Lecture 9

sed and awk

Last week

* Regular Expressions
— 8I¢p
— egrep

Today

* Stream manipulation:
— sed
— awk

sed: Stream-oriented, Non-
Interactive, Text Editor

Look for patterns one line at a time, like grep
Change lines of the file

Non-interactive text editor
— Editing commands come 1n as script

— There 1s an interactive editor ed which accepts the
same commands

A Unix filter

— Superset of previously mentioned tools

- All editing commands 1n a sed script are applied in
order to each input line.

If a command changes the input, subsequent
command address will be applied to the current
(modified) line 1n the pattern space, not the original
input line.

The original mput file 1s unchanged (sed 1s a filter),

and the results are sent to standard output (but can
be redirected to a file).

‘Inputﬂ

scriptfile

Input line

(Pattern Space)

\

Hold Space

* A script 1s nothing more than a file of commands

 Each command consists of up to two addresses
and an action, where the address can be a regular
expression or line number.

address action command

address action

address action

address action

address action

script

* As each line of the input file 1s read, sed reads the
first command of the script and checks the
address against the current input line:

— If there 1s a match, the command 1s executed

— If there 1s no match, the command 1s ignored

— sed then repeats this action for every command in the
script file

 When 1t has reached the end of the script, sed
outputs the current line (pattern space) unless
the -n option has been set

 sed then reads the next line 1n the input file and
restarts from the beginning of the script file

* All commands 1n the script file are compared to,
and potentially act on, all lines 1n the input file

script

(- e

print cmd

\

output

Youtput
P only without -n

» sed commands have the general form
— [address/, address]][![command [arguments]

 sed copies each input line into a pattern space

— If the address of the command matches the line in the
pattern space, the command 1s applied to that line

— If the command has no address, 1t 1s applied to each
line as 1t enters pattern space

— If a command changes the line 1n pattern space,
subsequent commands operate on the modified line
 When all commands have been read, the line in
pattern space 1s written to standard output and a
new line 1s read into pattern space

An address can be either a line number or a
pattern, enclosed 1n slashes (/pattern/)

A pattern 1s described using regular
expressions (BREs, as in grep)

If no pattern 1s specified, the command will
be applied to all lines of the input file

To refer to the last line: $

e Most commands will accept two addresses

— If only one address 1s given, the command operates
only on that line

— If two comma separated addresses are given, then the
command operates on a range of lines between the first
and second address, inclusively

 The ! operator can be used to negate an address,
1e; address!command causes command to be
applied to all lines that do not match address

* command 1s a single letter
» Example: Deletion: d

* [addressl] [,address2]d

— Delete the addressed line(s) from the pattern
space; line(s) not passed to standard output.

— A new line of input is read and editing resumes
with the first command of the script.

- d deletes the all lines
6d deletes line 6
- /*$/d deletes all blank lines
- 1,10d deletes lines 1 through 10
« 1,/78/d deletes from line 1 through the first blank line
- /78/,8d deletes from the first blank line through

the last line of the file

- /7$/,10d deletes from the first blank line through line 10
- /~ya*y/,/[0-9]18/d deletes from the first line that begins

with yay, yaay, yaaay, etc. through
the first line that ends with a digit

* Braces {} can be used to apply multiple commands to an
address

[/pattern/[,/pattern/]]{
commandl
command?2
command3

}

e Strange syntax:
— The opening brace must be the last character on a line
— The closing brace must be on a line by itself
— Make sure there are no spaces following the braces

» Although sed contains many editing commands,
we are only going to cover the following subset:

* s - substitute * d - delete
* a - append *p - print
i -1nsert ey - transform

e ¢ - change e g - quit

o Syntax: sed [-n] [-e] [‘command’] [file...]
sed [-n] [-f scriptfile] [file...]

