held applications, even when those require substantial
CPU resources, such as for image processing. The last applies to a wide va-
riety of domains, but has much more limited benefit than explicitly parallel
client code.
2 We explicitly do not address the less frequently used environments in
which multiple concurrent threads communicate communicate primarily
through message passing, such as C programs communicating only through
the MPI[34] library, or Erlang[11] or Concurrent ML[28] programs.

261

cannot be addressed purely within the thread library or its specifi-
cation.

Most of the pieces we present have been at least superficially
mentioned elsewhere, though we believe that particularly the im-
portant relationship between register promotion and thread-safety
is not widely understood.3 Our contribution is to present these
pieces coherently as an argument that concurrency must be ad-
dressed at the language level.4

Together with several others, we are joining in an effort[2] to
revise the C++ language standard to better accommodate threads.
Our goal here is to describe precisely why that is necessary, and
why similar efforts are needed for most other environments relying
on library-based threads.

2. Overview
We review the approach to threads exemplified by the Pthreads
approach, explaining how and why it appears to work. We then
discuss three distinct deficiencies in this approach, each of which
can lead, and at least two of which have lead, to subtly incorrect
code. Each of these failures is likely to be very intermittent, and
hard to expose during testing. Thus it is particularly important
to resolve these issues, since they are likely to lead to unreliable
production code, and make it impossible to guarantee correctness
of multi-threaded programs.

Library-based approaches to concurrency normally require a
very disciplined style of synchronization by multi-threaded pro-
grams. Although we agree that this disciplined style is appropriate
for perhaps 98% of uses, we argue that it eliminates some low-level
programming techniques which, in some cases, may be essential
for obtaining any performance benefit from multiple processors. In
other cases, such low-level programming techniques can be used
to improve the performance of higher-level library primitives, and
thus provide pervasive performance improvements for a large col-
lection of applications. Thus, although these usage rules are highly
desirable guidelines, we argue that they are inappropriate as abso-
lute requirements in a world in which we need to rely on multipro-
cessors for performance.

3. The Pthreads Approach to Concurrency
Any language supporting concurrency must specify the semantics
of multi-threaded execution. Most fundamentally, it must specify
a “memory model”, i.e. which assignments to a variable by one
thread can be seen by a concurrently executing thread.

Traditionally[19] concurrent execution was viewed as simply
an interleaving of the steps from the threads participating in the
computation. Thus if we started in an initial state in which all
variables are zero, and one thread executes:

x = 1; r1 = y;

while another executes

y = 1; r2 = x;

either the assignment to x or the assignment to y must be
executed first, and either r1 or r2 must have a value of 1 when
execution completes.5

3 The only discussion we could find is in an HP Technical Brief[15], which
addresses this issue only very partially and from a different perspective.
4 Peter Buhr [8] makes a similar sounding argument, but he focusses on
code written under very different assumptions from the Pthreads model,
such as the implementation of the threads library itself. We concentrate on
problems that cannot be isolated to the threads library.
5 Many more such examples were discussed as part of the work on the Java
memory model, which is captured in [26]

This is probably the most intuitive memory model, though not
necessarily the one that is easiest to use in practice.6 It is referred
to as sequential consistency.

In practice, it appears unlikely that such a restrictive memory
model can be implemented with reasonable performance on con-
ventional architectures. Essentially all realistic programming lan-
guage implementations supporting true concurrency allow both r1
and r2 to contain zero at the end of the above example.

There are two reasons for this:

• Compilers may reorder memory operations, if that doesn’t vio-
late intra-thread dependencies. Each pair of actions in the above
threads could be reordered, since doing so does not change the
meaning of each thread, taken in isolation. And performing
loads early may result in a better instruction schedule, poten-
tially resulting in performance improvements. (Cf. [3].)

• The hardware may reorder memory operations based on similar
constraints. Nearly all common hardware, e.g. X86 processors,
may reorder a store followed by a load[21]. Generally a store
results immediately in a write-buffer entry, which is later writ-
ten to a coherent cache, which would then be visible to other
threads.

Thus it is customary to specify a much weaker memory model,
which allows results such as r1 = r2 = 0 in the above example.
Both the original Java memory model and the new one described in
[23] do so, as does the Pthreads standard[16].

