
Lecture 5

sed and awk

Last week

• Regular Expressions
– grep
– egrep

Today

• Stream manipulation:
– sed
– awk

Sed: Stream-oriented, Non-
Interactive, Text Editor

• Look for patterns one line at a time, like grep
• Change lines of the file
• Non-interactive text editor

– Editing commands come in as script
– There is an interactive editor ed which accepts the

same commands
• A Unix filter

– Superset of previously mentioned tools

Conceptual overview

· All editing commands in a sed script are applied in
order to each input line.

• If a command changes the input, subsequent
command address will be applied to the current
(modified) line in the pattern space, not the original
input line.

• The original input file is unchanged (sed is a filter),
and the results are sent to standard output (but can
be redirected to a file).

Sed Architecture

scriptfile

Input

Output

Input line
(Pattern Space)

Hold Space

Scripts
• A script is nothing more than a file of commands
• Each command consists of up to two addresses

and an action, where the address can be a regular
expression or line number.

address action command
address action
address action
address action
address action

script

Scripts (continued)

• As each line of the input file is read, sed reads the
first command of the script and checks the
address against the current input line:
– If there is a match, the command is executed
– If there is no match, the command is ignored
– sed then repeats this action for every command in the

script file
• When it has reached the end of the script, sed

outputs the current line (pattern space) unless
the -n option has been set

Sed Flow of Control
• sed then reads the next line in the input file and

restarts from the beginning of the script file
• All commands in the script file are compared to,

and potentially act on, all lines in the input file

. . .cmd 1 cmd ncmd 2

script

input
output

output
only without -n

print cmd

sed Commands
• sed commands have the general form

– [address[, address]][!]command [arguments]
• sed copies each input line into a pattern space

– If the address of the command matches the line in the
pattern space, the command is applied to that line

– If the command has no address, it is applied to each
line as it enters pattern space

– If a command changes the line in pattern space,
subsequent commands operate on the modified line

• When all commands have been read, the line in
pattern space is written to standard output and a
new line is read into pattern space

Addressing

• An address can be either a line number or a
pattern, enclosed in slashes (/pattern/)

• A pattern is described using regular
expressions (BREs, as in grep)

• If no pattern is specified, the command will
be applied to all lines of the input file

• To refer to the last line: $

Addressing (continued)

• Most commands will accept two addresses
– If only one address is given, the command operates

only on that line
– If two comma separated addresses are given, then the

command operates on a range of lines between the first
and second address, inclusively

• The ! operator can be used to negate an address,
ie; address!command causes command to be
applied to all lines that do not match address

Commands

• command is a single letter
• Example: Deletion: d
•[address1][,address2]d

– Delete the addressed line(s) from the pattern
space; line(s) not passed to standard output.

– A new line of input is read and editing resumes
with the first command of the script.

Address and Command Examples

• d deletes the all lines
• 6d deletes line 6
• /^$/d deletes all blank lines
• 1,10d deletes lines 1 through 10
• 1,/^$/d deletes from line 1 through the first blank line
• /^$/,$d deletes from the first blank line through

the last line of the file
• /^$/,10d deletes from the first blank line through line 10
• /^ya*y/,/[0-9]$/d deletes from the first line that begins

with yay, yaay, yaaay, etc. through
the first line that ends with a digit

Multiple Commands

• Braces {} can be used to apply multiple commands to an
address

[/pattern/[,/pattern/]]{
command1
command2
command3
}

• Strange syntax:
– The opening brace must be the last character on a line
– The closing brace must be on a line by itself
– Make sure there are no spaces following the braces

Sed Commands

• Although sed contains many editing commands,
we are only going to cover the following subset:

• d - delete
•p - print
• y - transform
• q - quit

• s - substitute
• a - append
• i - insert
• c - change

sed Syntax
• Syntax: sed [-n] [-e] [‘command’] [file…]

 sed [-n] [-f scriptfile] [file…]
– -n - only print lines specified with the print command

(or the ‘p’ flag of the substitute (‘s’) command)
– -f scriptfile - next argument is a filename containing

editing commands
– -e command - the next argument is an editing

command rather than a filename, useful if multiple
commands are specified

– If the first line of a scriptfile is “#n”, sed acts as though
-n had been specified

Print

• The Print command (p) can be used to force the
pattern space to be output, useful if the -n option
has been specified

• Syntax: [address1[,address2]]p
• Note: if the -n or #n option has not been specified,
p will cause the line to be output twice!