— -n - only print lines specified with the print command
(or the ‘p’ flag of the substitute (‘s’) command)

— -f scriptfile - next argument 1s a filename containing
editing commands

— -e command - the next argument 1s an editing
command rather than a filename, useful 1f multiple
commands are specified

— If the first line of a scriptfile 1s “#n”, sed acts as though
-n had been specified

The Print command (p) can be used to force the

pattern space to be output, useful i1f the -n option
has been specified

Syntax: [addressl[,address2]]p

Note: 1f the -n or #n option has not been specified,
p will cause the line to be output twice!

Examples:
1,5p will display lines 1 through 5

/~$/,$p will display the lines from the first
blank line through the last line of the file

e Syntax:
[address(es)]s/pattern/replacement/[flags]
— pattern - search pattern
— replacement - replacement string for pattern
— flags - optionally any of the following

- n a number from 1 to 512 indicating which
occurrence of pattern should be
replaced

- g global, replace all occurrences of pattern

in pattern space
- p print contents of pattern space

« s/Puff Daddy/P. Diddy/

— Substitute P. Diddy for the first occurrence of Puff Daddy in
pattern space

e s/Tom/Dick/2

— Substitutes Dick for the second occurrence of Tom 1n the
pattern space

« s/wood/plastic/p

— Substitutes plastic for the first occurrence of wood and
outputs (prints) pattern space

* Substitute can use several special
characters in the replacement string
— & - replaced by the entire string matched in the
regular expression for pattern

— \n - replaced by the nth substring (or
subexpression) previously specified using “\(*¢
and “\)”

-\ - used to escape the ampersand (&) and the
backslash (\)

"the UNIX operating system .."
s/ .NI./wonderful &/
"the wonderful UNIX operating system .."

cat testl

first:second

one:two

sed 's/\(.*\):\(.*\)/\2:\1/"' testl
second: first

two:one

sed 's/\([[:alpha:]]1\)\([* \n]l*\)/\2\lay/g'

— Pig Latin ("unix is fun" -> "nixuay siay unfay")

Syntax for these commands 1s a little strange
because they must be specified on multiple lines

append [address]al
text

insert [address]i)
text

change [address(es)]c)
text

append/insert for single lines only, not range

* Append places fext after the current line 1n pattern space

 Insert places fext before the current line 1n pattern space

— Each of these commands requires a \ following it.
text must begin on the next line.

— If text begins with whitespace, sed will discard it
unless you start the line with a \

« Example:

/<Insert Text Here>/i\
Line 1 of inserted text)\
\ Line 2 of inserted text

would leave the following in the pattern space

Line 1 of inserted text
Line 2 of inserted text
<Insert Text Here>

* Unlike Insert and Append, Change can be applied
to either a single line address or a range of
addresses

 When applied to a range, the entire range 1s
replaced by text specified with change, not each
line
— Exception: If the Change command 1s executed with
other commands enclosed in { } that act on a range of

lines, each line will be replaced with zext
* No subsequent editing allowed

 Remove mail headers, ie;
the address specifies a /*From /,/*$/c\
range of lines beginning <Mail Headers Removed>
with a line that begins with
From until the first blank /AFrom /,/*$/{

line. s/~From //p
— The first example replaces all c\
lines with a single occurrence <Mail Header Removed>
of <Mail Header Removed>. }

— The second example replaces
each line with <Mail Header
Removed>

 If an address 1s followed by an exclamation point
(1), the associated command 1s applied to all lines

that don’t match the address or address range
« Examples:
1,5!d would delete all lines except 1 through 5

/black/'s/cow/horse/ would substitute
“horse” for “cow’ on all lines except those that
contained “black™

“The brown cow” -> “The brown horse”
“The black cow” -> “The black cow”

Transform

e The Transform command (y) operates like tr, it
does a one-to-one or character-to-character
replacement

» Transform accepts zero, one or two addresses
« [address[,address]]y/abc/xyz/

— every a within the specified address(es) 1s transformed
to an x. The same 1s true for bto y and c to z

