
Lecture 3

Processes and Filters



Kernel Data Structures

• Information
about each
process.

• Process table:
contains an
entry for every
process in the
system.

• Open-file
table: contains
at least one
entry for every
open file in the
system.
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Unix Processes

Process: An entity of execution
• Definitions

– program: collection of bytes stored in a file that can
be run

– image: computer execution environment of program
– process: execution of an image

• Unix can execute many processes simultaneously.



Process Creation

• Interesting trait of UNIX
• fork system call clones the current process

• exec system call replaces current process

• A fork is typically followed by an exec

AA A
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Process Setup

• All of the per process information is copied
with the fork operation
– Working directory
– Open files

• Copy-on-write makes this efficient
• Before exec, these values can be modified



fork and exec

• Example: the shell

while(1) {
  display_prompt();
  read_input(cmd, params);
  pid = fork(); /* create child */
  if (pid != 0)
    waitpid(-1, &stat, 0); /* parent waits */
  else
    execve(cmd, params, 0); /* child execs */
}



Unix process genealogy
Process generation

getty

init

execs

/bin/sh

login

execs

getty

execs

init

execs

getty

Init

execs

Init process 1

forks init processes



Background Jobs

• By default, executing a command in the
shell will wait for it to exit before printing
out the next prompt

• Trailing a command with & allows the
shell and command to run simultaneously

$ /bin/sleep 10 &
[1] 3424
$



Program Arguments

• When a process is started, it is sent a list of
strings
– argv, argc

• The process can use this list however it
wants to



Ending a process

• When a process ends, there is a return code
associated with the process

• This is a positive integer
– 0 means success
– >0 represent various kinds of failure, up to

process



Process Information Maintained

• Working directory
• File descriptor table
• Process id

– number used to identify process

• Process group id
– number used to identify set of processes

• Parent process id
– process id of the process that created the process



Process Information Maintained

• Umask
– Default file permissions for new file

We haven’t talked about these yet:

• Effective user and group id
– The user and group this process is running with

permissions as
• Real user and group id

– The user and group that invoked the process
• Environment variables



Setuid and Setgid Mechanisms

• The kernel can set the effective user and
group ids of a process to something different
than the real user and group
– Files executed with a setuid or setgid flag set

cause the these values to change
• Make it possible to do privileged tasks:

– Change your password
• Open up a can of worms for security if buggy



Environment of a Process

• A set of name-value pairs associated with a
process

• Keys and values are strings
• Passed to children processes
• Cannot be passed back up
• Common examples:

– PATH: Where to search for programs
– TERM: Terminal type



The PATH environment variable

• Colon-separated list of directories.
• Non-absolute pathnames of executables are

only executed if found in the list.
– Searched left to right

• Example:
$ myprogram
sh: myprogram not found
$ PATH=/bin:/usr/bin:/home/mohri/bin
$ myprogram
hello!



Having . In Your Path

• What not to do:

$ ls
foo
$ foo
sh: foo: not found

$ PATH=.:/bin
$ ls
foo
$ cd /usr/badguy
$ ls
Congratulations, your files have been removed
and you have just sent email to Prof. Mohri
challenging him to a fight.

$ ./foo
Hello, foo.



Shell Variables
• Shells have several mechanisms for creating

variables. A variable is a name representing a
string value.  Example: PATH
– Shell variables can save time and reduce typing errors

• Allow you to store and manipulate information
– Eg: ls $DIR > $FILE

• Two types: local and environmental
– local  are set by the user or by the shell itself
– environmental come from the operating system and are

passed to children



Variables (con’t)

• Syntax varies by shell
– varname=value        # sh, ksh
– set varname = value  # csh

• To access the value:  $varname

• Turn local variable into environment:
– export varname # sh, ksh
– setenv varname value # csh



Environmental Variables

NAME MEANING
$HOME Absolute pathname of your home directory
$PATH A list of directories to search for
$MAIL Absolute pathname to mailbox
$USER Your user id
$SHELL Absolute pathname of login shell
$TERM Type of your terminal
$PS1 Prompt



Inter-process Communication

Ways in which processes communicate:
• Passing arguments, environment
• Read/write regular files
• Exit values
• Signals
• Pipes



Signals
• Signal: A message a process can send to a process

or process group, if it has appropriate permissions.
• Message type represented by a symbolic name
• For each signal, the receiving process can:

– Explicitly ignore signal
– Specify action to be taken upron receipt (signal handler)
– Otherwise, default action takes place (usually process is

killed)

• Common signals:
– SIGKILL, SIGTERM, SIGINT
– SIGSTOP, SIGCONT
– SIGSEGV, SIGBUS



An Example of Signals
• When a child exists, it sends a  SIGCHLD

signal to its parent.
• If a parent wants to wait for a child to exit,

it tells the system it wants to catch the
SIGCHLD signal

• When a parent does not issue a wait, it
ignores the SIGCHLD signal



Process Subsystem utilities

• ps monitors status of processes
• kill  send a signal to a pid
• wait  parent process wait for one of its

children to terminate
• nohup makes a command immune to 

the hangup and terminate signal
• sleep sleep in seconds
• nice run processes at low priority



Pipes

One of the cornerstones of UNIX



Pipes

• General idea: The input of one program is
the output of the other, and vice versa

• Both programs run at the same time

A B



Pipes (2)

• Often, only one end of the pipe is used

• Could this be done with files?

