
Lecture 3

Processes and Filters

Kernel Data Structures

• Information
about each
process.

• Process table:
contains an
entry for every
process in the
system.

• Open-file
table: contains
at least one
entry for every
open file in the
system.

Code

Data

Code

Data

Code

Data

Process
Info

Process
Info

Process
Info

Open File
Table

Process
Table

User Space

Kernel Space

Unix Processes

Process: An entity of execution
• Definitions

– program: collection of bytes stored in a file that can
be run

– image: computer execution environment of program
– process: execution of an image

• Unix can execute many processes simultaneously.

Process Creation

• Interesting trait of UNIX
• fork system call clones the current process

• exec system call replaces current process

• A fork is typically followed by an exec

AA A

A B

Process Setup

• All of the per process information is copied
with the fork operation
– Working directory
– Open files

• Copy-on-write makes this efficient
• Before exec, these values can be modified

fork and exec

• Example: the shell

while(1) {
 display_prompt();
 read_input(cmd, params);
 pid = fork(); /* create child */
 if (pid != 0)
 waitpid(-1, &stat, 0); /* parent waits */
 else
 execve(cmd, params, 0); /* child execs */
}

Unix process genealogy
Process generation

getty

init

execs

/bin/sh

login

execs

getty

execs

init

execs

getty

Init

execs

Init process 1

forks init processes

Background Jobs

• By default, executing a command in the
shell will wait for it to exit before printing
out the next prompt

• Trailing a command with & allows the
shell and command to run simultaneously

$ /bin/sleep 10 &
[1] 3424
$

Program Arguments

• When a process is started, it is sent a list of
strings
– argv, argc

• The process can use this list however it
wants to

Ending a process

• When a process ends, there is a return code
associated with the process

• This is a positive integer
– 0 means success
– >0 represent various kinds of failure, up to

process

Process Information Maintained

• Working directory
• File descriptor table
• Process id

– number used to identify process

• Process group id
– number used to identify set of processes

• Parent process id
– process id of the process that created the process

Process Information Maintained

• Umask
– Default file permissions for new file

We haven’t talked about these yet:

• Effective user and group id
– The user and group this process is running with

permissions as
• Real user and group id

– The user and group that invoked the process
• Environment variables

Setuid and Setgid Mechanisms

• The kernel can set the effective user and
group ids of a process to something different
than the real user and group
– Files executed with a setuid or setgid flag set

cause the these values to change
• Make it possible to do privileged tasks:

– Change your password
• Open up a can of worms for security if buggy

Environment of a Process

• A set of name-value pairs associated with a
process

• Keys and values are strings
• Passed to children processes
• Cannot be passed back up
• Common examples:

– PATH: Where to search for programs
– TERM: Terminal type

The PATH environment variable

• Colon-separated list of directories.
• Non-absolute pathnames of executables are

only executed if found in the list.
– Searched left to right

• Example:
$ myprogram
sh: myprogram not found
$ PATH=/bin:/usr/bin:/home/mohri/bin
$ myprogram
hello!

Having . In Your Path

• What not to do:

$ ls
foo
$ foo
sh: foo: not found

$ PATH=.:/bin
$ ls
foo
$ cd /usr/badguy
$ ls
Congratulations, your files have been removed
and you have just sent email to Prof. Mohri
challenging him to a fight.

$./foo
Hello, foo.

Shell Variables
• Shells have several mechanisms for creating

variables. A variable is a name representing a
string value. Example: PATH
– Shell variables can save time and reduce typing errors

• Allow you to store and manipulate information
– Eg: ls $DIR > $FILE

• Two types: local and environmental
– local are set by the user or by the shell itself
– environmental come from the operating system and are

passed to children

Variables (con’t)

• Syntax varies by shell
– varname=value # sh, ksh
– set varname = value # csh

• To access the value: $varname

• Turn local variable into environment:
– export varname # sh, ksh
– setenv varname value # csh

Environmental Variables

NAME MEANING
$HOME Absolute pathname of your home directory
$PATH A list of directories to search for
$MAIL Absolute pathname to mailbox
$USER Your user id
$SHELL Absolute pathname of login shell
$TERM Type of your terminal
$PS1 Prompt

Inter-process Communication

Ways in which processes communicate:
• Passing arguments, environment
• Read/write regular files
• Exit values
• Signals
• Pipes

Signals
• Signal: A message a process can send to a process

or process group, if it has appropriate permissions.
• Message type represented by a symbolic name
• For each signal, the receiving process can:

– Explicitly ignore signal
– Specify action to be taken upron receipt (signal handler)
– Otherwise, default action takes place (usually process is

killed)

• Common signals:
– SIGKILL, SIGTERM, SIGINT
– SIGSTOP, SIGCONT
– SIGSEGV, SIGBUS

An Example of Signals
• When a child exists, it sends a SIGCHLD

signal to its parent.
• If a parent wants to wait for a child to exit,

it tells the system it wants to catch the
SIGCHLD signal

• When a parent does not issue a wait, it
ignores the SIGCHLD signal

Process Subsystem utilities

• ps monitors status of processes
• kill send a signal to a pid
• wait parent process wait for one of its

children to terminate
• nohup makes a command immune to

the hangup and terminate signal
• sleep sleep in seconds
• nice run processes at low priority

Pipes

One of the cornerstones of UNIX

Pipes

• General idea: The input of one program is
the output of the other, and vice versa

• Both programs run at the same time

A B

Pipes (2)

• Often, only one end of the pipe is used

• Could this be done with files?