The Pthreads standard intentionally avoids specifying a formal
semantics for concurrency. We expect that this was due in part to
the fact that this standardization effort did not control the underly-
ing language standard. But the rationale for the standard also states
in part:

“Formal definitions of the memory model were rejected
as unreadable by the vast majority of programmers. In ad-
dition, most of the formal work in the literature has concen-
trated on the memory as provided by the hardware as op-
posed to the application programmer through the compiler
and runtime system. It was believed that a simple statement
intuitive to most programmers would be most effective”.

Instead, it informally decrees:

“Applications shall ensure that access to any memory
location by more than one thread of control (threads or pro-
cesses) is restricted such that no thread of control can read
or modify a memory location while another thread of con-
trol may be modifying it. Such access is restricted using
functions that synchronize thread execution and also syn-
chronize memory with respect to other threads. The fol-
lowing functions synchronize memory with respect to other
threads:

..., pthread mutex lock(), ...,
..., pthread mutex unlock(), ...

[Many other synchronization functions listed]”7

6 As was pointed out during the discussions in [26], it has the clear disad-
vantage that shared variables used for synchronization are not identified by
the source.
7 There is an attempt at further clarification in the rationale. Aside from
some insightful discussion of hardware memory reordering, probably the
most relevant statements are: “All these functions would have to be rec-
ognized by advanced compilation systems so that memory operations and
calls to these functions are not reordered by optimization. All these func-
tions would potentially have to have memory synchronization instructions
added, depending on the particular machine.” There is no discussion of in-

262

Unlike in Java, it is acceptable to leave the semantics of pro-
grams with data races, i.e. concurrent reads and writes or concur-
rent writes, formally undefined, and the standard chooses to do so.
(In Java, this is unacceptable because the language is designed to
limit the damage that can be caused by untrusted, and possibly ma-
licious code. Thus the semantics of such code need to be specified.
We make no guarantees about malicious C/C++ code.)

In practice, C and C++ implementations that support Pthreads
generally proceed as follows:

1. Functions such as pthread mutex lock() that are guaranteed
by the standard to “synchronize memory” include hardware in-
structions (“memory barriers”) that prevent hardware reorder-
ing of memory operations around the call.8

2. To prevent the compiler from moving memory operations
around calls to functions such as pthread mutex lock(),
they are essentially treated as calls to opaque functions, about
which the compiler has no information. The compiler effec-
tively assumes that pthread mutex lock() may read or write
any global variable. Thus a memory reference cannot simply
be moved across the call. This approach also ensures that
transitive calls, e.g. a call to a function f() which then calls
pthread mutex lock(), are handled in the same way more or
less appropriately, i.e. memory operations are not moved across
the call to f() either, whether or not the entire user program is
being analyzed at once.

This approach clearly works most of the time. Unfortunately, we
will see that it is too imprecise to allow the programmer to reason
convincingly about program correctness, or to provide clear guid-
ance to the compiler implementor. As a result, apparently correct
programs may fail intermittently, or start to fail when a new com-
piler or hardware version is used. The resulting failures are trig-
gered by specific thread schedules, and are thus relatively hard to
detect during testing.

These problems all arise from the fact that the underlying lan-
guage specification does not mention threads, and hence does not
sufficiently constrain the compiler. In particular, the current speci-
fication does not sufficiently define when a data race exists in the
original program, or when the compiler may introduce one.

A secondary problem with this approach is that, in some cases,
it excludes the best performing algorithmic solutions. As a result,
many large systems, either intentionally, or unintentionally, violate
the above rules. The resulting programs are then even more suscep-
tible to the above problems.

4. Correctness issues
We list three different issues that we have encountered with the
current Pthreads approach. We are not aware of cases in which the
first problem led to an actual failure. But anecdotes abound about
failures caused by the second problem, and we have personally
encountered an intermittent failure caused by the third.

4.1 Concurrent modification

The Pthreads specification prohibits races, i.e. accesses to a shared
variable while another thread is modifying it. As pointed out by
the work on the Java memory model[23], the problem here is

direct calls to these functions. The statement about optimization reordering
appears to address only the rare case of whole program optimization, and
as a result does not appear to reflect actual implementation strategies.
8 It is probably acceptable to guarantee only that, e.g. for
pthread mutex lock() and pthread mutex unlock(), memory
operations not move out of a critical section. Full memory barriers may not
be needed. See below.

that whether or not a race exists depends on the semantics of
the programming language, which in turn requires that we have a
properly defined memory model. Thus this definition is circular.