A B
standard out standard in



File Approach

• Run first program, save output into file
• Run second program, using file as input

• Unnecessary use of the disk
– Slower
– Can take up a lot of space

• Makes no use of multi-tasking

process 1 process 2



More about pipes

• What if a process tries to read data but nothing is
available?
– UNIX puts the reader to sleep until data available

• What if a process can’t keep up reading from the
process that’s writing?
– UNIX keeps a buffer of unread data

• This is referred to as the pipe size.

– If the pipe fills up, UNIX puts the writer to sleep until
the reader frees up space (by doing a read)

• Multiple readers and writers possible with pipes.



More about Pipes
• Pipes are often chained together

– Called filters

A B
standard out standard in

C



Interprocess Communication
For Unrelated Processes

• FIFO (named pipes)
– A special file that when opened represents pipe

• System V IPC
– message queues
– semaphores
– shared memory

• Sockets (client/server model)

p1 p2



Pipelines

• Output of one program becomes input to
another
– Uses concept of UNIX pipes

• Example: $ who | wc -l
– counts the number of users logged in

• Pipelines can be long



What’s the difference?

$ cat file | command

$ command < file

vs.

Both of these commands send input to command from a
file instead of the terminal:



An Extra Process

cat command

command

$ cat file | command

$ command < file



Introduction to Filters

• A class of Unix tools called filters.
– Utilities that read from standard input,

transform the file, and write to standard out
• Using filters can be thought of as data

oriented programming.
– Each step of the computation transforms data

stream.



Examples of Filters

• Sort
– Input: lines from a file
– Output: lines from the file sorted

• Grep
– Input: lines from a file
– Output: lines that match the argument

• Awk
– Programmable filter



cat: The simplest filter

• The cat  command copies its input to output
unchanged (identity filter). When supplied a list of
file names, it concatenates them onto stdout.

• Some options:
– -n number output lines (starting from 1)
– -v display control-characters in visible form (e.g.
^ C)

cat file*

ls | cat -n



head

• Display the first few lines of a specified file
• Syntax: head [-n] [filename...]

– -n - number of lines to display, default is 10
– filename... - list of filenames to display

• When more than one filename is specified,
the start of each files listing displays
==>filename<==



tail

• Displays the last part of a file
• Syntax: tail +|-number [lbc] [f] [filename]

or:   tail +|-number [l] [rf] [filename]
– +number - begins copying at distance number from

beginning of file, if number isn’t given, defaults to 10
– -number - begins from end of file
– l,b,c - number is in units of lines/block/characters
– r - print in reverse order (lines only)
– f - if input is not a pipe, do not terminate after end of

file has been copied but loop.  This is useful to monitor
a file being written by another process



head and tail examples
head /etc/passwd

head *.c

tail +20 /etc/passwd

ls -lt | tail -3

head –100 /etc/passwd | tail -5

tail –f /usr/local/httpd/access_log



tee

• Copy standard input to standard output and
one or more files
– Captures intermediate results from a filter in

the pipeline

Unix Command Standard output

file-list



tee con’t

• Syntax: tee [ -ai ] file-list
– -a - append to output file rather than overwrite,

default is to overwrite (replace) the output file
– -i  - ignore interrupts
– file-list - one or more file names for capturing

output
• Examples

ls | head –10 | tee first_10 | tail –5

who | tee user_list | wc



John 99
Anne 75
Andrew 50
Tim 95
Arun 33
Sowmya 76

COMP1011|2252424|Abbot, Andrew John |3727|1|M
COMP2011|2211222|Abdurjh, Saeed |3640|2|M
COMP1011|2250631|Accent, Aac-Ek-Murhg |3640|1|M
COMP1021|2250127|Addison, Blair |3971|1|F
COMP4012|2190705|Allen, David Peter |3645|4|M
COMP4910|2190705|Allen, David Pater |3645|4|M

root:ZHolHAHZw8As2:0:0:root:/root:/bin/ksh
jas:nJz3ru5a/44Ko:100:100:John Shepherd:/home/jas:/bin/ksh
cs1021:iZ3sO90O5eZY6:101:101:COMP1021:/home/cs1021:/bin/bash
cs2041:rX9KwSSPqkLyA:102:102:COMP2041:/home/cs2041:/bin/csh
cs3311:mLRiCIvmtI9O2:103:103:COMP3311:/home/cs3311:/bin/sh

Tab Separated Pipe-separated

Colon-separated

Unix Text Files: Delimited Data



cut: select columns

• The cut  command prints selected parts of input
lines.
– can select columns (assumes tab-separated input)
– can select a range of character positions

• Some options:
‒ -f listOfCols: print only the specified columns (tab-

separated) on output
‒ -c listOfPos: print only chars in the specified positions
‒ -d c:  use character c as the column separator

• Lists are specified as ranges (e.g. 1 -5 ) or comma-
separated (e.g. 2 ,4 ,5 ).



cut examples
cut -f 1 < data

cut -f 1-3 < data

cut -f 1,4 < data

cut -f 4- < data

cut -d'|' -f 1-3 < data

cut -c 1-4 < data

Unfortunately, there's no way to refer to "last
column" without counting the columns.



paste: join columns

• The paste  command displays several text files "in
parallel" on output.