A B
standard out standard in

File Approach

• Run first program, save output into file
• Run second program, using file as input

• Unnecessary use of the disk
– Slower
– Can take up a lot of space

• Makes no use of multi-tasking

process 1 process 2

More about pipes

• What if a process tries to read data but nothing is
available?
– UNIX puts the reader to sleep until data available

• What if a process can’t keep up reading from the
process that’s writing?
– UNIX keeps a buffer of unread data

• This is referred to as the pipe size.

– If the pipe fills up, UNIX puts the writer to sleep until
the reader frees up space (by doing a read)

• Multiple readers and writers possible with pipes.

More about Pipes
• Pipes are often chained together

– Called filters

A B
standard out standard in

C

Interprocess Communication
For Unrelated Processes

• FIFO (named pipes)
– A special file that when opened represents pipe

• System V IPC
– message queues
– semaphores
– shared memory

• Sockets (client/server model)

p1 p2

Pipelines

• Output of one program becomes input to
another
– Uses concept of UNIX pipes

• Example: $ who | wc -l
– counts the number of users logged in

• Pipelines can be long

What’s the difference?

$ cat file | command

$ command < file

vs.

Both of these commands send input to command from a
file instead of the terminal:

An Extra Process

cat command

command

$ cat file | command

$ command < file

Introduction to Filters

• A class of Unix tools called filters.
– Utilities that read from standard input,

transform the file, and write to standard out
• Using filters can be thought of as data

oriented programming.
– Each step of the computation transforms data

stream.

Examples of Filters

• Sort
– Input: lines from a file
– Output: lines from the file sorted

• Grep
– Input: lines from a file
– Output: lines that match the argument

• Awk
– Programmable filter

cat: The simplest filter

• The cat command copies its input to output
unchanged (identity filter). When supplied a list of
file names, it concatenates them onto stdout.

• Some options:
– -n number output lines (starting from 1)
– -v display control-characters in visible form (e.g.
^ C)

cat file*

ls | cat -n

head

• Display the first few lines of a specified file
• Syntax: head [-n] [filename...]

– -n - number of lines to display, default is 10
– filename... - list of filenames to display

• When more than one filename is specified,
the start of each files listing displays
==>filename<==

tail

• Displays the last part of a file
• Syntax: tail +|-number [lbc] [f] [filename]

or: tail +|-number [l] [rf] [filename]
– +number - begins copying at distance number from

beginning of file, if number isn’t given, defaults to 10
– -number - begins from end of file
– l,b,c - number is in units of lines/block/characters
– r - print in reverse order (lines only)
– f - if input is not a pipe, do not terminate after end of

file has been copied but loop. This is useful to monitor
a file being written by another process

head and tail examples
head /etc/passwd

head *.c

tail +20 /etc/passwd

ls -lt | tail -3

head –100 /etc/passwd | tail -5

tail –f /usr/local/httpd/access_log

tee

• Copy standard input to standard output and
one or more files
– Captures intermediate results from a filter in

the pipeline

Unix Command Standard output

file-list

tee con’t

• Syntax: tee [-ai] file-list
– -a - append to output file rather than overwrite,

default is to overwrite (replace) the output file
– -i - ignore interrupts
– file-list - one or more file names for capturing

output
• Examples

ls | head –10 | tee first_10 | tail –5

who | tee user_list | wc

John 99
Anne 75
Andrew 50
Tim 95
Arun 33
Sowmya 76

COMP1011|2252424|Abbot, Andrew John |3727|1|M
COMP2011|2211222|Abdurjh, Saeed |3640|2|M
COMP1011|2250631|Accent, Aac-Ek-Murhg |3640|1|M
COMP1021|2250127|Addison, Blair |3971|1|F
COMP4012|2190705|Allen, David Peter |3645|4|M
COMP4910|2190705|Allen, David Pater |3645|4|M

root:ZHolHAHZw8As2:0:0:root:/root:/bin/ksh
jas:nJz3ru5a/44Ko:100:100:John Shepherd:/home/jas:/bin/ksh
cs1021:iZ3sO90O5eZY6:101:101:COMP1021:/home/cs1021:/bin/bash
cs2041:rX9KwSSPqkLyA:102:102:COMP2041:/home/cs2041:/bin/csh
cs3311:mLRiCIvmtI9O2:103:103:COMP3311:/home/cs3311:/bin/sh

Tab Separated Pipe-separated

Colon-separated

Unix Text Files: Delimited Data

cut: select columns

• The cut command prints selected parts of input
lines.
– can select columns (assumes tab-separated input)
– can select a range of character positions

• Some options:
‒ -f listOfCols: print only the specified columns (tab-

separated) on output
‒ -c listOfPos: print only chars in the specified positions
‒ -d c: use character c as the column separator

• Lists are specified as ranges (e.g. 1 -5) or comma-
separated (e.g. 2 ,4 ,5).

cut examples
cut -f 1 < data

cut -f 1-3 < data

cut -f 1,4 < data

cut -f 4- < data

cut -d'|' -f 1-3 < data

cut -c 1-4 < data

Unfortunately, there's no way to refer to "last
column" without counting the columns.

paste: join columns

• The paste command displays several text files "in
parallel" on output.