• Examples:
1,5p will display lines 1 through 5
/^$/,$p will display the lines from the first
blank line through the last line of the file

Substitute

• Syntax:
[address(es)]s/pattern/replacement/[flags]
– pattern - search pattern
– replacement - replacement string for pattern
– flags - optionally any of the following

• n a number from 1 to 512 indicating which
occurrence of pattern should be
replaced

• g global, replace all occurrences of pattern
in pattern space

• p print contents of pattern space

Substitute Examples

• s/Puff Daddy/P. Diddy/
– Substitute P. Diddy for the first occurrence of Puff Daddy in

pattern space
• s/Tom/Dick/2

– Substitutes Dick for the second occurrence of Tom in the
pattern space

• s/wood/plastic/p
– Substitutes plastic for the first occurrence of wood and

outputs (prints) pattern space

Replacement Patterns

• Substitute can use several special
characters in the replacement string
– & - replaced by the entire string matched in the

regular expression for pattern
– \n - replaced by the nth substring (or

subexpression) previously specified using “\(“
and “\)”

– \ - used to escape the ampersand (&) and the
backslash (\)

Replacement Pattern Examples
"the UNIX operating system …"
s/.NI./wonderful &/
"the wonderful UNIX operating system …"

cat test1
first:second
one:two
sed 's/\(.*\):\(.*\)/\2:\1/' test1
second:first
two:one

sed 's/\([[:alpha:]]\)\([^ \n]*\)/\2\1ay/g'
– Pig Latin ("unix is fun" -> "nixuay siay unfay")

Append, Insert, and Change

• Syntax for these commands is a little strange
because they must be specified on multiple lines

• append [address]a\
 text
• insert [address]i\
 text
• change [address(es)]c\
 text
• append/insert for single lines only, not range

Append and Insert
• Append places text after the current line in pattern space
• Insert places text before the current line in pattern space

– Each of these commands requires a \ following it.
text must begin on the next line.

– If text begins with whitespace, sed will discard it
unless you start the line with a \

• Example:
/<Insert Text Here>/i\

 Line 1 of inserted text\
 \ Line 2 of inserted text
 would leave the following in the pattern space

Line 1 of inserted text
 Line 2 of inserted text

<Insert Text Here>

Change

• Unlike Insert and Append, Change can be applied
to either a single line address or a range of
addresses

• When applied to a range, the entire range is
replaced by text specified with change, not each
line
– Exception: If the Change command is executed with

other commands enclosed in { } that act on a range of
lines, each line will be replaced with text

• No subsequent editing allowed

Change Examples

• Remove mail headers, ie;
the address specifies a
range of lines beginning
with a line that begins with
From until the first blank
line.
– The first example replaces all

lines with a single occurrence
of <Mail Header Removed>.

– The second example replaces
each line with <Mail Header
Removed>

/^From /,/^$/c\
 <Mail Headers Removed>

/^From /,/^$/{
s/^From //p
c\
<Mail Header Removed>
}

Using !

• If an address is followed by an exclamation point
(!), the associated command is applied to all lines
that don’t match the address or address range

• Examples:
 1,5!d would delete all lines except 1 through 5
 /black/!s/cow/horse/ would substitute

“horse” for “cow” on all lines except those that
contained “black”

“The brown cow” -> “The brown horse”
“The black cow” -> “The black cow”

Transform
• The Transform command (y) operates like tr, it

does a one-to-one or character-to-character
replacement

• Transform accepts zero, one or two addresses
• [address[,address]]y/abc/xyz/

– every a within the specified address(es) is transformed
to an x. The same is true for b to y and c to z

– y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNO
PQRSTUVWXYZ/ changes all lower case characters on
the addressed line to upper case

