
Lecture 7

Part I
Shell Scripting (continued)

Parsing and Quoting

Shell Quoting

• Quoting causes characters to loose special
meaning.

• \ Unless quoted, \ causes next character to be
quoted. In front of new-line causes lines to be
joined.

• '…' Literal quotes. Cannot contain '
• "…" Removes special meaning of all

characters except $, ", \ and `. The \ is only
special before one of these characters and new-
line.

Simple Commands

• A simple command consists of three types of
tokens:
– Assignments (must come first)
– Command word tokens
– Redirections: redirection-op + word-op
– The first token must not be a reserved word
– Command terminated by new-line or ;

• Example:
– foo=bar z=`date`
echo $HOME
x=foobar > q$$ $xyz z=3

Word Splitting

• After parameter expansion, command
substitution, and arithmetic expansion, the
characters that are generated as a result of
these expansions that are not inside double
quotes are checked for split characters

• Default split character is space or tab
• Split characters are defined by the value of

the IFS variable (IFS="" disables)

Word Splitting Examples
FILES="file1 file2"
cat $FILES
a
b

IFS=
cat $FILES
cat: file1 file2: cannot open

IFS=x v=exit
echo exit $v "$v"
exit e it exit

Pathname Expansion

• After word splitting, each field that
contains pattern characters is replaced by
the pathnames that match

• Quoting prevents expansion
• set –o noglob disables

– Not in original Bourne shell, but in POSIX

Parsing Example
DATE=`date` echo $foo > \

/dev/null

DATE=`date` echo $foo > /dev/null
assignment word param redirection

echo hello there
/dev/null

/bin/echo hello there
/dev/nullsplit by IFSPATH expansion

The eval built-in

• eval arg …
– Causes all the tokenizing and expansions to be

performed again

trap command

• trap specifies command that should be evaled
when the shell receives a signal of a particular
value.

• trap [[command] {signal}+]
– If command is omitted, signals are ignored

• Especially useful for cleaning up temporary files

trap 'echo "please, dont interrupt!"' SIGINT

trap 'rm /tmp/tmpfile' EXIT

Reading Lines

• read is used to read a line from a file and to
store the result into shell variables
– read –r prevents special processing
– Uses IFS to split into words
– If no variable specified, uses REPLY

read
read –r NAME
read FIRSTNAME LASTNAME

Script Examples

• Rename files to lower case
• Strip CR from files
• Emit HTML for directory contents

Rename files

#!/bin/sh

for file in *
do
 lfile=`echo $file | tr A-Z a-z`
 if [$file != $lfile]
 then
 mv $file $lfile
 fi
done

Remove DOS Carriage Returns
#!/bin/sh

TMPFILE=/tmp/file$$

if ["$1" = ""]
then
 tr -d '\r'
 exit 0
fi

trap 'rm -f $TMPFILE' 1 2 3 6 15

for file in "$@"
do
 if tr -d '\r' < $file > $TMPFILE
 then
 mv $TMPFILE $file
 fi
done

$ dir2html.sh > dir.html

Generate HTML

The Script
#!/bin/sh

["$1" != ""] && cd "$1"

cat <<HUP
 <html>
 <h1> Directory listing for $PWD </h1>
 <table border=1>
 <tr>
HUP
num=0
for file in *
do
 genhtml $file # this function is on next
page
done
cat <<HUP
 </tr>
 </table>
 </html>
HUP

Function genhtml
genhtml()
{
 file=$1
 echo "<td><tt>"
 if [-f $file]
 then echo "$file"
 elif [-d $file]
 then echo "$file"
 else echo "$file"
 fi
 echo "</tt></td>"
 num=`expr $num + 1`
 if [$num -gt 4]
 then
 echo "</tr><tr>"
 num=0
 fi
}

Korn Shell / bash Features

Command Substitution

• Better syntax with $(command)
– Allows nesting
– x=$(cat $(generate_file_list))

• Backward compatible with ` … ` notation

Expressions
• Expressions are built-in with the [[]] operator

if [[$var = ""]] …
• Gets around parsing quirks of /bin/test, allows checking

strings against patterns
• Operations:

– string == pattern
– string != pattern
– string1 < string2
– file1 –nt file2
– file1 –ot file2
– file1 –ef file2
– &&, ||

Patterns

• Can be used to do string matching:
if [[$foo = *a*]]
if [[$foo = [abc]*]]

• Similar to regular expressions, but different
syntax

Additional Parameter Expansion

• ${#param} – Length of param
• ${param#pattern} – Left strip min pattern
• ${param##pattern} – Left strip max pattern
• ${param%pattern} – Right strip min pattern
• ${param%%pattern} – Right strip max pattern
• ${param-value} – Default value if param not set