— y/abcdefghijklmnopgrstuvwxyz/ABCDEFGHIJKLMNO
PORSTUVWXYZ/ changes all lower case characters on
the addressed line to upper case

— If you only want to transform specific characters (or a
word) 1n the line, 1t 1s much more difficult and requires
use of the hold space

« Pattern space: Workspace or temporary
buffer where a single line of input 1s held
while the editing commands are applied

* Hold space: Secondary temporary buffer
for temporary storage only in

Pattern

h, H, g, G, x \
Hold

out

* Quit causes sed to stop reading new input lines
and stop sending them to standard output

It takes at most a single line address

— Once a line matching the address 1s reached, the script
will be terminated

— This can be used to save time when you only want to
process some portion of the beginning of a file

e Example: to print the first 100 lines of a file (like
head) use:
— sed '100g' filename

— sed will, by default, send the first 100 lines of filename
to standard output and then quit processing

* Regular expressions
* Fast

e Concise

Hard to remember text from one line to
another

Not possible to go backward 1n the file

No way to do forward references like
[..../+1

No facilities to manipulate numbers

Cumbersome syntax

Programmable Filters

Why is it called AWK?

| I
Weinberger Kernighan

awk's purpose: A general purpose programmable
filter that handles text (strings) as easily as numbers

— This makes awk one of the most powerful of the Unix
utilities

awk processes fields while sed only processes lines
nawk (new awk) 1s the new standard for awk

— Designed to facilitate large awk programs

— gawk 1s a free nawk clone from GNU

awk gets 1t’s mput from

— files

— redirection and pipes

— directly from standard input

A programming language for handling common
data manipulation tasks with only a few lines of
code

awk 1s a pattern-action language, like sed

The language looks a little like C but
automatically handles input, field splitting,
initialization, and memory management

— Built-in string and number data types
— No variable type declarations
awk 1s a great prototyping language

— Start with a few lines and keep adding until 1t does
what you want

Convenient numeric processing
Variables and control flow 1n the actions

Convenient way of accessing fields within
lines

Flexible printing
Built-1n arithmetic and string functions

C-like syntax

* An awk program consists of:
— An optional BEGIN segment

* For processing to execute prior to
reading input
— pattern - action pairs
* Processing for input data

« For each pattern matched, the
corresponding action is taken

— An optional END segment

* Processing after end of input data

BEGIN {action}
pattern {action}

pattern {action}

pattern { action}

END {action}

* There are several ways to run an Awk program
— awk 'program' input file(s)

e program and input files are provided as command-line
arguments

— awk 'program’

e program is a command-line argument; input is taken from
standard input (yes, awk 1s a filter!)

— awk -f program_file input files

e program is read from a file

Search a set of files for patterns.

Perform specified actions upon lines or
fields that contain instances of patterns.

Does not alter input files.
Process one input line at a time

This 1s stmilar to sed

Every program statement has to have a pattern or an
action or both

Default pattern 1s to match all lines

Default action 1s to print current record

Patterns are simply listed; actions are enclosed 1n { }

awk scans a sequence of input /ines, or records, one
by one, searching for lines that match the pattern

— Meaning of match depends on the pattern

e Selector that determines whether action 1s to be
executed

* pattern can be:
— the special token BEGIN or END
— regular expression (enclosed with //)
— relational or string match expression
— ! negates the match

— arbitrary combination of the above using && | |
« /NYU/ matches if the string “NYU?” is in the record
« x > 0 matches if the condition is true
« /NYU/ && (name == "UNIX Tools")

 BEGIN and END provide a way to gain
control before and after processing, for
initialization and wrap-up.
— BEGIN: actions are performed before the first
input line 1s read.

— END: actions are done after the last input line
has been processed.

 action may include a list of one or more C like
statements, as well as arithmetic and string

expressions and assignments and multiple output
streams.

* action 1s performed on every line that matches
pattern.
— If pattern is not provided, action is performed on every input line

— If action 1s not provided, all matching lines are sent to standard output.

