
Lecture 7

Part I
Shell Scripting (continued)



Parsing and Quoting



Shell Quoting

• Quoting causes characters to loose special
meaning.

• \ Unless quoted, \ causes next character to be
quoted.  In front of new-line causes lines to be
joined.

• '…' Literal quotes.  Cannot contain '
• "…" Removes special meaning of all

characters except $, ", \ and `.  The \ is only
special before one of these characters and new-
line.



Simple Commands

• A simple command consists of three types of
tokens:
– Assignments (must come first)
– Command word tokens
– Redirections:  redirection-op + word-op
– The first token must not be a reserved word
– Command terminated by new-line or ;

• Example:
– foo=bar z=`date`
echo $HOME
x=foobar > q$$ $xyz z=3



Word Splitting

• After parameter expansion, command
substitution, and arithmetic expansion, the
characters that are generated as a result of
these expansions that are not inside double
quotes are checked for split characters

• Default split character is space or tab
• Split characters are defined by the value of

the IFS variable (IFS="" disables)



Word Splitting Examples
FILES="file1 file2"
cat $FILES
a
b

IFS=
cat $FILES
cat: file1 file2: cannot open

IFS=x v=exit
echo exit $v "$v"
exit e it exit



Pathname Expansion

• After word splitting, each field that
contains pattern characters is replaced by
the pathnames that match

• Quoting prevents expansion
• set –o noglob disables

– Not in original Bourne shell, but in POSIX



Parsing Example
DATE=`date` echo $foo > \

/dev/null

DATE=`date` echo $foo > /dev/null
assignment word param redirection

echo hello there
/dev/null

/bin/echo  hello there
/dev/nullsplit by IFSPATH expansion



The eval built-in

• eval arg …
– Causes all the tokenizing and expansions to be

performed again



trap command

• trap specifies command that should be evaled
when the shell receives a signal of a particular
value.

• trap [ [command] {signal}+]
– If command is omitted, signals are ignored

• Especially useful for cleaning up temporary files

trap 'echo "please, dont interrupt!"' SIGINT

trap 'rm /tmp/tmpfile' EXIT



Reading Lines

• read is used to read a line from a file and to
store the result into shell variables
– read –r prevents special processing
– Uses IFS to split into words
– If no variable specified, uses REPLY

read
read –r NAME
read FIRSTNAME LASTNAME



Script Examples

• Rename files to lower case
• Strip CR from files
• Emit HTML for directory contents



Rename files

#!/bin/sh

for file in *
do
        lfile=`echo $file | tr A-Z a-z`
        if [ $file != $lfile ]
        then
                mv $file $lfile
        fi
done



Remove DOS Carriage Returns
#!/bin/sh

TMPFILE=/tmp/file$$

if [ "$1" = "" ]
then
        tr -d '\r'
        exit 0
fi

trap 'rm -f $TMPFILE' 1 2 3 6 15

for file in "$@"
do
        if tr -d '\r' < $file > $TMPFILE
        then
                mv $TMPFILE $file
        fi
done



$ dir2html.sh > dir.html

Generate HTML



The Script
#!/bin/sh

[ "$1" != "" ] && cd "$1"

cat <<HUP
 <html>
 <h1> Directory listing for $PWD </h1>
 <table border=1>
 <tr>
HUP
num=0
for file in *
do
    genhtml $file   # this function is on next
page
done
cat <<HUP
 </tr>
 </table>
 </html>
HUP



Function genhtml
genhtml()
{
    file=$1
    echo "<td><tt>"
    if [ -f $file ]
    then    echo "<font color=blue>$file</font>"
    elif [ -d $file ]
    then    echo "<font color=red>$file</font>"
    else    echo "$file"
    fi
    echo "</tt></td>"
    num=`expr $num + 1`
    if [ $num -gt 4 ]
    then
        echo "</tr><tr>"
        num=0
    fi
}



Korn Shell / bash Features



Command Substitution

• Better syntax with $(command)
– Allows nesting
– x=$(cat $(generate_file_list))

• Backward compatible with ` … ` notation



Expressions
• Expressions are built-in with the [[ ]] operator

if [[ $var = "" ]] …
• Gets around parsing quirks of /bin/test, allows checking

strings against patterns
• Operations:

– string == pattern
– string != pattern
– string1 < string2
– file1 –nt file2
– file1 –ot file2
– file1 –ef file2
– &&, ||



Patterns

• Can be used to do string matching:
if [[ $foo = *a* ]]
if [[ $foo = [abc]* ]]