– If you only want to transform specific characters (or a
word) in the line, it is much more difficult and requires
use of the hold space

Pattern and Hold spaces

• Pattern space: Workspace or temporary
buffer where a single line of input is held
while the editing commands are applied

• Hold space: Secondary temporary buffer
for temporary storage only

Pattern

Hold

in

out

h, H, g, G, x

Quit
• Quit causes sed to stop reading new input lines

and stop sending them to standard output
• It takes at most a single line address

– Once a line matching the address is reached, the script
will be terminated

– This can be used to save time when you only want to
process some portion of the beginning of a file

• Example: to print the first 100 lines of a file (like
head) use:
– sed '100q' filename
– sed will, by default, send the first 100 lines of filename

to standard output and then quit processing

Sed Advantages

• Regular expressions
• Fast
• Concise

Sed Drawbacks

• Hard to remember text from one line to
another

• Not possible to go backward in the file
• No way to do forward references like
/..../+1

• No facilities to manipulate numbers
• Cumbersome syntax

Awk

Programmable Filters

Aho Weinberger Kernighan

Why is it called AWK?

Awk Introduction
• awk's purpose: A general purpose programmable

filter that handles text (strings) as easily as numbers
– This makes awk one of the most powerful of the Unix

utilities
• awk processes fields while sed only processes lines
• nawk (new awk) is the new standard for awk

– Designed to facilitate large awk programs
– gawk is a free nawk clone from GNU

• awk gets it’s input from
– files
– redirection and pipes
– directly from standard input

AWK Highlights
• A programming language for handling common

data manipulation tasks with only a few lines of
code

• awk is a pattern-action language, like sed
• The language looks a little like C but

automatically handles input, field splitting,
initialization, and memory management
– Built-in string and number data types
– No variable type declarations

• awk is a great prototyping language
– Start with a few lines and keep adding until it does

what you want

Awk Features over Sed

• Convenient numeric processing
• Variables and control flow in the actions
• Convenient way of accessing fields within

lines
• Flexible printing
• Built-in arithmetic and string functions
• C-like syntax

BEGIN {action}

pattern {action}

pattern {action}

 .

 .

 .

pattern { action}

END {action}

Structure of an AWK Program

• An awk program consists of:
– An optional BEGIN segment

• For processing to execute prior to
reading input

– pattern - action pairs
• Processing for input data
• For each pattern matched, the

corresponding action is taken

– An optional END segment
• Processing after end of input data

Running an AWK Program

• There are several ways to run an Awk program
– awk 'program' input_file(s)

• program and input files are provided as command-line
arguments

– awk 'program'
• program is a command-line argument; input is taken from

standard input (yes, awk is a filter!)

– awk -f program_file input_files
• program is read from a file

Patterns and Actions

• Search a set of files for patterns.
• Perform specified actions upon lines or

fields that contain instances of patterns.
• Does not alter input files.
• Process one input line at a time
• This is similar to sed

Pattern-Action Structure
• Every program statement has to have a pattern or an

action or both
• Default pattern is to match all lines
• Default action is to print current record
• Patterns are simply listed; actions are enclosed in { }
• awk scans a sequence of input lines, or records, one

by one, searching for lines that match the pattern
– Meaning of match depends on the pattern

Patterns
• Selector that determines whether action is to be

executed
• pattern can be:

– the special token BEGIN or END
– regular expression (enclosed with //)
– relational or string match expression
– ! negates the match
– arbitrary combination of the above using && ||

• /NYU/ matches if the string “NYU” is in the record
• x > 0 matches if the condition is true
• /NYU/ && (name == "UNIX Tools")

BEGIN and END patterns

• BEGIN and END provide a way to gain
control before and after processing, for
initialization and wrap-up.
– BEGIN: actions are performed before the first

input line is read.
– END: actions are done after the last input line

has been processed.

Actions

• action may include a list of one or more C like
statements, as well as arithmetic and string
expressions and assignments and multiple output
streams.

