Lecture 4

Regular Expressions
ogrep and sed intro

Previously

e Basic UNIX Commands
— Files: rm, cp, mv, Is, In
— Processes: ps, kill
e Unix Filters
— cat, head, tail, tee, wc
— cut, paste
— find
— sort, uniq
— comm, diff, cmp
— ir

Executing commands with find
Specification of columns in cut
Specification of columns 1n sort

Methods of imnput

— Standard 1n

— File name arguments
— Special "-" filename

Options for uniq

Today

* Regular Expressions
— Allow you to search for text in files
— grep command

» Stream manipulation:
— sed

* A regular expression (regex) describes a set of
possible input strings.

* Regular expressions descend from a fundamental
concept 1n Computer Science called finite
automata theory

* Regular expressions are endemic to Unix
— vi, ed, sed, and emacs
— awk, tcl, perl and Python
— grep, egrep, fgrep
— compilers

* The simplest regular expressions are a
string of literal characters to match.

* The string matches the regular expression
if 1t contains the substring.

regular expression ——» \

UNIX Tools 1is okay.

no match

* A regular expression can match a string in
more than one place.

* The . regular expression can be used to
match any character.

regular expression ——» a..

For me to poop on

oFfie £o pook =

match 1 match 2

e Character classes [] can be used to match
any specific set of characters.

beat a brat on a boat

___________ 28 @ brat RoRe

match 1 match 2 match 3

* Character classes can be negated with the
[*] syntax.

regular expression ——» E [AeO] E

— [aeiou] will match any of the characters a, e, i, o,
or u
— [mM] ohri will match mohri or Mohri

« Ranges can also be specified in character classes
— [1-9] 1sthesame as [123456789]
— [abcde] is equivalent to [a-e]
— You can also combine multiple ranges
* [abcdel23456789] isequivalentto [a-el-9]

— Note that the = character has a special meaning in a

character class but only if 1t is used within a range,
[-123] would match the characters -, 1, 2, or 3

 Commonly used character classes can be
referred to by name (alpha, lower, upper,
alnum, digit, punct, cntrl)

. SyTHaX.[:nmme:]

- [a-zA-Z] [[:alpha:]]
- [a-zA-Z0-9] [[:alnum:]]
— [45a-2z] 45[:1lower:]]

* Important for portability across languages

* Anchors are used to match at the beginning or
end of a line (or both).

* “~ means beginning of the line
* S means end of the line

~rword$ S

e The * 1s used to define zero or more

occurrences of the single regular expression
preceding it.

regular expression ——» ‘\

* Ranges can also be specified

— { } notation can specify a range of repetitions
for the immediately preceding regex

— {n} means exactly n occurrences
— {n, } means at least n occurrences
— {n,m} means at least n occurrences but no
more than m occurrences
« Example:
—.{0,}sameas .*
—a{2,} same as aaa*

 If you want to group part of an expression so that
* or { } applies to more than just the previous
character, use () notation

* Subexpresssions are treated like a single character

— a* matches 0 or more occurrences of a
— abc* matches ab, abe, abece, abecec, ...
— (abc) * matches abc, abcabce, abcabcecabc, ...

— (abc) {2, 3} matches abcabc or abcabcabcec

grep comes from the ed (Unix text editor) search
command “global regular expression print” or
g/re/p

This was such a useful command that 1t was
written as a standalone utility

There are two other variants, egrep and fgrep that
comprise the grep family

grep 1s the answer to the moments where you
know you want the file that contains a specific
phrase but you can’t remember its name

Family Diiferences

grep - uses regular expressions for pattern
matching

fegrep - file grep, does not use regular
expressions, only matches fixed strings but can
get search strings from a file

egrep - extended grep, uses a more powerful set
of regular expressions but does not support
backreferencing, generally the fastest member of
the grep family

agrep — approximate grep; not standard

Syntax

* Regular expression concepts we have seen so
far are common to grep and egrep.

» grep and egrep have different syntax
— grep: BREs
— egrep: EREs (enhanced features we will discuss)

* Major syntax differences:

—grep: \ (and \), \{ and \}
—egrep: (and), { and }

* Since many of the special characters used
in regexs also have special meaning to the
shell, 1t’s a good 1dea to get in the habit of
single quoting your regexs

— This will protect any special characters from
being operated on by the shell

— If you habitually do 1it, you won’t have to
worry about when 1t 1s necessary

« Even though we are single quoting our regexs so the

shell won’t interpret the special characters, some
characters are special to grep (eg * and .)

* To get literal characters, we escape the character
with a \ (backslash)

* Suppose we want to search for the character
sequence 'a*b™’
— Unless we do something special, this will match zero or
more ‘a’s followed by zero or more ‘b’s, not what we want

— ‘a*b*’ will fix this - now the asterisks are treated as
regular characters

* Regex also provides an alternation character | for
matching one or another subexpression
— (T | F1) an will match ‘Tan’ or ‘Flan’
— *(From| Subject) : will match the From and

Subject lines of a typical email message

It matches a beginning of line followed by either the
characters ‘From’ or ‘Subject’ followed by a ‘.’