Variables

• Variables can be arrays
– foo[3]=test
– echo ${foo[3]}

• Indexed by number
• ${#arr} is length of the array
• Multiple array elements can be set at once:

– set –A foo a b c d
– echo ${foo[1]}
– Set command can also be used for positional params:
set a b c d; print $2

Printing

• Built-in print command to replace echo
• Much faster
• Allows options:

-u# print to specific file descriptor

Functions

• Alternative function syntax:
function name {

commands
}

• Allows for local variables
• $0 is set to the name of the function

Additional Features

• Built-in arithmetic: Using $((expression))
– e.g., print $((1 + 1 * 8 / x))

• Tilde file expansion
~ $HOME
~user home directory of user
~+ $PWD
~- $OLDPWD

KornShell 93

Variable Attributes

• By default attributes hold strings of unlimited length
• Attributes can be set with typeset:

– readonly (-r) – cannot be changed
– export (-x) – value will be exported to env
– upper (-u) – letters will be converted to upper case
– lower (-l) – letters will be converted to lower case
– ljust (-L width) – left justify to given width
– rjust (-R width) – right justify to given width
– zfill (-Z width) – justify, fill with leading zeros
– integer (-I [base]) – value stored as integer

– float (-E [prec]) – value stored as C double
– nameref (-n) – a name reference

Name References

• A name reference is a type of variable that
references another variable.

• nameref is an alias for typeset -n
– Example:

user1=”mehryar"
user2="adam"
typeset –n name="user1"
print $name
mehryar

New Parameter Expansion

• ${param/pattern/str} – Replace first pattern
with str

• ${param//pattern/str} – Replace all patterns
with str

• ${param:offset:len} – Substring with offset

Patterns Extended

• Additional pattern
types so that shell
patterns are
equally expressive
as regular
expressions

• Used for:
– file expansion
– [[]]
– case statements
– parameter

expansion

Patterns Regular Expressions

ANSI C Quoting

• $'…' Uses C escape sequences
$'\t' $'Hello\nthere'

• printf added that supports C like printing:
printf "You have %d apples" $x

• Extensions
– %b – ANSI escape sequences
– %q – Quote argument for reinput
– \E – Escape character (033)
– %P – convert ERE to shell pattern
– %H – convert using HTML conventions
– %T – date conversions using date formats

Associative Arrays

• Arrays can be indexed by string
• Declared with typeset –A
• Set: name["foo"]="bar"
• Reference ${name["foo"]}
• Subscripts: ${!name[@]}

Corresponding Shell Features
• Standard input, output, error

– Redirection
– Here documents
– Pipelines
– Command substitution

• Exit status
– $?
– &&, ||, if, while

• Environment
– export, variables

• Arguments
– Command substitution
– Variables
– Wildcards

Lecture 7

Part II
Networking, HTTP, CGI

Network Application

• Client application and server application
communicate via a network protocol

• A protocol is a set of rules on how the client and
server communicate

web
client

web
server

HTTP

TCP/IP Suite

(ethernet)

client server
application

layer

drivers/
hardware

drivers/
hardware

TCP/UDP

IP

TCP/UDP

IP

us
er

ke
rn

el

transport
layer

internet
layer

network access layer

Data Encapsulation

Data

Data

Data

Data

H1

H1H2

H1H2H3

Application Layer

Transport Layer

Internet Layer

Network
Access
Layer

Network Access/Internet Layers

• Network Access Layer
– Deliver data to devices on the same physical network
– Ethernet

• Internet Layer
– Internet Protocol (IP)
– Determines routing of datagram
– IPv4 uses 32-bit addresses (e.g. 128.122.20.15)
– Datagram fragmentation and reassembly

Transport Layer

• Transport Layer
– Host-host layer
– Provides error-free, point-to-point connection between

hosts
• User Datagram Protocol (UDP)

– Unreliable, connectionless
• Transmission Control Protocol (TCP)

– Reliable, connection-oriented
– Acknowledgements, sequencing, retransmission

Ports

• Both TCP and UDP use 16-bit port numbers
• A server application listen to a specific port for

connections
• Ports used by popular applications are well-defined

– SSH (22), SMTP (25), HTTP (80)
– 1-1023 are reserved (well-known)
– 1024-49151 are user level
– 49152-65535 are private to the machine

• Clients use ephemeral ports

Name Service

• Every node on the network normally has a
hostname in addition to an IP address

• Domain Name System (DNS) maps IP
addresses to names
– e.g. 128.122.20.15 is sparky.cs.nyu.edu

• DNS lookup utilities: nslookup, dig
• Local name address mappings stored in
/etc/hosts

Sockets

• Sockets provide access to TCP/IP on UNIX
systems

• Invented in Berkeley UNIX
• Allows a network connection to be opened

as a file (returns a file descriptor)

machine 1 machine 2

Major Network Services
• Telnet (Port 23)

– Provides virtual terminal for remote user
– The telnet program can also be used to connect to other

ports
• FTP (Port 20/21)

– Used to transfer files from one machine to another
– Uses port 20 for data, 21 for control

• SSH (Port 22)
– For logging in and executing commands on remote

machines
– Data is encrypted

Major Network Services cont.