As a concrete example (essentially figure 6 from [17]), consider
two threads, each executing one of the following two statements,
again in an initial state in which x and y are zero:

if (x == 1) ++y;

if (y == 1) ++x;

Does this program contain a race? Is x == 1 and y == 1 an
acceptable outcome?

Under the sequentially consistent interpretation, there is no race,
since no variable can become nonzero. Hence we can argue that this
is a valid Pthreads program, and x == 0 and y == 0 is the only valid
outcome. (This is in fact the approach taken in [23].)

On the other hand, if our compiler is allowed to transform se-
quential code not containing calls to pthread operations in any way
that preserves sequential correctness, the above could be trans-
formed to9

++y; if (x != 1) --y;

++x; if (y != 1) --x;

This would argue both that there is a race, hence the semantics
of this program is formally undefined, and x == 1 and y == 1 is a
potential outcome.

Indeed, under the implementation strategy we outlined above, in
which the compiler is unaware of threads, it is allowed to transform
code subject only to sequential correctness constraints and hence
could generate the code containing a race.

Thus we believe that the circularity in the definition is a real
issue, though not one likely to generate frequent practical problems.
Resolving it essential requires a programming-language-defined
and compiler-respected memory model, simply to ensure that the
user and compiler can agree on when there is a data race.

The remaining two issues are much more serious in practice.

4.2 Rewriting of Adjacent Data

In our preceding example, a compiler could potentially introduce
a race by speculatively executing a store operation early. There is
in fact no prohibition against storing into a variable that is never
mentioned in the source. And indeed, for C or C++ (but not Java),
that is often unavoidable.

Consider a C “struct” containing bit fields on a little-endian 32-
bit machine:

struct { int a:17; int b:15 } x;

Since very few machines support a 17-bit-wide store instruc-
tion, the assignment x.a = 42 is likely to be implemented as
something like

9 This is probably far-fetched in this example. But it is hard to argue that
similar speculative execution is never profitable, especially in the presence
of (possibly misleading) profile information, and potentially complex in-
struction scheduling constraints. As was pointed out in earlier discussion
([26] and section 9.1.1 in [23]), similar issues do arise in practice when
moving stores across potentially nonterminating loops. And the real ques-
tion here is whether the transformation is correct, not whether it is prof-
itable.

263

{
tmp = x; // Read both fields into

// 32-bit variable.
tmp &= ~0x1ffff; // Mask off old a.
tmp |= 42;
x = tmp; // Overwrite all of x.

}

Note that this effectively stores into both x.a and x.b normally
storing the original value of x.b back into x.b.

For sequential code this is completely uncontroversial. But if
there is a concurrent update to x.b that occurs between the tmp =
x and x = tmp assignments in the above code, we have introduced
a race, and the concurrent update to x.b may be lost, in spite of the
fact that the two threads operate on completely distinct fields.

On most architectures this is both unavoidable and well-
recognized for bit-fields. For example, the problem is already dis-
cussed in the context of IBM System/370 assembly code in [35].
The resulting behavior is sanctioned by the Pthreads standards,
since it prohibits a concurrent write to a “memory location” (a for-
mally undefined term) not just a concurrent write to a program vari-
able.10

Unfortunately, this behavior is currently not restricted to adja-
cent bit-fields. A compiler may read and rewrite any other fields
sharing the same “memory location” being assigned. And it may
be quite profitable for a compiler to take advantage of this. As an
admittedly extreme example, consider the following structure on a
64-bit machine, where it is know to the compiler that x is 64-bit
aligned:

struct { char a; char b; char c; char d;
char e; char f; char g; char h; } x;

Assume the programmer intended a to be protected by one lock,
and the other fields by another. If the compiler sees the sequence of
assignments:

x.b = ’b’; x.c = ’c’; x.d = ’d’;
x.e = ’e’; x.f = ’f’; x.g = ’g’; x.h = ’h’;

It would almost certainly be more efficient to compile this into
(taking some liberties with the C notation):

x = ’hgfedcb\0’ | x.a;

i.e. to compile it into a load of x.a, which is then ‘or’ed with a
constant representing the values of the other seven fields, and stored
back as a single 64-bit quantity, rewriting all of x.

Again, this transformation introduces a potential race, this time
with a concurrent assignment to x.a, even though the two threads
may in fact access disjoint sets of fields. It would also break code
that accesses all fields from multiple threads, but chooses to protect
x.a with a different lock than the other fields, a fairly common
occurrence in practice.

