
Last Time…

on the website

Lecture 6

Shell Scripting

What is a shell?

• The user interface to the operating system
• Functionality:

– Execute other programs
– Manage files
– Manage processes

• Full programming language
• A program like any other

– This is why there are so many shells

Shell History

• There are
many choices
for shells

• Shell features
evolved as
UNIX grew

Most Commonly Used Shells

– /bin/csh C shell
– /bin/tcsh Enhanced C Shell

– /bin/sh The Bourne Shell / POSIX shell
– /bin/ksh Korn shell
– /bin/bash Korn shell clone, from GNU

Ways to use the shell

• Interactively
– When you log in, you interactively use the shell

• Scripting
– A set of shell commands that constitute an

executable program

Review: UNIX Programs

• Means of input:
– Program arguments

[control information]
– Environment variables

[state information]
– Standard input [data]

• Means of output:
– Return status code [control information]
– Standard out [data]
– Standard error [error messages]

Shell Scripts

• A shell script is a regular text file that
contains shell or UNIX commands
– Before running it, it must have execute

permission:
•chmod +x filename

• A script can be invoked as:
– ksh name [arg …]
– ksh < name [args …]
– name [arg …]

Shell Scripts
• When a script is run, the kernel determines which

shell it is written for by examining the first line of
the script
– If 1st line starts with #!pathname-of-shell,

then it invokes pathname and sends the script as
an argument to be interpreted

– If #! is not specified, the current shell assumes it
is a script in its own language

• leads to problems

Simple Example

#!/bin/sh

echo Hello World

Scripting vs. C Programming

• Advantages of shell scripts
– Easy to work with other programs
– Easy to work with files
– Easy to work with strings
– Great for prototyping. No compilation

• Disadvantages of shell scripts
– Slow
– Not well suited for algorithms & data structures

The C Shell

• C-like syntax (uses { }'s)
• Inadequate for scripting

– Poor control over file descriptors
– Can't mix flow control and commands
– Difficult quoting "I say \"hello\"" doesn't work
– Can only trap SIGINT

• Survives mostly because of interactive features.
– Job control
– Command history
– Command line editing, with arrow keys (tcsh)

The Bourne Shell

• Slight differences on various systems
• Evolved into standardized POSIX shell
• Scripts will also run with ksh, bash
• Influenced by ALGOL

Simple Commands

• simple command: sequence of non blanks
arguments separated by blanks or tabs.

• 1st argument (numbered zero) usually specifies
the name of the command to be executed.

• Any remaining arguments:
– Are passed as arguments to that command.
– Arguments may be filenames, pathnames, directories

or special options

ls –l /
/bin/ls
-l
/

Background Commands

• Any command ending with "&" is run in
the background.

• wait will block until the command finishes

netscape &

Complex Commands

• The shell's power is in its ability to hook
commands together

• We've seen one example of this so far with
pipelines:

• We will see others

cut –d: -f2 /etc/passwd | sort | uniq

Redirection of input/ouput

• Redirection of output: >
– example:$ ls -l > my_files

• Redirection of input: <
– example: $ cat <input.data

• Append output: >>
– example: $ date >> logfile

• Arbitrary file descriptor redirection: fd>
– example: $ ls –l 2> error_log

Multiple Redirection

• cmd 2>file
– send standard error to file
– standard output remains the same

• cmd > file 2>&1
– send both standard error and standard output to file

• cmd > file1 2>file2
– send standard output to file1
– send standard error to file2

Here Documents
• Shell provides alternative ways of supplying

standard input to commands (an anonymous file)
• Shell allows in-line input redirection using <<

called here documents
• format
command [arg(s)] << arbitrary-delimiter
command input
 :
 :
arbitrary-delimiter
• arbitrary-delimiter should be a string that does

not appear in text

Here Document Example

#!/bin/sh

mail steinbrenner@yankees.com <<EOT
 You guys really blew it
 Monday. Good luck next year.
 Yours,
 $USER

 EOT

Shell Variables

• Write
name=value

• Read: $var

• Turn local variable into environment:
 export variable

Variable Example

#!/bin/sh

MESSAGE="Hello World"
echo $MESSAGE

Environmental Variables

NAME MEANING
$HOME Absolute pathname of your home directory
$PATH A list of directories to search for
$MAIL Absolute pathname to mailbox
$USER Your login name
$SHELL Absolute pathname of login shell
$TERM Type of your terminal
$PS1 Prompt

Parameters

• A parameter is one of the following:
– A variable
– A positional parameter, starting at 1
– A special parameter

• To get the value of a parameter: ${param}
– Can be part of a word (abc${foo}def)
– Works within double quotes

• The {} can be omitted for simple variables,
special parameters, and single digit positional
parameters.