• SMTP (Port 25)
– Host-to-host mail transport
– Used by mail transfer agents (MTAs)

• IMAP (Port 143)
– Allow clients to access and manipulate emails

on the server
• HTTP (Port 80)

– Protocol for WWW

Ksh93: /dev/tcp

• Files in the form
/dev/tcp/hostname/port result in a
socket connection to the given service:

exec 3<>/dev/tcp/smtp.cs.nyu.edu/25 #SMTP
print –u3 ”EHLO cs.nyu.edu"
print –u3 ”QUIT"
while IFS= read –u3
do

print –r "$REPLY"
done

HTTP

• Hypertext Transfer Protocol
– Use port 80

• Language used by web browsers (IE,
Netscape, Firefox) to communicate with
web servers (Apache, IIS)

HTTP request:
Get me this document

HTTP response:
Here is your document

Resources

• Web servers host web resources, including
HTML files, PDF files, GIF files, MPEG movies,
etc.

• Each web object has an associated MIME type
– HTML document has type text/html
– JPEG image has type image/jpeg

• Web resource is accessed using a Uniform
Resource Locator (URL)
– http://www.cs.nyu.edu:80/courses/fall05/G22.2245-001/index.html

protocol host port resource

HTTP Transactions

• HTTP request to web server
GET /v40images/nyu.gif HTTP/1.1
Host: www.nyu.edu

• HTTP response to web client
HTTP/1.1 200 OK
Content-type: image/gif
Content-length: 3210

Sample HTTP Session
GET / HTTP/1.1
HOST: www.cs.nyu.edu

HTTP/1.1 200 OK
Date: Wed, 19 Oct 2005 06:59:49 GMT
Server: Apache/2.0.49 (Unix) mod_perl/1.99_14 Perl/v5.8.4

mod_ssl/2.0.49 OpenSSL/0.9.7e mod_auth_kerb/4.13 PHP/5.0.0RC3
Last-Modified: Thu, 12 Sep 2002 17:09:03 GMT
Content-Length: 163
Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head>
<title></title>
<meta HTTP-EQUIV="Refresh" CONTENT="0; URL=csweb/index.html">
<body>
</body>
</html>

request

response

Status Codes

• Status code in the HTTP response indicates if a
request is successful

• Some typical status codes:

Not Found404
Forbidden403
Authorization required401
Found; Resource in different URI302
OK200

Gateways

• Interface between resource and a web server

Web Server DBGatewayhttp

CGI

• Common Gateway Interface is a standard interface for
running helper applications to generate dynamic contents
– Specify the encoding of data passed to programs

• Allow HTML documents to be created on the fly
• Transparent to clients

– Client sends regular HTTP request
– Web server receives HTTP request, runs CGI program, and sends

contents back in HTTP responses
• CGI programs can be written in any language

CGI Diagram

Web Server

ScriptDocument

HTTP request

HTTP response spawn process

HTML

• Document format used on the web
<html>
<head>
<title>Some Document</title>
</head>
<body>
<h2>Some Topics</h2>
This is an HTML document
<p>
This is another paragraph
</body>
</html>

HTML

• HTML is a file format that describes a web
page.

• These files can be made by hand, or
generated by a program

• A good way to generate an HTML file is
by writing a shell script

Forms

• HTML forms are used to collect user input
• Data sent via HTTP request
• Server launches CGI script to process data

<form method=POST
action=“http://www.cs.nyu.edu/~unixtool/cgi-
bin/search.cgi”>

Enter your query: <input type=text name=Search>
<input type=submit>
</form>

Input Types

• Text Field
<input type=text name=zipcode>

• Radio Buttons
<input type=radio name=size value=“S”> Small
<input type=radio name=size value=“M”> Medium
<input type=radio name=size value=“L”> Large

• Checkboxes
<input type=checkbox name=extras value=“lettuce”> Lettuce
<input type=checkbox name=extras value=“tomato”> Tomato