The current Pthreads specification explicitly allows this, without
any restriction on the field types. By our reading, it even allows it
for adjacent global variables outside of a struct declaration. Since
linkers may, and commonly do, reorder globals, this implies that an
update to any global variable may potentially read and rewrite any
other global variable.

We do not believe that any interesting Pthreads programs can be
claimed to be portable under these rules.

Fortunately, the original motivation for this lax specification
seems to stem from machine architectures that did not support byte-

10 This formulation was the subject of a clarification request for the Posix
standards[33]. The result makes it clear that this was intentional, and “mem-
ory location” is intended to be implementation defined.

wide stores.11 To our knowledge, no such architectures are still in
wide-spread multiprocessor use. And in the case of uniprocessors,
restartable atomic sequences[5] can be used to make byte stores
appear atomic.

The real issue here is that for a language such as C, the lan-
guage specification needs to define when adjacent data may be
overwritten. We believe that for the language to be usable in a
multi-threaded context, this specification needs to be much more
restrictive than what a highly optimizing compiler for a single-
threaded language would naturally implement, e.g. by restricting
implicit writes to adjacent bit-fields.

4.3 Register promotion

There are other optimizing transformations that introduce variable
updates were there were none in the source code.

Consider the following program which repeatedly updates the
global shared variable x inside a loop. As is common in some
library code, the access to x is protected by a lock, but the lock
is acquired conditionally, most probably depending on whether a
second thread has been started inside the process:

for (...) {
...
if (mt) pthread_mutex_lock(...);
x = ... x ...
if (mt) pthread_mutex_unlock(...);

}

Assume the compiler determines (e.g. based on profile feed-
back [30] or on static heuristics as in, for example, [36]) that
the conditionals are usually not taken, e.g. because this applica-
tion rarely creates a second thread. Following the implementation
strategy outlined above, and treating pthread mutex lock() and
pthread mutex unlock() simply as opaque function calls, it is
beneficial to speculatively promote x to a register r in the loop[10],
using, for example, the algorithms outlined in [31] or [22]. This
results in

r = x;
for (...) {
...
if (mt) {

x = r; pthread_mutex_lock(...); r = x;
}
r = ... r ...
if (mt) {

x = r; pthread_mutex_unlock(...); r = x;
}

}
x = r;

The pthread standard requires that memory must be
“synchronized with” the logical program state at the
pthread mutex lock() and pthread mutex unlock() calls.
By a straightforward interpretation of that statement, we believe
that this requirement is technically satisfied by the transformation.

The problem is that we have introduced extra reads and writes
of x while the lock is not held, and thus the resulting code is
completely broken, in spite of the fact that the implementation
seems to satisfy the letter of the specification, and is performing
transformations that are reasonable without threads.

It is worth noting that identical problems arise if the
above code had called functions named f and g instead of
pthread mutex lock and pthread mutex unlock, since f and

11 The first iteration of the Alpha architecture had this characteristic, as did
some earlier word-addressable machines. In the case of the Alpha, this part
of the architecture was quickly revised.

264

g may (indirectly) call thread library synchronization primitives.
Hence, again in this case, thread-safe compilation restricts transfor-
mations on code that may not be known to invoke thread primitives,
and it has implications beyond the semantics of added library calls;
speculative register promotion around unknown procedure calls is
generally unsafe.

This again argues that compilers must be aware of the existence
of threads, and that a language specification must address thread-
specific semantic issues. And this one appears to have profound
practical implications. We know of at least four optimizing compil-
ers (three of them production compilers) that performed this trans-
formation at some point during their lifetime; sometimes at least
partially reversing the decision when the implications on multi-
threaded code became known.

Unfortunately, we expect that in this case thread-safety has a
measurable cost in single-threaded performance. Hence confusion
about thread-safety rules may also make it hard to interpret even
single-threaded benchmark performance.

5. Performance
The only parallel programming style sanctioned by the Pthreads
standard is one in which Pthread library mutual exclusion primi-
tives are used to prevent concurrent modification of shared vari-
ables. And it is this restriction that allowed the implementation
strategy outlined above to almost work. With this restriction, the
order in which memory operations become visible is intended to
be irrelevant unless memory operations are separated by a call to a
Pthreads-library routine.

There is much evidence that, at least in our context, this was
mostly a reasonable choice. Programs that rely on memory ordering
without explicit synchronization are extremely difficult to write and
debug.