* Since patterns and actions are optional, actions must

be enclosed 1n braces to distinguish them from
pattern.

ls | awk '
BEGIN { print "List of html files:" }
/\.html$/ { print }
END { print "There you go!" }

List of html files:
index.html

asl.html

asZ2.html

There you go!

* awk scripts can define and use variables
BEGIN { sum = 0 }
{ sum ++ }
END { print sum }

* Some variables are predefined

Default record separator 1s newline

— By default, awk processes its input a line at a
time.

Could be any other regular expression.

RS: record separator
— Can be changed in BEGIN action

NR is the variable whose value 1s the
number of the current record.

« Each input line 1s split into fields.

— FS: field separator: default i1s whitespace (1 or more
spaces or tabs)

— awk -Fc option sets FS to the character ¢
 Can also be changed in BEGIN

— $0 1s the entire line
— $1 1s the first field, $2 1s the second field,

* Only fields begin with §, variables are unadorned

* Printing Every Line
— If an action has no pattern, the action 1s performed to
all input lines

 { print } will print all input lines to standard out
 { print $0 } will do the same thing

* Printing Certain Fields

— Multiple 1items can be printed on the same output line
with a single print statement

- { print $1, S$3 }

— Expressions separated by a comma are, by default,
separated by a single space when printed (OFS)

* NF, the Number of Fields

— Any valid expression can be used after a $ to indicate
the contents of a particular field

— One built-1n expression 1s NF, or Number of Fields

- { print NF, $1, $NF } will print the number of
fields, the first field, and the last field in the current
record

- { print $(NF-2) } prints the third to last field
e Computing and Printing

— You can also do computations on the field values and
include the results 1n your output
- { print $1, $2 * $3 }

* Printing Line Numbers

— The built-1n variable NR can be used to print line
numbers

- { print NR, $0 } will print each line prefixed with
its line number
e Putting Text in the Output

— You can also add other text to the output besides what
1s 1n the current record
- { print "total pay for", $1, "is", $2 * $3 }

— Note that the inserted text needs to be surrounded by
double quotes

* Lining Up Fields
— Like C, Awk has a printf function for producing
formatted output

— printf has the form
o printf(format, vall, val2, vals, ...)

{ printf(“total pay for %s is $%.2f\n”,
$1, $2 * $3) }

— When using printf, formatting 1s under your control so
no automatic spaces or newlines are provided by awk.
You have to insert them yourself.

{ printf(“%-8s %6.2f\n”, $1, $2 * $3) }

* Awk patterns are good for selecting specific lines
from the input for further processing

— Selection by Comparison
e $2 >= 5 { print }

— Selection by Computation
e $2 * $3 > 50 { printf(“%6.2f for %s\n”,
$2 * $3, $1) }
— Selection by Text Content
+ $1 == "NYU"
+ $2 ~ /NYU/

— Combinations of Patterns
e« $2 >= 4 || $3 >= 20

— Selection by Line Number
« NR >= 10 && NR <= 20

* awk variables take on numeric (floating
point) or string values according to context.

» User-defined variables are unadorned (they
need not be declared).

* By default, user-defined variables are
initialized to the null string which has
numerical value O.

e Counting 1s easy to do with Awk
$3 > 15 { emp = emp + 1}

END { print emp, “employees worked
more than 15 hrs”}

* Computing Sums and Averages 1s also simple
{ pay = pay + $2 * $3 }
END { print NR, “employees”
print “total pay is”, pay
print “average pay is”, pay/NR

Handling Text

* One major advantage of Awk 1s 1ts ability to
handle strings as easily as many languages handle
numbers

 Awk variables can hold strings of characters as
well as numbers, and Awk conveniently translates
back and forth as needed

* This program finds the employee who 1s paid the

most per hour:

Fields: employee, payrate
$2 > maxrate { maxrate = $2; maxemp = $1 }

END { print “highest hourly rate:”,
maxrate, “for”, maxemp }

 String Concatenation
— New strings can be created by combining old ones
{ names = names $1 " " }
END { print names }

e Printing the Last Input Line

— Although NR retains its value after the last input line
has been read, $0 does not

{ last = S0 }
END { print last }

 awk contains a number of built-in functions.
length 1s one of them.

e Counting Lines, Words, and Characters using
length (a poor man’s wc)

{ nc = nc + length($0) + 1
nw = nw + NF

}
END { print NR, "lines,", nw, "words,", nc,
"characters" }
e substr(s, m, n) produces the substring of s that
begins at position m and 1s at most n characters
long.

« awk provides several control flow statements for
making decisions and writing loops

e If-Then-Else
$2 > 6 { n=n+ 1; pay = pay + $2 * $3 }

END { if (n > 0)
print n, "employees, total pay is",
pay, "average pay is", pay/n
else

print '"no employees are paid more
than $6/hour"

Loopn Gontrol

 While

interestl - compute compound interest

input: amount, rate, years

output: compound value at end of each year

{ 1 =1

while (i <= $3) {

printf (“\t%.2f\n”, $1 * (1 + $2) ~ i)
i=1i+1

Do-While Loons

e Do While
do {

statementl

/

while (expression)

e For

interest2 - compute compound interest
input: amount, rate, years

output: compound value at end of each year

{ for (i = 1; i <= $3; i =i + 1)
printf ("\t%.2£f\n", $1 * (1 + $2) ~ i)

Arrays

* Array elements are not declared

* Array subscripts can have any value:
— Numbers

— Strings! (associative arrays)

« Examples
—arr[3]="value"
— grade[”Mohri"]=40.3

Array Example

reverse - print input in reverse order by line
{ line[NR] = $0 } # remember each line

END {
for (i=NR; (i > 0),; i=i-1) {
print line[i]
}
}

» for loop to read associative array
— for (v in array) { .. }
— Assigns to v each subscript of array (unordered)
— Element 1s array [v]

« END { print NR }
« NR == 10
« { print S$SNF }

{ field = SNF }
END { print field }

 NF > 4
« SNF > 4

{ nf = nf + NF }
END { print nf }

/Mehryar/ { nlines

nlines + 1 }

END { print nlines }

$S1 > max { max = $1; maxline = $0 }

END { print max, maxline }

NEF > 0

length ($0) > 80

{ print NF, $0}

{ print $2, $1 }

{ temp = $1; $1 =
{ $2 = ""; print)

$2;

$2 = temp; print }

for (1 = NF; 1 > 0; 1 =1 - 1)
printf (“%s v, $i)
printf (“\n”)

{ sum = 0

}

}

for (i =1; 1 <=NF; 1i =1+ 1)
sum = sum + $i
print sum
e { for (i =1; 1 <= NF; 1i =1+ 1)

sum = sum $i }
END { print sum }

$0, $1, $2, SNF

NR - Number of records processed

NF - Number of fields in current record
FILENAME - name of current input file

FS - Field separator, space or TAB by default
OFS - Output field separator, space by default

ARGC/ARGYV - Argument Count, Argument
Value array

— Used to get arguments from the command line

« = assignment operator; sets a variable equal to a
value or string

« == equality operator; returns TRUE 1s both sides
are equal

« !=1nverse equality operator

* && logical AND

* | | logical OR

« ! logical NOT

o <, >, <=, >= relational operators

e +, -, /, *, %,

* String concatenation

Arithmetic

— sin, cos, atan, exp, int, log, rand, sqrt
String

— length, substr, split

Output

— print, printf

Special

— system - executes a Unix command
 system(“clear”) to clear the screen
* Note double quotes around the Unix command

— exit - stop reading input and go immediately to the END
pattern-action pair 1if 1t exists, otherwise exit the script

O'REILLY" Dale Dougberty & Armold Robbins

on the website