• Similar to regular expressions, but different
syntax



Additional Parameter Expansion

• ${#param} – Length of param
• ${param#pattern} – Left strip min pattern
• ${param##pattern} – Left strip max pattern
• ${param%pattern} – Right strip min pattern
• ${param%%pattern} – Right strip max pattern
• ${param-value} – Default value if param not set



Variables

• Variables can be arrays
– foo[3]=test
– echo ${foo[3]}

• Indexed by number
• ${#arr} is length of the array
• Multiple array elements can be set at once:

– set –A foo a b c d
– echo ${foo[1]}
– Set command can also be used for positional params:
set a b c d;  print $2



Printing

• Built-in print command to replace echo
• Much faster
• Allows options:

-u# print to specific file descriptor



Functions

• Alternative function syntax:
function name {

commands
}

• Allows for local variables
• $0 is set to the name of the function



Additional Features

•  Built-in arithmetic: Using $((expression ))
– e.g., print $(( 1 + 1 * 8 / x ))

•  Tilde file expansion
~ $HOME
~user home directory of user
~+ $PWD
~- $OLDPWD
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Variable Attributes

• By default attributes hold strings of unlimited length
• Attributes can be set with typeset:

– readonly (-r) – cannot be changed
– export (-x) – value will be exported to env
– upper (-u) – letters will be converted to upper case
– lower (-l) – letters will be converted to lower case
– ljust (-L width) – left justify to given width
– rjust (-R width) – right justify to given width
– zfill (-Z width) – justify, fill with leading zeros
– integer (-I [base]) – value stored as integer

– float (-E [prec]) – value stored as C double
– nameref (-n) – a name reference



Name References

• A name reference is a type of variable that
references another variable.

• nameref is an alias for typeset -n
– Example:

user1=”mehryar"
user2="adam"
typeset –n name="user1"
print $name
mehryar



New Parameter Expansion

• ${param/pattern/str} – Replace first pattern
with str

• ${param//pattern/str} – Replace all patterns
with str

• ${param:offset:len} – Substring with offset



Patterns Extended

• Additional pattern
types so that shell
patterns are
equally expressive
as regular
expressions

• Used for:
– file expansion
–  [[ ]]
– case statements
– parameter

expansion

Patterns Regular Expressions



ANSI C Quoting

• $'…' Uses C escape sequences
$'\t'   $'Hello\nthere'

• printf added that supports C like printing:
printf "You have %d apples" $x

• Extensions
– %b – ANSI escape sequences
– %q – Quote argument for reinput
– \E – Escape character (033)
– %P – convert ERE to shell pattern
– %H – convert using HTML conventions
– %T – date conversions using date formats



Associative Arrays

• Arrays can be indexed by string
• Declared with typeset –A
• Set: name["foo"]="bar"
• Reference ${name["foo"]}
• Subscripts: ${!name[@]}



Corresponding Shell Features
• Standard input, output, error

– Redirection
– Here documents
– Pipelines
– Command substitution

• Exit status
– $?
– &&, ||, if, while

• Environment
– export, variables

• Arguments
– Command substitution
– Variables
– Wildcards
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Part II
Networking, HTTP, CGI



Network Application

• Client application and server application
communicate via a network protocol

• A protocol is a set of rules on how the client and
server communicate

web
client

web
server

HTTP
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Network Access/Internet Layers

• Network Access Layer
– Deliver data to devices on the same physical network
– Ethernet

• Internet Layer
– Internet Protocol (IP)
– Determines routing of datagram
– IPv4 uses 32-bit addresses (e.g. 128.122.20.15)
– Datagram fragmentation and reassembly



Transport Layer

• Transport Layer
– Host-host layer
– Provides error-free, point-to-point connection between

hosts
• User Datagram Protocol (UDP)

– Unreliable, connectionless
• Transmission Control Protocol (TCP)

– Reliable, connection-oriented
– Acknowledgements, sequencing, retransmission



Ports

• Both TCP and UDP use 16-bit port numbers
• A server application listen to a specific port for

connections
• Ports used by popular applications are well-defined

– SSH (22), SMTP (25), HTTP (80)
– 1-1023 are reserved (well-known)
– 1024-49151 are user level
– 49152-65535 are private to the machine

• Clients use ephemeral ports



Name Service

• Every node on the network normally has a
hostname in addition to an IP address

• Domain Name System (DNS) maps IP
addresses to names
– e.g. 128.122.20.15 is sparky.cs.nyu.edu

• DNS lookup utilities: nslookup, dig
• Local name address mappings stored in
/etc/hosts



Sockets

• Sockets provide access to TCP/IP on UNIX
systems

• Invented in Berkeley UNIX
• Allows a network connection to be opened

as a file (returns a file descriptor)

machine 1 machine 2



Major Network Services
• Telnet (Port 23)

– Provides virtual terminal for remote user
– The telnet program can also be used to connect to other

ports
• FTP (Port 20/21)

– Used to transfer files from one machine to another
– Uses port 20 for data, 21 for control

• SSH (Port 22)
– For logging in and executing commands on remote

machines
– Data is encrypted



Major Network Services cont.