• action is performed on every line that matches
pattern.
– If pattern is not provided, action is performed on every input line
– If action is not provided, all matching lines are sent to standard output.

• Since patterns and actions are optional, actions must
be enclosed in braces to distinguish them from
pattern.

An Example

ls | awk '
BEGIN { print "List of html files:" }
/\.html$/ { print }
END { print "There you go!" }
'

List of html files:
index.html
as1.html
as2.html
There you go!

Variables

• awk scripts can define and use variables
BEGIN { sum = 0 }
{ sum ++ }
END { print sum }

• Some variables are predefined

Records

• Default record separator is newline
– By default, awk processes its input a line at a

time.
• Could be any other regular expression.
• RS: record separator

– Can be changed in BEGIN action
• NR is the variable whose value is the

number of the current record.

Fields

• Each input line is split into fields.
– FS: field separator: default is whitespace (1 or more

spaces or tabs)
– awk -Fc option sets FS to the character c

• Can also be changed in BEGIN

– $0 is the entire line
– $1 is the first field, $2 is the second field, ….

• Only fields begin with $, variables are unadorned

Simple Output From AWK

• Printing Every Line
– If an action has no pattern, the action is performed to

all input lines
• { print } will print all input lines to standard out
• { print $0 } will do the same thing

• Printing Certain Fields
– Multiple items can be printed on the same output line

with a single print statement
– { print $1, $3 }
– Expressions separated by a comma are, by default,

separated by a single space when printed (OFS)

Output (continued)

• NF, the Number of Fields
– Any valid expression can be used after a $ to indicate

the contents of a particular field
– One built-in expression is NF, or Number of Fields
– { print NF, $1, $NF } will print the number of

fields, the first field, and the last field in the current
record

– { print $(NF-2) } prints the third to last field
• Computing and Printing

– You can also do computations on the field values and
include the results in your output

– { print $1, $2 * $3 }

Output (continued)

• Printing Line Numbers
– The built-in variable NR can be used to print line

numbers
– { print NR, $0 } will print each line prefixed with

its line number
• Putting Text in the Output

– You can also add other text to the output besides what
is in the current record

– { print "total pay for", $1, "is", $2 * $3 }

– Note that the inserted text needs to be surrounded by
double quotes

Fancier Output

• Lining Up Fields
– Like C, Awk has a printf function for producing

formatted output
– printf has the form

• printf(format, val1, val2, val3, …)
{ printf(“total pay for %s is $%.2f\n”,
 $1, $2 * $3) }

– When using printf, formatting is under your control so
no automatic spaces or newlines are provided by awk.
You have to insert them yourself.
{ printf(“%-8s %6.2f\n”, $1, $2 * $3) }

Selection
• Awk patterns are good for selecting specific lines

from the input for further processing
– Selection by Comparison

• $2 >= 5 { print }

– Selection by Computation
• $2 * $3 > 50 { printf(“%6.2f for %s\n”,
 $2 * $3, $1) }

– Selection by Text Content
• $1 == "NYU"
• $2 ~ /NYU/

– Combinations of Patterns
• $2 >= 4 || $3 >= 20

– Selection by Line Number
• NR >= 10 && NR <= 20

Arithmetic and variables

• awk variables take on numeric (floating
point) or string values according to context.

• User-defined variables are unadorned (they
need not be declared).

• By default, user-defined variables are
initialized to the null string which has
numerical value 0.

Computing with AWK

• Counting is easy to do with Awk
$3 > 15 { emp = emp + 1}
END { print emp, “employees worked

 more than 15 hrs”}

• Computing Sums and Averages is also simple
{ pay = pay + $2 * $3 }
END { print NR, “employees”
 print “total pay is”, pay
 print “average pay is”, pay/NR
 }

Handling Text

• One major advantage of Awk is its ability to
handle strings as easily as many languages handle
numbers

• Awk variables can hold strings of characters as
well as numbers, and Awk conveniently translates
back and forth as needed

• This program finds the employee who is paid the
most per hour:

 # Fields: employee, payrate
 $2 > maxrate { maxrate = $2; maxemp = $1 }

 END { print “highest hourly rate:”,
 maxrate, “for”, maxemp }

String Manipulation

• String Concatenation
– New strings can be created by combining old ones
 { names = names $1 " " }
END { print names }

• Printing the Last Input Line
– Although NR retains its value after the last input line

has been read, $0 does not
 { last = $0 }
END { print last }

Built-in Functions

• awk contains a number of built-in functions.
length is one of them.

