Last Time...

O'REILLY"

nold Rodans

on the website

lecture 6

Shell Scripting

The user interface to the operating system

Functionality:

— Execute other programs

— Manage files

— Manage processes

Full programming language

A program like any other

— This 1s why there are so many shells

shell History

e There are

many choices
for shells

o Shell features

evol
UN

ved as

X grew

19

19

19

19

19

19

19

19

19

19

72

34

86

38

90

19

94

Thompson

@ Bourne

csh

tcsh

tcl

\ Formshell

vsh

\

awk

ksh

System-V

v9sh

/

Perl

ksh-93

python

Perl5

Most Gommonly Used Shells

— /bin/csh C shell
— /bin/tcsh Enhanced C Shell

— /bin/sh The Bourne Shell / POSIX shell
— /bin/ksh Korn shell
— /bin/bash Korn shell clone, from GNU

Ways to use the shell

* Interactively

— When you log 1n, you interactively use the shell

* Scripting
— A set of shell commands that constitute an
executable program

 Means of input: Stangard nput
— Program arguments (aroc, argv
[control information] T agumerte ~——/ i |
— Environment variables erarmen e\ P00 i et
[state information] o -
— Standard input [data] Saraara o

(stdout)

* Means of output:
— Return status code [control information]
— Standard out [data]
— Standard error [error messages]

* A shell script 1s a regular text file that
contains shell or UNIX commands

— Before running it, it must have execute
permission:
e chmod +x filename

* A script can be invoked as:
— ksh name [arg ..]
— ksh < name [args ..]
— name [arg ..]

 When a script 1s run, the kernel determines which

shell 1t 1s written for by examining the first line of

the script

— If I8t line starts with #! pathname-of-shell,
then 1t invokes pathname and sends the script as
an argument to be interpreted

— If #! 1s not specified, the current shell assumes it
1s a script 1n 1ts own language

e leads to problems

#'!'/bin/sh

echo Hello World

* Advantages of shell scripts
— Easy to work with other programs
— Easy to work with files
— Easy to work with strings
— Great for prototyping. No compilation

* Disadvantages of shell scripts
— Slow
— Not well suited for algorithms & data structures

The G Shell

e (C-like syntax (uses { }'s)
* Inadequate for scripting
— Poor control over file descriptors
— Can't mix flow control and commands

— Difficult quoting "I say \"hello\"" doesn't work
— Can only trap SIGINT

* Survives mostly because of interactive features.
— Job control
— Command history
— Command line editing, with arrow keys (tcsh)

The Bourne Shell

Slight differences on various systems
Evolved nto standardized POSIX shell
Scripts will also run with ksh, bash
Influenced by ALGOL

e simple command: sequence of non blanks
arguments separated by blanks or tabs.

e]st argument (numbered zero) usually specifies
the name of the command to be executed.

e Any remaining arguments:

— Are passed as arguments to that command.

— Arguments may be filenames, pathnames, directories
or special options

/bin/ls
ls -1 / > | =1

/

* Any command ending with "&" 1s run in
the background.

netscape &

e wait will block until the command finishes

* The shell's power 1s 1n 1ts ability to hook
commands together

* We've seen one example of this so far with
pipelines:

cut -d: -f2 /etc/passwd | sort | uniq

* We will see others

Redirection of input/ouput

Redirection of output: >
—example:$ 1s -1 > my files

Redirection of input: <
—example: $ cat <input.data

Append output: >>
—example: $ date >> logfile

Arbaitrary file descriptor redirection: fd>
—example: $ 1s -1 2> error log

ecmd 2>file

— send standard error to file
— standard output remains the same

ecmd > file 2>&l
— send both standard error and standard output to file
ecmd > filel 2>file2

— send standard output to filel
— send standard error to file2

 Shell provides alternative ways of supplying
standard input to commands (an anonymous file)

 Shell allows in-line input redirection using <<
called here documents

 format
command [arg(s)] << arbitrary-delimiter

command input

arbitrary-delimiter

e arbitrary-delimiter should be a string that does
not appear in text

#'!'/bin/sh

mail steinbrenner@yankees.com <<EOT
You guys really blew it
Monday. Good luck next year.
Yours,
SUSER

EOT

e Write
name=value

e Read: Svar

 Turn local variable into environment:
export variable

#'!'/bin/sh

MESSAGE="Hello World"
echo SMESSAGE

$SHOME
SPATH
SMAIL
SUSER
$SHELL
$STERM
$PS1

Absolute pathname of your home directory
A list of directories to search for

Absolute pathname to mailbox

Your login name

Absolute pathname of login shell

Type of your terminal

Prompt

* A parameter 1s one of the following:
— A variable
— A positional parameter, starting at 1
— A special parameter

e To get the value of a parameter: $ {param}
— Can be part of a word (abc${foo}def)
— Works within double quotes

 The {} can be omitted for simple variables,

special parameters, and single digit positional
parameters.