• SMTP (Port 25)
– Host-to-host mail transport
– Used by mail transfer agents (MTAs)

• IMAP (Port 143)
– Allow clients to access and manipulate emails

on the server
• HTTP (Port 80)

– Protocol for WWW



Ksh93: /dev/tcp

• Files in the form
/dev/tcp/hostname/port result in a
socket connection to the given service:

exec 3<>/dev/tcp/smtp.cs.nyu.edu/25 #SMTP
print –u3 ”EHLO cs.nyu.edu"
print –u3 ”QUIT"
while IFS= read –u3
do

print –r "$REPLY"
done



HTTP

• Hypertext Transfer Protocol
– Use port 80

• Language used by web browsers (IE,
Netscape, Firefox) to communicate with
web servers (Apache, IIS)

HTTP request:
Get me this document

HTTP response:
Here is your document



Resources

• Web servers host web resources, including
HTML files, PDF files, GIF files, MPEG movies,
etc.

• Each web object has an associated MIME type
– HTML document has type text/html
– JPEG image has type image/jpeg

• Web resource is accessed using a Uniform
Resource Locator (URL)
– http://www.cs.nyu.edu:80/courses/fall05/G22.2245-001/index.html

protocol host port resource



HTTP Transactions

• HTTP request to web server
GET /v40images/nyu.gif HTTP/1.1
Host: www.nyu.edu

• HTTP response to web client
HTTP/1.1 200 OK
Content-type: image/gif
Content-length: 3210



Sample HTTP Session
GET / HTTP/1.1
HOST: www.cs.nyu.edu

HTTP/1.1 200 OK
Date: Wed, 19 Oct 2005 06:59:49 GMT
Server: Apache/2.0.49 (Unix) mod_perl/1.99_14 Perl/v5.8.4

mod_ssl/2.0.49 OpenSSL/0.9.7e mod_auth_kerb/4.13 PHP/5.0.0RC3
Last-Modified: Thu, 12 Sep 2002 17:09:03 GMT
Content-Length: 163
Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head>
<title></title>
<meta HTTP-EQUIV="Refresh" CONTENT="0; URL=csweb/index.html">
<body>
</body>
</html>

request

response



Status Codes

• Status code in the HTTP response indicates if a
request is successful

• Some typical status codes:

Not Found404
Forbidden403
Authorization required401
Found; Resource in different URI302
OK200



Gateways

• Interface between resource and a web server

Web Server DBGatewayhttp



CGI

• Common Gateway Interface is a standard interface for
running helper applications to generate dynamic contents
– Specify the encoding of data passed to programs

• Allow HTML documents to be created on the fly
• Transparent to clients

– Client sends regular HTTP request
– Web server receives HTTP request, runs CGI program, and sends

contents back in HTTP responses
• CGI programs can be written in any language



CGI Diagram

Web Server

ScriptDocument

HTTP request

HTTP response spawn process



HTML

• Document format used on the web
<html>
<head>
<title>Some Document</title>
</head>
<body>
<h2>Some Topics</h2>
This is an HTML document
<p>
This is another paragraph
</body>
</html>



HTML

• HTML is a file format that describes a web
page.

• These files can be made by hand, or
generated by a program

• A good way to generate an HTML file is
by writing a shell script



Forms

• HTML forms are used to collect user input
• Data sent via HTTP request
• Server launches CGI script to process data

<form method=POST
action=“http://www.cs.nyu.edu/~unixtool/cgi-
bin/search.cgi”>

Enter your query: <input type=text name=Search>
<input type=submit>
</form>



Input Types

• Text Field
<input type=text name=zipcode>

• Radio Buttons
<input type=radio name=size value=“S”> Small
<input type=radio name=size value=“M”> Medium
<input type=radio name=size value=“L”> Large

• Checkboxes
<input type=checkbox name=extras value=“lettuce”> Lettuce
<input type=checkbox name=extras value=“tomato”> Tomato

• Text Area
<textarea name=address cols=50 rows=4>
…
</textarea>



Submit Button

• Submits the form for processing by the
CGI script specified in the form tag

<input type=submit value=“Submit Order”>



HTTP Methods

• Determine how form data are sent to web
server

• Two methods:
– GET

• Form variables stored in URL

– POST
• Form variables sent as content of HTTP request



Encoding Form Values

• Browser sends form variable as name-value pairs
– name1=value1&name2=value2&name3=value3