* Subexpressions are used to limit the scope of the
alternation

— At (ten|nine) tion then matches “Attention” or

“Atninetion”, not “Atten” or “ninetion” as would
happen without the parenthesis - Atten|ninetion

* The * (star) has already been seen to specify zero
or more occurrences of the immediately
preceding character

» + (plus) means “one or more”

= abc+d will match ‘abed’, ‘abeed’, or ‘abeecceed’ but
will not match ‘abd’

= Equivalentto {1, }

 The “?’ (question mark) specifies an optional character,
the single character that immediately precedes it

= July? will match ‘Jul’ or ‘July’
= Equivalentto {0, 1}
= Also equivalentto (Jul |July)

 The *, ?, and + are known as quantifiers because they
specify the quantity of a match

* Quantifiers can also be used with subexpressions

— (a*c) + will match ‘c’, ‘ac’, ‘aac’ or ‘aacaacac’ but will not
match ‘a’ or a blank line

Sometimes it 1s handy to be able to refer to a
match that was made earlier in a regex

This 1s done using backreferences
— \n 1s the backreference specifier, where » 1s a number

Looks for nth subexpression

For example, to find 1if the first word of a line 1s
the same as the last:
- *\([[:alpha:]]1\{1,\}\) .* \18$

— The \ ([[:alpha:11\{1,\}\) matches 1 or more
letters

Variable names 1n C

- [a-zA-Z] [a-zA-Z 0-9]*
Dollar amount with optional cents
- \$[0-9]+(\.[0-9][0-9])"

Time of day
- (1[012]|[1-9]) : [0-5][0-9] (am|pm)

HTML headers <hl1> <H1> <h2> ...
— <[hH] [1-4]>

grep Family

* Syntax
grep [-hilnv] [-e expression] [filename]

egrep [-hilnv] [-e expression] [-f filename] [expression]
[filename]

ferep [-hilnxv] [-e string] [-f filename] [string] [filename]
— -h Do not display filenames

— -1 Ignore case

— -1 List only filenames containing matching lines

— -n Precede each matching line with its line number

— -v Negate matches

— -x Match whole line only (fgrep only)

— -e expression Specify expression as option

— ~f filename Take the regular expression (egrep) or
a list of strings (fgrep) from filename

* grep 'men' GrepMe

 grep 'fo*' GrepMe

 egrep 'fo+' GrepMe

 egrep —-n '[Tt]lhe' GrepMe

« fgrep 'The' GrepMe

e egrep 'NC+[0-9]*A?' GrepMe
e fgrep -f expfile GrepMe

* Find all lines with signed numbers

$ egrep ' [-+][0-9]+\.?[0-9]*’ * ¢

bsearch. c¢: return -1;

compile. c: strchr("+1-2*3", t-> op)[1l] - '0’, dst,

convert. c: Print integers in a given base 2-16 (default 10)
convert. c: sscanf(argv[i+l1l], "% d", é&base);

return -1;
return +1;

strcmp. c:
strcmp. c:

« egrep has its limits: For example, 1t cannot match all lines that
contain a number divisible by 7. True? Not quite!

Fun with the Dictionary

/usr/dict/words contains about 25,000 words
- egrep hh /usr/dict/words

* beachhead

 highhanded

 withheld

 withhold

egrep as a simple spelling checker: Specify plausible

alternatives you know
egrep "n(ie|ei) ther" /usr/dict/words
neither

How many words have 3 a’s one letter apart?
- egrep a.a.a /usr/dict/words | wc -1

« 54
- egrep u.u.u /usr/dict/words

e cumulus

e Use /dev/null as an extra file name

— Will print the name of the file that matched
e grep test bigfile
— This is a test.
« grep test /dev/null bigfile
— bigfile:This is a test.

* Return code of grep 1s useful

~ grep fred filename > /dev/null && rm filename

<— input line

regular expression

forep, grep, egrep

grep, egrep

grep

o.%* “«
(@]
X Ordinary characters match themselves
(NEWLINES and metacharacters excluded)
Xyz Ordinary strings match themselves
\m Matches literal character m
A Start of line
$ End of line
. Any single character
[xy"$x] | Anyofx,y," $, orz
[*xy"$z] | Any one character other than x, y, *, $, or z
[a-Z] Any single character in given range
r* zero or more occurrences of regex r
rlr2 Matches r1 followed by 12
\(1\) Tagged regular expression, matches r
\n Set to what matched the nth tagged expression
(n=1-9)
\{n,m\} | Repetition
r+ One or more occurrences of r
r? Zero or one occurrences of r
rlr2 Either r1 or 12
(r1jr2)r3 | Either r1r3 or 213
(rljr2)* | Zero or more occurrences of r1|r2, e.g., r1, rirl,

{n,mj

r2rl, rlrlr2rl,...)
Repetition

Quick

egrep

Reference

Sed: Stream-oriented, Non-
Interactive, Text Editor

Look for patterns one line at a time, like grep
Change lines of the file

Non-interactive text editor
— Editing commands come 1n as script

— There 1s an interactive editor ed which accepts the
same commands

A Unix filter

— Superset of previously mentioned tools

\\

‘Input

scriptfile

Input line

(Pattern Space)

\

Hold Space

- All editing commands 1n a sed script are applied in
order to each input line.

If a command changes the input, subsequent
command address will be applied to the current
(modified) line in the pattern space, not the original
input line.

The original input file 1s unchanged (sed 1s a filter),

and the results are sent to standard output (but can
be redirected to a file).

* A script is nothing more than a file of commands

e Each command consists of up to two addresses
and an action, where the address can be a regular
expression or line number.

address action command

address action

address action

address action

address action

script

 sed then reads the next line 1n the input file and
restarts from the beginning of the script file

e All commands in the script file are compared to,
and potentially act on, all lines 1n the input file

script

(- e

print cmd

\

output

Youtput
P only without -n