However, there is a cost involved in following this dis-
cipline. Operations such as pthread mutex lock() and
pthread mutex unlock() typically require one hardware atomic
memory update instruction, such as compare-and-swap, per
libary call. On some architectures (e.g. X86 processors), these
instructions also implicitly prevent hardware reordering of memory
references around the call. When they don’t, a separate memory
barrier instruction may be required as well. In addition, dynamic
library calling overhead is often involved.

The cost of atomic operations and memory barriers varies
widely, but is often comparable to that of a hundred or more
register-to-register instructions, even in the absence of a cache
miss. For example, on some Pentium 4 processors, hardware in-
structions to atomically update a memory location require well
over 100 processor cycles, and these can also double as one of the
cheaper mechanisms for ensuring that a store operation becomes
visible to other threads before a subsequent load.

As a result of the high cost of these hardware instructions, and
the even higher cost of the pthread primitives built on them, there
are a small number of cases in which synchronization performance
is critical, and more careful and direct use of the hardware primi-
tives, together with less constrained use of shared variables, is es-
sential. In some cases it may also be necessary to avoid deadlock
issues inherent in lock-based programming[7], or desirable because
a different parallel programming model is preferable for an appli-
cation (cf. [32]).

The potential practical benefit of parallel algorithms involving
races has long been recognized. A variant of Gauss-Seidel iteration
that took advantage of data races on a multiprocessor was described
by Rosenfield in 1969[29].

The continued use of the“double-checked locking” idiom, even
in contexts such as ours, where it is both technically incorrect[25],

and often dangerous in practice, is another indication of at least the
perceived need for such techniques.

There is a large literature on lock-free and wait-free pro-
gramming techniques (cf. [35, 12, 13]) that addresses program-
ming techniques which rely directly on atomic memory opera-
tions, in addition to simple atomic loads and stores, but avoid
locks. Java recently added a facility for supporting this kind of
programming[20]. These all involve races in our present sense.

Although these techniques are currently only appropriate for a
small fraction of multi-threaded code, they are often desirable in
lower level libraries, and hence may affect the performance of many
programs whose authors are unaware of them. For example, it is
quite common to use atomic increment operations in the implemen-
tation of reference counting in the standard C++ string library.12

These techniques generally rely on the ability to access shared
variables with ordinary load and store instructions. In practice,
some control over reordering memory references is needed as well,
but much of the performance of these techniques is attributable to
minimizing such restrictions on reordering.

5.1 Expensive Synchronization: An Example

There are many examples in the literature in which lock-free code13

provides a performance advantage. See for example [24] for a
recent and particularly interesting one.

What follows is a particularly simple example, which we be-
lieve more clearly illustrates the issues. It takes the form of a simple
parallel Sieve of Eratosthenes algorithm, implemented on shared
memory machines, for which shared variable access without order-
ing or synchronization overhead appears to be critical.

Although this problem appears contrived, it was extracted from
a similar issue which occurred in our mark-sweep garbage collec-
tor. And indeed, any graph traversal algorithm using mark bits to
track visited nodes will incur similar overheads, though it would
probably represent a smaller fraction of the entire algorithm.

Consider the following Sieve of Eratosthenes implementation:

for (my_prime = start;
my_prime < 10000; ++my_prime)

if (!get(my_prime)) {
for (multiple = my_prime;

multiple < 100000000;
multiple += my_prime)

if (!get(multiple)) set(multiple);
}

where get and set operations implement a Boolean array A
containing 100 million elements. In the simplest case, we might
declare A as a sufficiently large array initialized to false values,
and implement get(i) as A[i] and set(i) as A[i] = true.

For all values i between 10,000 and 100,000,000, this simple
algorithm arranges that on completion get(i) is false if and only
if i is prime.14

12 The GNU C++ library currently does so. There is a strong argument
that, especially in a multi-threaded context, the reference counting here
is actually counter-productive. But reference counting implemented with
atomic operations greatly outperforms the same algorithms implemented in
terms of locks.
13 In some cases, this code is lock-free in the technical sense of ensuring
progress if there is at least one runnable thread, and in other cases (such as
[14]) it provides weaker guarantees. In all cases, the performance is gained
by allowing concurrent data access without locks for mutual exclusion.
14 As a sacrifice to simplicity, this algorithm does have the minor deficiency
that, as stated, it fails to compute primes smaller than 10,000. But even
computing those with the normal sequential algorithm would take a trivial
amount of time.