• If the inputs are files a , b , c
– the first line of output is composed

of the first lines of a , b , c
– the second line of output is composed

of the second lines of a , b , c
• Lines from each file are separated by a tab character.
• If files are different lengths, output has all lines

from longest file, with empty strings for missing
lines.

1
2

3
4

5
6

1    3     5
2    4     6



paste example
cut -f 1 < data > data1

cut -f 2 < data > data2

cut -f 3 < data > data3

paste data1 data3 data2 > newdata



sort: Sort lines of a file

• The sort  command copies input to output but
ensures that the output is arranged in ascending
order of lines.
– By default, sorting is based on ASCII comparisons of

the whole line.
• Other features of sort :

– understands text data that occurs in columns.
(can also sort on a column other than the first)

– can distinguish numbers and sort appropriately
– can sort files "in place" as well as behaving like a filter
– capable of sorting very large files



sort: Options
• Syntax: sort [-dftnr] [-o filename] [filename(s)]

-d Dictionary order, only letters, digits, and whitespace
    are significant in determining sort order

-f Ignore case (fold into lower case)
-t Specify delimiter
-n Numeric order, sort by arithmetic value instead of 

    first digit
-r Sort in reverse order
-o filename - write output to filename, filename can be 

     the same as one of the input files
• Lots of more options…



sort: Specifying fields

• Delimiter : -td
• Old way:

– +f[.c][options] [-f[.c][options]
• +2.1 –3 +0 –2 +3n

– Exclusive
– Start from 0 (unlike cut, which starts at 1)

• New way:
– -k f[.c][options][,f[.c][options]]

• -k2.1 –k0,1 –k3n

– Inclusive
– Start from 1



sort Examples

sort +2nr < data
sort –k2nr data

sort -t: +4 /etc/passwd

sort -o mydata mydata



uniq: list UNIQue items
• Remove or report adjacent duplicate lines
• Syntax: uniq [ -cdu] [input-file] [ output-file]

-c Supersede the -u and -d options and generate an
output report with each line preceded by an
occurrence count

-d Write only the duplicated lines
-u Write only those lines which are not duplicated
– The default output is the union (combination) of  -d

and -u



wc: Counting results

• The word count utility, wc, counts the
number of lines, characters or words

• Options:
-l Count lines
-w Count words
-c Count characters

• Default: count lines, words and chars



wc and uniq Examples

who | sort | uniq –d

wc my_essay

who | wc

sort file | uniq | wc –l

sort file | uniq –d | wc –l

sort file | uniq –u | wc -l



tr: TRanslate Characters
• Copies standard input to standard output with

substitution or deletion of selected characters
• Syntax: tr [ -cds ] [ string1 ] [ string2 ]

• -d delete all input characters contained in string1
• -c complements the characters in string1 with respect

 to the entire ASCII character set
• -s squeeze all strings of repeated output characters

in the last operand to single characters



tr (continued)
• tr reads from standard input.

– Any character that does not match a character in
string1 is passed to standard output unchanged

– Any character that does match a character in string1 is
translated into the corresponding character in string2
and then passed to standard output

• Examples
– tr s z replaces all instances of s with z
– tr so zx replaces all instances of s with z and o

with x
– tr a-z A-Z replaces all lower case characters with

upper case characters
– tr –d a-c deletes all a-c characters



tr uses

• Change delimiter
tr ‘|’ ‘:’

• Rewrite numbers
tr ,. .,

• Import DOS files
tr –d ’\r’ < dos_file

• Find printable ASCII in a binary file
tr –cd ’\n[a-zA-Z0-9 ]’ < binary_file



xargs

• Unix limits the size of arguments and
environment that can be passed down to child

• What happens when we have a list of 10,000 files
to send to a command?

• xargs solves this problem
– Reads arguments as standard input
– Sends them to commands that take file lists
– May invoke program several times depending on size

of arguments

a1 … a300

cmd a1 a2 …
xargs
 cmd

cmd a100 a101 …

cmd a200 a201 …



find utility and xargs

•  find . -type f -print | xargs wc -l
– -type f for files
– -print to print them out
– xargs invokes wc 1 or more times

• wc -l a b c d e f g
wc -l h i j k l m n o
…

• Compare to: find . -type f –exec wc -l {} \;



Next Time

• Regular Expressions
– Allow you to search for text in files
– grep command

• Utilities that let you write high level
programs for stream manipulation:
– sed

• We will soon learn how to write scripts that
use this utilities in interesting ways.