• Text Area
<textarea name=address cols=50 rows=4>
…
</textarea>

Submit Button

• Submits the form for processing by the
CGI script specified in the form tag

<input type=submit value=“Submit Order”>

HTTP Methods

• Determine how form data are sent to web
server

• Two methods:
– GET

• Form variables stored in URL

– POST
• Form variables sent as content of HTTP request

Encoding Form Values

• Browser sends form variable as name-value pairs
– name1=value1&name2=value2&name3=value3

• Names are defined in form elements
– <input type=text name=ssn maxlength=9>

• Special characters are replaced with %## (2-digit
hex number), spaces replaced with +
– e.g. “10/20 Wed” is encoded as “10%2F20+Wed”

GET/POST examples

GET:
GET /cgi-bin/myscript.pl?name=Bill%20Gates&

company=Microsoft HTTP/1.1

HOST: www.cs.nyu.edu

POST:
POST /cgi-bin/myscript.pl HTTP/1.1

HOST: www.cs.nyu.edu

…other headers…

name=Bill%20Gates&company=Microsoft

GET or POST?

• GET method is useful for
– Retrieving information, e.g. from a database
– Embedding data in URL without form element

• POST method should be used for forms with
– Many fields or long fields
– Sensitive information
– Data for updating database

• GET requests may be cached by clients browsers
or proxies, but not POST requests

Parsing Form Input

• Method stored in HTTP_METHOD
• GET: Data encoded into QUERY_STRING
• POST: Data in standard input (from body

of request)
• Most scripts parse input into an associative

array
– You can parse it yourself
– Or use available libraries (better)

CGI Environment Variables
• DOCUMENT_ROOT
• HTTP_HOST
• HTTP_REFERER
• HTTP_USER_AGENT
• HTTP_COOKIE
• REMOTE_ADDR
• REMOTE_HOST
• REMOTE_USER
• REQUEST_METHOD
• SERVER_NAME
• SERVER_PORT

CGI Script: Example

Part 1: HTML Form
<html>
<center>
<H1>Anonymous Comment Submission</H1>
</center>
Please enter your comment below which will
be sent anonymously to <tt>mohri@cs.nyu.edu</tt>.
If you want to be extra cautious, access this
page through Anonymizer.
<p>
<form action=cgi-bin/comment.cgi method=post>
<textarea name=comment rows=20 cols=80>
</textarea>
<input type=submit value="Submit Comment">
</form>
</html>

Part 2: CGI Script (ksh)
#!/home/unixtool/bin/ksh

. cgi-lib.ksh # Read special functions to help parse
ReadParse
PrintHeader

print -r -- "${Cgi.comment}" | /bin/mailx -s "COMMENT" mohri

print "<H2>You submitted the comment</H2>"
print "<pre>"
print -r -- "${Cgi.comment}"
print "</pre>"

Debugging

• Debugging can be tricky, since error
messages don't always print well as HTML

• One method: run interactively

$ QUERY_STRING='birthday=10/15/03'
$./birthday.cgi
Content-type: text/html

<html>
Your birthday is <tt>10/15/02</tt>.
</html>

How to get your script run

• This can vary by web server type
http://www.cims.nyu.edu/systems/resources/webhosting/index.html

• Typically, you give your script a name that
ends with .cgi

• Give the script execute permission
• Specify the location of that script in the

URL

CGI Security Risks

• Sometimes CGI scripts run as owner of the scripts
• Never trust user input - sanity-check everything
• If a shell command contains user input, run

without shell escapes
• Always encode sensitive information, e.g.

passwords
– Also use HTTPS

• Clean up - don’t leave sensitive data around

CGI Benefits

• Simple
• Language independent
• UNIX tools are good for this because

– Work well with text
– Integrate programs well
– Easy to prototype
– No compilation (CGI scripts)

Example: Dump Some Info
#!/home/unixtool/bin/ksh

. ./cgi-lib.ksh
PrintHeader
ReadParse

print "<h1> Date </h1>"
print "<pre>"
date
print "</pre>"

print "<h1> Form Variables </h1>"
print "<pre>"
set -s -- ${!Cgi.*}
for var
do
 nameref r=$var
 print "${var#Cgi.} = $r"
 unset r
done
print "</pre>"

print "<h1> Environment </h1>"
print "<pre>"
env | sort
print "</pre>"

Example: Find words in Dictionary

<form action=dict.cgi>
Regular expression: <input type=entry
name=re value=".*">
<input type=submit>
</form>

Example: Find words in Dictionary
#!/home/unixtool/bin/ksh

PATH=$PATH:.
. cgi-lib.ksh
ReadParse
PrintHeader

print "<H1> Words matching <tt>${Cgi.re}</tt> in the dictionary
</H1>\n";
print ""
grep "${Cgi.re}" /usr/dict/words | while read word
do
 print " $word"
done
print ""