265

��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

 0

10

20

30

40

50

60

Mutex spinl. at. upd. unsafe

1 thread
2 threads
4 threads

Figure 1. Sieve execution time for byte array (secs)

Interestingly, it continues to do so if we run multiple copies
of this program concurrently in multiple threads, assuming get
and set operate on the same array, in such a way that the entry
corresponding to a set argument becomes true sometime before
program completion, and get returns false for entries that have
never been set.

(Clearly set(i) is called only for values i which are either
smaller than 10,000, or a multiple of such a number. Thus it is never
called on a prime in our range of interest. Consider the smallest
composite number greater than or equal to 10,000 on which it is
not called. This is a multiple of some number j < 10, 000. For any
thread not to invoke set on all multiples of j, get(j) must have
returned true. But then some other thread must have called set(j).
That same thread would have invoked set on all multiples of j.)

Thus N copies of the above program running in N threads,
correctly compute primes under extremely weak assumptions about
the order in which set operations become visible to other threads.
If updates by one thread become visible to another before program
termination, one thread will be able to take advantage of work done
by another, and we will see speed-ups due the additional threads.15

Perhaps more interestingly, there appears to be no good way to take
advantage of this with proper synchronization to prevent concurrent
modification of array elements.

Figure 1 gives running times of the above program, using 1, 2,
or 4 concurrent threads, on a 4-way multiprocessor with relatively
low hardware synchronization overhead (1 GHz Itanium 2, Debian
Linux, gcc3.3)16. Here the “bit-array” A is implemented as an array
of bytes. The first set of bars uses traditional pthread “mutex” syn-
chronization (one lock per 256 entries), and the second uses more
recently introduced spin-locks, which perform somewhat better in
this case.17 The third uses “volatile” accesses to the array without
other synchronization,while the last uses ordinary array accesses.
The fourth uses ordinary byte loads and stores. Only the first two
are compatible with pthread programming rules.

15 As written, this algorithm is a poor match for a software distributed
shared memory system that minimizes update propagation, such as [18].
It remains correct, but would not result in a speed-up.
16 Note that gcc3.3 generally does not pipeline such loops, which is impor-
tant on this architecture, for this simple a loop. Hence absolute performance
is almost certainly suboptimal with this compiler, and the actual overhead
of the synchronization operations is understated.
17 Spin-locks typically have the advantage that they avoid an expensive
compare-and-swap-like operation when the lock is released. The version
we used performs worse than the mutex implementation if processors are
heavily over-committed, as with 20 threads. Hence it is often undesirable in
practice. But none of our tests reported here exercise that case. The lock-
free implementations are robust against processor over-commitment.

��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

 0

10

20

30

40

50

60

Mutex spinl. at. upd. unsafe

1 thread
2 threads
4 threads

Figure 2. Sieve execution time for bit array (secs)

��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

 0

10

20

30

40

50

60

70

80

Mutex spinl. at. upd. unsafe

1 thread
2 threads
4 threads

Figure 3. HT P4 execution time for byte array (secs)

Figure 2 presents similar data, but with A implemented as a bit
array. In this case the third set of bars uses a hardware “cmpxchg”
instruction in the set implementation to atomically update a bit in
the array without risk to the adjacent bits. The fourth set of bars
reflects the performance of the program which implements set
with an ordinary ‘or’ operation into the bit vector. This is incorrect
for more than one thread. (Like most programs with data races, it
rarely fails during simple testing like this. Thus time measurements
are no problem.)

Note that in either case, we obtain no speed-up over the
synchronization-free single-threaded version by using the Pthread
mutex primitives, but we see substantial speed-ups (and hence ef-
fective multiprocessor use) for the lock-free implementations.

Repeating the byte-array experiment on a hyper-threaded Pen-
tium 4 (2GHz, 2 processors with 2 threads each, Fedora Core 2
Linux), with relatively higher synchronization costs, we see even
less promising results for the fully synchronized versions in fig-
ures 3. Here the single-threaded version seems essentially optimal,
perhaps because it already saturates the memory system.

But for more realistic uses of a shared bit array, we again return
to a picture more similar to the Itanium results. Figure 4 gives
the time (in milliseconds) required for our garbage collector[6]
to trace a heap containing slightly more than 200MB of 24-byte
objects, with byte arrays used to represent mark bits. We again
vary the number of threads participating in the trace. (For the
fully synchronized version, we use a lock per page in the heap.)
We see reasonable scaling with thread count, since the number of
threads is less than the number of hardware threads. But even with
4 threads, the properly synchronized code only barely exceeds the

266

��������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

��������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

 0

 500

1000

1500

2000

Mutex spinl. at. upd.