The arguments to a shell script
- $1, $2, $3 ..

The arguments to a shell function

Arguments to the set built-in command

— set this is a test
e $1l=this, $2=is, $3=a, $4=test

Manipulated with shift

— shift 2
e $Sl=a, $2=test

Parameter O 1s the name of the shell or the shell
script.

#'!'/bin/sh

Parameter 1l: word
Parameter 2: file
grep S1 $2 | wc -1

$ countlines ing /usr/dict/words
3277

n$@n

Number of positional parameters

Options currently 1n effect

Exit value of last executed command

Process number of current process

Process number of background process

All
All

| arguments on command line

| arguments on command line

individually quoted "$1" n"s$2"

* Used to turn the output of a command into a string

» Used to create arguments or variables

e Command 1s placed with grave accents ~ ~ to
capture the output of command

S date
Wed Sep 25 14:40:56 EDT 2001
S NOw='date"

$ sed "s/oldtext/'ls | head -1'/g"

$ PATH= myscript’ :SPATH
$ grep ‘generate regexp myfile.c

* Wildcards (patterns)
* matches any string of characters
? matches any single character
[list] matches any character in list

[lower-upper] matches any character in range
lower-upper inclusive

[!list] matches any character not 1n list

$ /bin/ls
« If multiple matches, all are returned filel file2

and treated as separate arguments: 3 cat filel
a

$ cat file2
b
$ cat file*
a
b

« Handled by the shell (exec never sees the wildcards)
— argv[0]: /bin/cat
— argv[l1]: filel — argv[0]: /bin/cat
— argv[2]: file2 NOT — argv[l]: file*

Multiple commands
— Separated by semicolon or newline

Command groupings
— pipelines
Subshell

(commandl; command2) > file
Boolean operators
Control structures

« Exit value of a program (exit system call) 1s a number
— 0 means success
— anything else 1s a failure code

 cmdl && cmd?2

— executes cmd?2 1f cmd1 1s successtul

e cmdl || cmd?2

— executes cmd?2 1f cmdl1 1s not successful

$ ls bad file > /dev/null && date
$ ls bad file > /dev/null || date
Wed Sep 26 07:43:23 2001

1f expression
then

commandl
else

commandZ’z
fi

Any UNIX command. Evaluates to true if the
exit code 1s 0, false if the exit code > 0

Special command /bin/test exists that does
most common expressions

— String compare

— Numeric comparison

— Check file properties

/bin/ [often linked to /bin/test for
syntactic sugar (or builtin to shell)

Good example UNIX tools working together

if test "S$USER" = ”"mohri"
then

echo "I know you"
else

echo "I dont know you"
fi

if [-f /tmp/stuff] && ["wc -1 < /tmp/stuff’ -gt 10
]
then

echo "The file has more than 10 lines in it"
else

echo "The file is nonexistent or small"
fi

test Summary

String based tests

-z string

-n string

stringl = string2
stringl !'= string2
string

Numeric tests
intl -eq int2
intl —ne int2
-gt, —ge, -1t, -1e

File tests
-r file
-w file
-f file
-d file
-s file

Logic
!

-a, -0
(expr)

Length of string is 0
Length of string is not 0
Strings are identical
Strings differ

String 1s not NULL

First int equal to second
First int not equal to second
greater, greater/equal, less, less/equal

File exists and is readable
File exists and is writable
File 1s regular file

File is directory

file exists and is not empty

Negate result of expression
and operator, or operator
groups an expression

e No arithmetic built in to /bin/sh
* Use external command /bin/expr
* exXpr expression

— Evaluates expression and sends the result to
standard output

— Yields a numeric or string result

expr 4 "*" 12
expr 1A (1A 4 + 3 1A) 1A MWee N 2

e1f .. then .. f1
while .. done
euntil .. do .. done
e for .. do .. done

e case .. 1n .. esac

e Different than C:

for var in list
do

command
done

* Typically used with positional params or a list of
files:

sum=0
for var in "S$Q@"
do
sum="expr $sum + S$var’
done

echo The sum is $sum

for file in *.c ; do echo "We have S$file"
done

* Like a C switch statement for strings:

case $var in
optl) commandl
command2
opt2) command

*) command

esacC

e * 15 a catch all condition

#!'/bin/sh

echo "Say something."
while true

do
read INPUT STRING
case $INPUT STRING in
hello)
echo "Hello there."
bye)
echo "See ya later."
*)
echo "I'm sorry?"
esac
done

echo "Take care."