• If the inputs are files a , b , c
– the first line of output is composed

of the first lines of a , b , c
– the second line of output is composed

of the second lines of a , b , c
• Lines from each file are separated by a tab character.
• If files are different lengths, output has all lines

from longest file, with empty strings for missing
lines.

1
2

3
4

5
6

1 3 5
2 4 6

paste example
cut -f 1 < data > data1

cut -f 2 < data > data2

cut -f 3 < data > data3

paste data1 data3 data2 > newdata

sort: Sort lines of a file

• The sort command copies input to output but
ensures that the output is arranged in ascending
order of lines.
– By default, sorting is based on ASCII comparisons of

the whole line.
• Other features of sort :

– understands text data that occurs in columns.
(can also sort on a column other than the first)

– can distinguish numbers and sort appropriately
– can sort files "in place" as well as behaving like a filter
– capable of sorting very large files

sort: Options
• Syntax: sort [-dftnr] [-o filename] [filename(s)]

-d Dictionary order, only letters, digits, and whitespace
 are significant in determining sort order

-f Ignore case (fold into lower case)
-t Specify delimiter
-n Numeric order, sort by arithmetic value instead of

 first digit
-r Sort in reverse order
-o filename - write output to filename, filename can be

 the same as one of the input files
• Lots of more options…

sort: Specifying fields

• Delimiter : -td
• Old way:

– +f[.c][options] [-f[.c][options]
• +2.1 –3 +0 –2 +3n

– Exclusive
– Start from 0 (unlike cut, which starts at 1)

• New way:
– -k f[.c][options][,f[.c][options]]

• -k2.1 –k0,1 –k3n

– Inclusive
– Start from 1

sort Examples

sort +2nr < data
sort –k2nr data

sort -t: +4 /etc/passwd

sort -o mydata mydata

uniq: list UNIQue items
• Remove or report adjacent duplicate lines
• Syntax: uniq [-cdu] [input-file] [output-file]

-c Supersede the -u and -d options and generate an
output report with each line preceded by an
occurrence count

-d Write only the duplicated lines
-u Write only those lines which are not duplicated
– The default output is the union (combination) of -d

and -u

wc: Counting results

• The word count utility, wc, counts the
number of lines, characters or words

• Options:
-l Count lines
-w Count words
-c Count characters

• Default: count lines, words and chars

wc and uniq Examples

who | sort | uniq –d

wc my_essay

who | wc

sort file | uniq | wc –l

sort file | uniq –d | wc –l

sort file | uniq –u | wc -l

tr: TRanslate Characters
• Copies standard input to standard output with

substitution or deletion of selected characters
• Syntax: tr [-cds] [string1] [string2]

• -d delete all input characters contained in string1
• -c complements the characters in string1 with respect

 to the entire ASCII character set
• -s squeeze all strings of repeated output characters

in the last operand to single characters

tr (continued)
• tr reads from standard input.

– Any character that does not match a character in
string1 is passed to standard output unchanged

– Any character that does match a character in string1 is
translated into the corresponding character in string2
and then passed to standard output

• Examples
– tr s z replaces all instances of s with z
– tr so zx replaces all instances of s with z and o

with x
– tr a-z A-Z replaces all lower case characters with

upper case characters
– tr –d a-c deletes all a-c characters

tr uses

• Change delimiter
tr ‘|’ ‘:’

• Rewrite numbers
tr ,. .,

• Import DOS files
tr –d ’\r’ < dos_file

• Find printable ASCII in a binary file
tr –cd ’\n[a-zA-Z0-9]’ < binary_file

xargs

• Unix limits the size of arguments and
environment that can be passed down to child

• What happens when we have a list of 10,000 files
to send to a command?

• xargs solves this problem
– Reads arguments as standard input
– Sends them to commands that take file lists
– May invoke program several times depending on size

of arguments

a1 … a300

cmd a1 a2 …
xargs
 cmd

cmd a100 a101 …

cmd a200 a201 …

find utility and xargs

• find . -type f -print | xargs wc -l
– -type f for files
– -print to print them out
– xargs invokes wc 1 or more times

• wc -l a b c d e f g
wc -l h i j k l m n o
…

• Compare to: find . -type f –exec wc -l {} \;

Next Time

• Regular Expressions
– Allow you to search for text in files
– grep command

• Utilities that let you write high level
programs for stream manipulation:
– sed

• We will soon learn how to write scripts that
use this utilities in interesting ways.