• Counting Lines, Words, and Characters using
length (a poor man’s wc)
 { nc = nc + length($0) + 1
 nw = nw + NF
 }
END { print NR, "lines,", nw, "words,", nc,

 "characters" }

• substr(s, m, n) produces the substring of s that
begins at position m and is at most n characters
long.

Control Flow Statements

• awk provides several control flow statements for
making decisions and writing loops

• If-Then-Else
 $2 > 6 { n = n + 1; pay = pay + $2 * $3 }

END { if (n > 0)
 print n, "employees, total pay is",

pay, "average pay is", pay/n
 else
 print "no employees are paid more

than $6/hour"
 }

Loop Control

• While
interest1 - compute compound interest
input: amount, rate, years
output: compound value at end of each year
{ i = 1
while (i <= $3) {

printf(“\t%.2f\n”, $1 * (1 + $2) ^ i)
i = i + 1

}
}

Do-While Loops

• Do While
do {

statement1
}

while (expression)

For statements

• For
interest2 - compute compound interest
input: amount, rate, years
output: compound value at end of each year

{ for (i = 1; i <= $3; i = i + 1)
printf("\t%.2f\n", $1 * (1 + $2) ^ i)

}

Arrays

• Array elements are not declared
• Array subscripts can have any value:

– Numbers
– Strings! (associative arrays)

• Examples
– arr[3]="value"
– grade[”Mohri"]=40.3

Array Example
reverse - print input in reverse order by line

{ line[NR] = $0 } # remember each line

END {
for (i=NR; (i > 0); i=i-1) {
 print line[i]
}

 }

• for loop to read associative array
– for (v in array) { … }

– Assigns to v each subscript of array (unordered)
– Element is array[v]

Useful One (or so)-liners

• END { print NR }
• NR == 10
• { print $NF }
• { field = $NF }
 END { print field }

• NF > 4
• $NF > 4
• { nf = nf + NF }
 END { print nf }

More One-liners

• /Mehryar/ { nlines = nlines + 1 }
 END { print nlines }
• $1 > max { max = $1; maxline = $0 }
 END { print max, maxline }
• NF > 0
• length($0) > 80
• { print NF, $0}
• { print $2, $1 }
• { temp = $1; $1 = $2; $2 = temp; print }
• { $2 = ""; print }

Even More One-liners
• { for (i = NF; i > 0; i = i - 1)

printf(“%s “, $i)
 printf(“\n”)
 }
• { sum = 0
 for (i = 1; i <= NF; i = i + 1)

sum = sum + $i
 print sum
 }
• { for (i = 1; i <= NF; i = i + 1)

sum = sum $i }
 END { print sum }
}

Awk Variables

• $0, $1, $2, $NF
• NR - Number of records processed
• NF - Number of fields in current record
• FILENAME - name of current input file
• FS - Field separator, space or TAB by default
• OFS - Output field separator, space by default
• ARGC/ARGV - Argument Count, Argument

Value array
– Used to get arguments from the command line

Operators
• = assignment operator; sets a variable equal to a

value or string
• == equality operator; returns TRUE is both sides

are equal
• != inverse equality operator
• && logical AND
• || logical OR
• ! logical NOT
• <, >, <=, >= relational operators
• +, -, /, *, %, ^
• String concatenation

Built-In Functions
• Arithmetic

– sin, cos, atan, exp, int, log, rand, sqrt
• String

– length, substr, split
• Output

– print, printf
• Special

– system - executes a Unix command
• system(“clear”) to clear the screen
• Note double quotes around the Unix command

– exit - stop reading input and go immediately to the END
pattern-action pair if it exists, otherwise exit the script

More Information

on the website