* opt can be a shell pattern, or a list of shell
patterns delimited by |

« Example:

case Sname in
[0-9]%)
echo "That doesn't seem like a name."

J* |K*)
echo "Your name starts with J or K, cool."

*)

echo "You're not special."

esacC

Types of Commands

All behave the same way

* Programs
— Most that are part of the OS 1n /bin

e Built-in commands
 Functions

 Aliases

* Built-in commands are internal to the shell and do
not create a separate process. Commands are
built-in because:

— They are intrinsic to the language (exit)
— They produce side effects on the process (c¢d)
— They perform much better
* No fork/exec
* Special built-ins
— : . break continue eval exec export exit readonly return
set shift trap unset

exec
cd
shift
set
wait
umask
exit
eval
time
export
trap

replaces shell with program
change working directory
rearrange positional parameters
set positional parameters

wait for background proc. to exit
change default file permissions
quit the shell

parse and execute string

run command and print times
put variable into environment
set signal handlers

continue :

break

return

continue 1n loop
break 1n loop

return from function
true

read file of commands into
current shell; like #include

Functions are similar to scripts and other commands
except that they can produce side effects in the
callers script. The positional parameters are
saved and restored when invoking a function.
Variables are shared between caller and callee.

Syntax:
name ()

{

commands

}

Like macros (#define 1n C)

Shorter to define than functions, but more
limited

Not recommended for scripts

Example:

alias rm='rm -1i'

Special built-ins
Functions

— command bypasses search for functions
Built-ins not associated with PATH

PATH search
Built-ins associated with PATH

Executable 1mages

 Part 1: Read the command:
— Read one or more lines a needed
— Separate into tokens using space/tabs

— Form commands based on token types

e Part 2: Evaluate a command:

— Expand word tokens (command substitution, parameter
expansion)

— Split words into fields
— Setup redirections, environment

— Run command with arguments

Useful Program for Testing

/home/unixtool/bin/showargs

#include <stdio.h>
int main(int argc, char *argv|[])
{
int 1;
for (i=0; i < argc; i++) {
printf ("Arg %d: %s\n", i, argv[i]);
}

return (0) ;

}

Comments begin with an unquoted #
Comments end at the end of the line
Comments can begin whenever a token begins

Examples

This is a comment

and so is this

grep foo bar # this is a comment

grep foo bar# this is not a comment

The shell processes the following characters specially
unless quoted:
| & () <> ; " ' $§ ° spacetab newline

The following are special whenever patterns are processed:
*?2 []

The following are special at the beginning of a word:
~

The following 1s special when processing assignments:

Token Types

* The shell uses spaces and tabs to split the
line or lines into the following types of
tokens:

— Control operators

— Redirection operators
— Reserved words

— Assignment tokens

— Word tokens

Operator Tokens

Operator tokens are recognized everywhere
unless quoted. Spaces are optional before and
after operator tokens.

I/O Redirection Operators:
> >> >| >& < <K KL- <K&
— Each I/O operator can be immediately preceded by a
single digit
Control Operators:
| & ; () || && ;;

* Quoting causes characters to loose special
meaning.

 \ Unless quoted, \ causes next character to be
quoted. In front of new-line causes lines to be
joined.

o .. Literal quotes. Cannot contain '

o M. Removes special meanmg of all
characters except $, ", \ and ~. The \ 1s only
special before one of these characters and new-
line.

S cat file*
a
b

S cat "file*"
cat: file* not found

$ cat filel > /dev/null

$ cat filel ">" /dev/null
a

cat: >: cannot open

FILES="filel filel2"
S cat "SFILES"
cat: filel file2 not found

* A simple command consists of three types of
tokens:
— Assignments (must come first)
— Command word tokens
— Redirections: redirection-op + word-op
— The first token must not be a reserved word
— Command terminated by new-line or ;

« Example:

— foo=bar z= date’
echo SHOME
x=foobar > g$$ S$xyz z=3

* After parameter expansion, command
substitution, and arithmetic expansion, the
characters that are generated as a result of
these expansions that are not inside double
quotes are checked for split characters

» Default split character 1s space or tab

* Split characters are defined by the value of
the IFS variable (IFS="" disables)

FILES="filel file2"
cat SFILES

a
b

IFS=
cat SFILES
cat: filel file2: cannot open

IFS=x v=exit
echo exit $v "Sv"
exit e 1t exit

« After word splitting, each field that
contains pattern characters is replaced by
the pathnames that match

* Quoting prevents expansion
« set -0 noglob disables
— Not 1n original Bourne shell, but in POSIX

DATE= "date"

echo $foo > \

/dev/null

DATE= "date"

echo |$foo||> /dev/null

assignment word param redirection
echo |hello there >
/dev/null
/bin/echo| hello| there >

PATH expansion

split by IFS /dev/null