1 thread
2 threads
4 threads

Figure 4. HT P4 time for tracing 200 MB (msecs)

performance of a single synchronization-free thread, and that only
with the use of spin-locks.

5.2 Consequences of allowing data races

As the above argues, there are cases in which it appears impossible
to gain benefit from a multiprocessor without direct fine-grained
use of atomic operations on shared variables. This is impossible in
a purely library-based threads implementation in which synchro-
nization is required for concurrent data modification. Once we al-
low concurrent updates, it falls on the language specification to give
their semantics, and on the compiler itself to implement them.

It is still possible to encapsulate the primitives in something that
looks to the programmer like a library for accessing shared vari-
ables. Some of the recent Java extensions [20] take this route. But
to retain full performance, the implementation needs to understand
that some of these primitives impose special memory ordering con-
straints.

The presence of unprotected concurrent accesses to shared vari-
ables also implies that additional properties of a pthread-like im-
plementation become visible, and should be addressed by the spec-
ification. Consider the sequence

x = 1;
pthread_mutex_lock(lock);
y = 1;
pthread_mutex_unlock(lock);

Some implementations of pthread mutex lock() only in-
clude a one-way “acquire” barrier. Thus the above may be executed
as

pthread_mutex_lock(lock);
y = 1;
x = 1;
pthread_mutex_unlock(lock);

with the two assignments reordered. A direct reading of the
pthread standard appears to preclude that, but the transformation
is undetectable in the absence of races. On some architectures it
has a significant performance impact, and is thus desirable.

In an environment in which data races are allowed, and this
distinction is thus observable, locking operations should probably
not be specified as preventing all reordering around them. Indeed,
the Java memory model does not.

6. Towards a solution
Several of us are trying to address these problems in the context
of the C++ standard.[2, 1] Other participants in this effort include

Andrei Alexandrescu, Kevlin Henney, Ben Hutchings, Doug Lea,
Maged Michael, and Bill Pugh.

We currently expect all of the problems to be solvable by a
solution based on the approach of the Java Memory Model[23],
but adapted to the differing language design goals in a number of
ways:

1. In the absence of type-safety guarantees, it appears unnecessary
to fully define the semantics of all data races. It may be reason-
able to restrict “data races” to volatile accesses or to shared
variable access made through certain library routines, thus par-
tially preserving the spirit of the Pthreads approach. This would
still require that we much more carefully define when a data
race exists, so that we avoid the issues in section 4.

2. Some type-safety and security motivated issues become far less
critical. In particular, we expect that much of the work on
causality in [23] is not needed in the context of a type-unsafe
language.

3. The Java memory model traded performance for simplicity in a
few cases (e.g. the prohibition against reordering a volatile store
followed by a volatile load), which may be inappropriate in this
context.

4. In the case of at least C++ bit-fields, the compiler must intro-
duce stores, and hence the possibility of races, that were not
present in the source. It seems likely that on modern architec-
tures this can be limited to adjacent bit-fields.

7. Acknowledgements
I would like to thank Doug Lea, Peter Buhr, and the anonymous
reviewers for very useful comments on an earlier draft.

References
[1] A. Alexandrescu, H.-J. Boehm, K. Henney, B. Hutchings, D. Lea,

and B. Pugh. Memory model for multithreaded C++: Issues.
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/
2005/n1777.pdf.

[2] A. Alexandrescu, H.-J. Boehm, K. Henney, D. Lea, and B. Pugh.
Memory model for multithreaded C++. http://www.open-std.
org/JTC1/SC22/WG21/docs/papers/2004/n1680.pdf.

[3] M. Auslander and M. Hopkins. An overview of the PL.8 compiler.
In Proceedings of the 1982 SIGPLAN Symposium on Compiler
Construction, pages 22–31, 1982.

[4] A. Bechini, P. Foglia, and C. A. Prete. Fine-grain design space
exploration for a cartographic SoC multiprocessor. ACM SIGARCH
Computer Architecture News (MEDEA Workshop), 31(1):85–92,
March 2003.

[5] B. N. Bershad, D. D. Redell, and J. R. Ellis. Fast mutual exclusion
for uniprocessors. In ASPLOS-V: Fifth International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 223–233, October 1992.

[6] H.-J. Boehm. A garbage collector for C and C++. http:
//www.hpl.hp.com/personal/Hans_Boehm/gc/.