Positional Parameters

• The arguments to a shell script
– $1, $2, $3 …

• The arguments to a shell function
• Arguments to the set built-in command

– set this is a test
• $1=this, $2=is, $3=a, $4=test

• Manipulated with shift
– shift 2

• $1=a, $2=test

• Parameter 0 is the name of the shell or the shell
script.

Example with Parameters

#!/bin/sh

Parameter 1: word
Parameter 2: file
grep $1 $2 | wc –l

$ countlines ing /usr/dict/words
3277

Special Parameters

• $# Number of positional parameters
• $- Options currently in effect
• $? Exit value of last executed command
• $$ Process number of current process
• $! Process number of background process
• $* All arguments on command line
• "$@" All arguments on command line

individually quoted "$1" "$2" ...

Command Substitution

• Used to turn the output of a command into a string
• Used to create arguments or variables
• Command is placed with grave accents ` ` to

capture the output of command
$ date
Wed Sep 25 14:40:56 EDT 2001
$ NOW=`date`

$ sed "s/oldtext/`ls | head -1`/g"

$ PATH=`myscript`:$PATH
$ grep `generate_regexp` myfile.c

File name expansion

• Wildcards (patterns)
* matches any string of characters
? matches any single character
[list] matches any character in list
[lower-upper] matches any character in range

lower-upper inclusive
[!list] matches any character not in list

File Expansion

• If multiple matches, all are returned
and treated as separate arguments:

• Handled by the shell (exec never sees the wildcards)
– argv[0]: /bin/cat
– argv[1]: file1
– argv[2]: file2

$ /bin/ls
file1 file2
$ cat file1
a
$ cat file2
b
$ cat file*
a
b

NOT
– argv[0]: /bin/cat
– argv[1]: file*

Compound Commands

• Multiple commands
– Separated by semicolon or newline

• Command groupings
– pipelines

• Subshell
(command1; command2) > file

• Boolean operators
• Control structures

Boolean Operators

• Exit value of a program (exit system call) is a number
– 0 means success
– anything else is a failure code

• cmd1 && cmd2
– executes cmd2 if cmd1 is successful

• cmd1 || cmd2
– executes cmd2 if cmd1 is not successful

$ ls bad_file > /dev/null && date
$ ls bad_file > /dev/null || date
Wed Sep 26 07:43:23 2001

Control Structures

if expression
then

command1
else

command2
fi

What is an expression?

• Any UNIX command. Evaluates to true if the
exit code is 0, false if the exit code > 0

• Special command /bin/test exists that does
most common expressions
– String compare
– Numeric comparison
– Check file properties

• /bin/[often linked to /bin/test for
syntactic sugar (or builtin to shell)

• Good example UNIX tools working together

Examples
if test "$USER" = ”mohri"
then

echo "I know you"
else

echo "I dont know you"
fi

if [-f /tmp/stuff] && [`wc –l < /tmp/stuff` -gt 10
]
then

echo "The file has more than 10 lines in it"
else

echo "The file is nonexistent or small"
fi

test Summary
• String based tests

-z string Length of string is 0
-n string Length of string is not 0
string1 = string2 Strings are identical
string1 != string2 Strings differ
string String is not NULL

• Numeric tests
int1 –eq int2 First int equal to second
int1 –ne int2 First int not equal to second
-gt, -ge, -lt, -le greater, greater/equal, less, less/equal

• File tests
-r file File exists and is readable
-w file File exists and is writable
-f file File is regular file
-d file File is directory
-s file file exists and is not empty

• Logic
! Negate result of expression
-a, -o and operator, or operator
(expr) groups an expression

Arithmetic

• No arithmetic built in to /bin/sh
• Use external command /bin/expr
• expr expression

– Evaluates expression and sends the result to
standard output

– Yields a numeric or string result

expr 4 "*" 12

expr "(" 4 + 3 ")" "*" 2

Control Structures Summary

•if … then … fi
•while … done
•until … do … done
•for … do … done
•case … in … esac

for loops
• Different than C:

for var in list
do
command

done

• Typically used with positional params or a list of
files:

sum=0
for var in "$@"
do
 sum=`expr $sum + $var`

done
echo The sum is $sum

for file in *.c ; do echo "We have $file"
done

Case statement

• Like a C switch statement for strings:
 case $var in

opt1) command1
command2
;;

opt2) command
;;

*) command
;;

esac

• * is a catch all condition

Case Example
#!/bin/sh

echo "Say something."
while true
do
 read INPUT_STRING
 case $INPUT_STRING in
 hello)
 echo "Hello there."
 ;;
 bye)
 echo "See ya later."
 ;;
 *)
 echo "I'm sorry?"
 ;;
 esac
done
echo "Take care."