• Names are defined in form elements
– <input type=text name=ssn maxlength=9>

• Special characters are replaced with %## (2-digit
hex number), spaces replaced with +
– e.g. “10/20 Wed” is encoded as “10%2F20+Wed”



GET/POST examples

GET:
GET /cgi-bin/myscript.pl?name=Bill%20Gates&

company=Microsoft HTTP/1.1

HOST: www.cs.nyu.edu

POST:
POST /cgi-bin/myscript.pl HTTP/1.1

HOST: www.cs.nyu.edu

…other headers…

name=Bill%20Gates&company=Microsoft



GET or POST?

• GET method is useful for
– Retrieving information, e.g. from a database
– Embedding data in URL without form element

• POST method should be used for forms with
– Many fields or long fields
– Sensitive information
– Data for updating database

• GET requests may be cached by clients browsers
or proxies, but not POST requests



Parsing Form Input

• Method stored in HTTP_METHOD
• GET: Data encoded into QUERY_STRING
• POST: Data in standard input (from body

of request)
• Most scripts parse input into an associative

array
– You can parse it yourself
– Or use available libraries (better)



CGI Environment Variables
• DOCUMENT_ROOT
• HTTP_HOST
• HTTP_REFERER
• HTTP_USER_AGENT
• HTTP_COOKIE
• REMOTE_ADDR
• REMOTE_HOST
• REMOTE_USER
• REQUEST_METHOD
• SERVER_NAME
• SERVER_PORT



CGI Script: Example



Part 1: HTML Form
<html>
<center>
<H1>Anonymous Comment Submission</H1>
</center>
Please enter your comment below which will
be sent anonymously to <tt>mohri@cs.nyu.edu</tt>.
If you want to be extra cautious, access this
page through <a
href="http://www.anonymizer.com">Anonymizer</a>.
<p>
<form action=cgi-bin/comment.cgi method=post>
<textarea name=comment rows=20 cols=80>
</textarea>
<input type=submit value="Submit Comment">
</form>
</html>



Part 2: CGI Script (ksh)
#!/home/unixtool/bin/ksh

. cgi-lib.ksh  # Read special functions to help parse
ReadParse
PrintHeader

print -r -- "${Cgi.comment}" | /bin/mailx -s "COMMENT" mohri

print "<H2>You submitted the comment</H2>"
print "<pre>"
print -r -- "${Cgi.comment}"
print "</pre>"



Debugging

• Debugging can be tricky, since error
messages don't always print well as HTML

• One method: run interactively

$ QUERY_STRING='birthday=10/15/03'
$ ./birthday.cgi
Content-type: text/html

<html>
Your birthday is <tt>10/15/02</tt>.
</html>



How to get your script run

• This can vary by web server type
http://www.cims.nyu.edu/systems/resources/webhosting/index.html

• Typically, you give your script a name that
ends with .cgi

• Give the script execute permission
• Specify the location of that script in the

URL



CGI Security Risks

• Sometimes CGI scripts run as owner of the scripts
• Never trust user input - sanity-check everything
• If a shell command contains user input, run

without shell escapes
• Always encode sensitive information, e.g.

passwords
– Also use HTTPS

• Clean up - don’t leave sensitive data around



CGI Benefits

• Simple
• Language independent
• UNIX tools are good for this because

– Work well with text
– Integrate programs well
– Easy to prototype
– No compilation (CGI scripts)



Example: Dump Some Info
#!/home/unixtool/bin/ksh

. ./cgi-lib.ksh
PrintHeader
ReadParse

print "<h1> Date </h1>"
print "<pre>"
date
print "</pre>"

print "<h1> Form Variables </h1>"
print "<pre>"
set -s -- ${!Cgi.*}
for var
do
        nameref r=$var
        print "${var#Cgi.} = $r"
        unset r
done
print "</pre>"

print "<h1> Environment </h1>"
print "<pre>"
env | sort
print "</pre>"



Example: Find words in Dictionary

<form action=dict.cgi>
Regular expression: <input type=entry
name=re value=".*">
<input type=submit>
</form>



Example: Find words in Dictionary
#!/home/unixtool/bin/ksh

PATH=$PATH:.
. cgi-lib.ksh
ReadParse
PrintHeader

print "<H1> Words matching <tt>${Cgi.re}</tt> in the dictionary
</H1>\n";
print "<OL>"
grep "${Cgi.re}" /usr/dict/words | while read word
do
        print "<LI> $word"
done
print "</OL>"