[7] H.-J. Boehm. An almost non-blocking stack. In Proceedings of the
Twenty-third Annual ACM Symposium on Principles of Distributed
Computing, pages 40–49, July 2004.

[8] P. A. Buhr. Are safe concurrency libraries possible. Communications
of the ACM, 38(2):117–120, February 1995.

[9] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. P. Shen. Speculative precomputation: Long-
range prefetching of delinquent loads. In Proceedings of the 28th
International Symposium on Computer Architecture, pages 14–15,
2001.

[10] K. D. Cooper and J. Lu. Register promotion in c programs. In
Proceedings of the ACM SIGPLAN 1997 Conference on Programming
Language Design and Implementation, pages 308–319, 1997.

267

[11] Ericsson Computer Science Laboratory. Open source Erlang.
http://www.erlang.org.

[12] M. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):123–149, 1991.

[13] M. Herlihy. A methodology for implementing highly concurrent
data structures. ACM Transactions on Programming Languages and
Systems, 15(5):745–770, 1993.

[14] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchro-
nization: Double-ended queues as an example. In Proc. 23rd Interna-
tional Conference on Distributed Computing Systems (ICDCS), pages
522–529, 2003.

[15] HP Technical Brief. Memory ordering optimization considerations.
http://h21007.www2.hp.com/dspp/files/unprotected/
ddk/Optmiztn.pdf.

[16] IEEE and The Open Group. IEEE Standard 1003.1-2001. IEEE,
2001.

[17] JSR 133 Expert Group. Jsr-133: Java memory model and thread spec-
ification. http://www.cs.umd.edu/~pugh/java/memoryModel/
jsr133.pdf, August 2004.

[18] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency
for software distributed shared memory. In Proceedings of the 19th
Annual Symposium on Computer Architecture (ISCA’92), pages 13–
21, May 1992.

[19] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computing,
C-28(9):690–691, 1979.

[20] D. Lea. Concurrency jsr-166 interest site. http://gee.cs.oswego.
edu/dl/concurrency-interest.

[21] D. Lea. The JSR-133 cookbook for compiler writers. http:
//gee.cs.oswego.edu/dl/jmm/cookbook.html.

[22] R. Lo, F. Chow, R. Kennedy, S.-M. Liu, and P. Tu. Register promotion
by sparse partial redundancy elimination of loads and stores. In
Proceedings of the ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation, pages 26–37, 1998.

[23] J. Manson, W. Pugh, and S. Adve. The java memory model. In
Conference Record of the Thirty-Second Annual ACM Symposium
on Principles of Programming Languages, pages 378–391, January
2005.

[24] M. M. Michael. Scalable lock-free dynamic memory allocation. In
Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation, pages 35–46, 2004.

[25] B. Pugh. The “double-checked locking is broken” declara-
tion. http://www.cs.umd.edu/~pugh/java/memoryModel/
DoubleCheckedLocking.html.

[26] B. Pugh. The java memory model. http://www.cs.umd.edu/
~pugh/java/memoryModel/.

[27] W. Pugh. The java memory model is fatally flawed. Concurrency -
Practice and Experience, 12(6):445–455, 2000.

[28] J. H. Reppy. Cml: A higher-order concurrent language. In
Proceedings of the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation, pages 293–305, 1991.

[29] J. L. Rosenfield. A case study in programming for parallel processors.
Communications of the ACM, 12(12):645–655, December 1969.

[30] V. Sarkar. Determining average program execution times and
their variance. In Proceedings of ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland,
Oregon, January 1989.

[31] A. V. S. Sastry and R. D. C. Ju. A new algorithm for scalar
register promotion based on ssa form. In Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and
Implementation, pages 15–25, 1998.

[32] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Distributed Computing, pages 204–213, 1995.

[33] A. Terekhov and D. Butenhof. The austin common standards revision
group: Enhancement request 9 (austin/107): Clarification of “memory
location”. http://www.opengroup.org/austin/docs/austin_
107.txt, May 2002.

[34] The MPI Forum. The message passing interface (MPI) standard.
http://www-unix.mcs.anl.gov/mpi/.

[35] R. Treiber. Systems programming: Coping with parallelism.
Technical Report RJ5118, IBM Almaden Research Center, 1986.

[36] Y. Wu and J. R. Larus. Static branch frequency and program profile
analysis. In Proceedings of the 27th Annual International Symposium
on Microarchitecture, pages 1–11, 1994.

268