Case Options

• opt can be a shell pattern, or a list of shell
patterns delimited by |

• Example:
case $name in
 [0-9])
 echo "That doesn't seem like a name."
 ;;
 J*|K*)
 echo "Your name starts with J or K, cool."
 ;;
 *)
 echo "You're not special."
 ;;
esac

Types of Commands

All behave the same way
• Programs

– Most that are part of the OS in /bin
• Built-in commands
• Functions
• Aliases

Built-in Commands

• Built-in commands are internal to the shell and do
not create a separate process. Commands are
built-in because:
– They are intrinsic to the language (exit)
– They produce side effects on the process (cd)
– They perform much better

• No fork/exec

• Special built-ins
– : . break continue eval exec export exit readonly return

set shift trap unset

Important Built-in Commands
exec : replaces shell with program
cd : change working directory
shift : rearrange positional parameters
set : set positional parameters
wait : wait for background proc. to exit
umask : change default file permissions
exit : quit the shell
eval : parse and execute string
time : run command and print times
export : put variable into environment
trap : set signal handlers

Important Built-in Commands

continue : continue in loop
break : break in loop
return : return from function
: : true
. : read file of commands into

current shell; like #include

Functions

Functions are similar to scripts and other commands
except that they can produce side effects in the
callers script. The positional parameters are
saved and restored when invoking a function.
Variables are shared between caller and callee.

Syntax:
name ()
{

commands
}

Aliases

• Like macros (#define in C)
• Shorter to define than functions, but more

limited
• Not recommended for scripts
• Example:

alias rm='rm –i'

Search Rules

• Special built-ins
• Functions

– command bypasses search for functions
• Built-ins not associated with PATH
• PATH search
• Built-ins associated with PATH
• Executable images

Parsing and Quoting

How the Shell Parses

• Part 1: Read the command:
– Read one or more lines a needed
– Separate into tokens using space/tabs
– Form commands based on token types

• Part 2: Evaluate a command:
– Expand word tokens (command substitution, parameter

expansion)

– Split words into fields
– Setup redirections, environment
– Run command with arguments

Useful Program for Testing

/home/unixtool/bin/showargs

#include <stdio.h>
int main(int argc, char *argv[])
{
 int i;
 for (i=0; i < argc; i++) {
 printf("Arg %d: %s\n", i, argv[i]);
 }
 return(0);
}

Shell Comments

• Comments begin with an unquoted #
• Comments end at the end of the line
• Comments can begin whenever a token begins
• Examples

This is a comment
and so is this
grep foo bar # this is a comment
grep foo bar# this is not a comment

Special Characters

• The shell processes the following characters specially
unless quoted:
 | & () < > ; " ' $ ` space tab newline

• The following are special whenever patterns are processed:
 * ? []

• The following are special at the beginning of a word:
 # ~

• The following is special when processing assignments:
 =

Token Types

• The shell uses spaces and tabs to split the
line or lines into the following types of
tokens:
– Control operators
– Redirection operators
– Reserved words
– Assignment tokens
– Word tokens

Operator Tokens

• Operator tokens are recognized everywhere
unless quoted. Spaces are optional before and
after operator tokens.

• I/O Redirection Operators:
 > >> >| >& < << <<- <&

– Each I/O operator can be immediately preceded by a
single digit

• Control Operators:
 | & ; () || && ;;

Shell Quoting

• Quoting causes characters to loose special
meaning.

• \ Unless quoted, \ causes next character to be
quoted. In front of new-line causes lines to be
joined.

• '…' Literal quotes. Cannot contain '
• "…" Removes special meaning of all

characters except $, ", \ and `. The \ is only
special before one of these characters and new-
line.

Quoting Examples
$ cat file*
a
b

$ cat "file*"
cat: file* not found

$ cat file1 > /dev/null
$ cat file1 ">" /dev/null
a
cat: >: cannot open

FILES="file1 file2"
$ cat "$FILES"
cat: file1 file2 not found

Simple Commands

• A simple command consists of three types of
tokens:
– Assignments (must come first)
– Command word tokens
– Redirections: redirection-op + word-op
– The first token must not be a reserved word
– Command terminated by new-line or ;

• Example:
– foo=bar z=`date`
echo $HOME
x=foobar > q$$ $xyz z=3

Word Splitting

• After parameter expansion, command
substitution, and arithmetic expansion, the
characters that are generated as a result of
these expansions that are not inside double
quotes are checked for split characters

• Default split character is space or tab
• Split characters are defined by the value of

the IFS variable (IFS="" disables)

Word Splitting Examples
FILES="file1 file2"
cat $FILES
a
b

IFS=
cat $FILES
cat: file1 file2: cannot open

IFS=x v=exit
echo exit $v "$v"
exit e it exit

Pathname Expansion

• After word splitting, each field that
contains pattern characters is replaced by
the pathnames that match

• Quoting prevents expansion
• set –o noglob disables

– Not in original Bourne shell, but in POSIX

Parsing Example
DATE=`date` echo $foo > \

/dev/null

DATE=`date` echo $foo > /dev/null
assignment word param redirection

echo hello there
/dev/null

/bin/echo hello there
/dev/nullsplit by IFSPATH expansion

