
Lecture 2 & 3

UNIX Basics
The UNIX Filesystem

On the last episode of UNIX Tools…

• Course Info
• History of UNIX
• Highlights of UNIX
• The UNIX Philosophy
• System organization

Unix System Structure

user

 shell and utilities

kernel

hardware

c programs
scripts

ls
ksh

gcc
find

open()
fork()
exec()

Kernel Subsystems
• File system

– Deals with all input and output
• Includes files and terminals
• Integration of storage devices

• Process management
– Deals with programs and program interaction

• How processes share CPU, memory and signals
• Scheduling
• Interprocess Communication
• Memory management

• UNIX variants have different implementations of
different subsystems.

What is a shell?

• The user interface to the operating system
• Functionality:

– Execute other programs
– Manage files
– Manage processes

• A program like any other
• Executed when you log on

Most Commonly Used Shells

– /bin/sh The Bourne Shell / POSIX shell
– /bin/csh C shell
– /bin/tcsh Enhanced C Shell
– /bin/ksh Korn shell
– /bin/bash Bourne-Again Shell - Free ksh clone

Basic form of shell:
while (read command) {
parse command
execute command

}

Shell Interactive Use

When you log in, you interactively use the shell:
– Command history
– Command line editing
– File expansion (tab completion)
– Command expansion
– Key bindings
– Spelling correction
– Job control

Shell Scripting

• A set of shell commands that
constitute an executable program

• A shell script is a regular text file that
contains shell or UNIX commands

• Very useful for automating repetitive task and
administrative tools and for storing commands
for later execution

Simple Commands

• simple command: sequence of non blanks
arguments separated by blanks or tabs.

• 1st argument (numbered zero) usually specifies
the name of the command to be executed.

• Any remaining arguments:
– Are passed as arguments to that command.
– Arguments may be filenames, pathnames, directories

or special options (up to command)
– Special characters are interpreted by shell

A simple example

• Execute a basic command
• Parsing into command in arguments is called

splitting

$ ls –l /bin
-rwxr-xr-x 1 root sys 1065112 Apr 24 2006 bash
-r-xr-xr-x 1 root sys 34848 Jan 13 2006 cat
-r-xr-xr-x 1 root sys 52476 Jan 13 2006 chmod
-r-xr-xr-x 1 root sys 43796 Jun 28 2006 cp
-r-xr-xr-x 2 root sys 654400 Jan 13 2006 csh
-r-xr-xr-x 1 root sys 43632 Jan 13 2006 date

prompt command arguments

Types of Arguments

• Options/Flags
– Convention: -X or --longname

• Parameters
– May be files, may be strings
– Depends on command

$ tar –c –v –f archive.tar main.c main.h

Getting Help on UNIX

• man: display entries from UNIX online
documentation

• whatis, apropos
• Manual entries organization:

– 1. Commands
– 2. System calls
– 3. Subroutines
– 4. Special files
– 5. File format and conventions
– 6. Games

http://en.wikipedia.org/wiki/Unix_manual

Example Man Page

NAME
ls - list files and/or directories

SYNOPSIS

ls [options] [file ...]

DESCRIPTION
For each directory argument ls lists the contents; for each file argument the name and requested information are listed. The
current directory is listed if no file arguments appear. The listing is sorted by file name by default, except that file arguments
are listed before directories.

.
OPTIONS

-a, --all
List entries starting with .; turns off --almost-all.

-F, --classify
Append a character for typing each entry.

-l, --long|verbose
Use a long listing format.

-r, --reverse
Reverse order while sorting.

-R, --recursive
List subdirectories recursively.

SEE ALSO
chmod(1), find(1), getconf(1), tw(1)

 ls (1) USER COMMANDS ls (1)

Today

• Discuss several commands relating to:
– Security
– File system

Fundamentals of Security

• UNIX systems have one or more users,
identified with a number and name.

• A set of users can form a group. A user
can be a member of multiple groups.

• A special user (id 0, name root) has
complete control.

• Each user has a primary (default)
group.

How are Users & Groups used?

• Used to determine if file or process
operations can be performed:
– Can a given file be read? written to?
– Can this program be run?
– Can I use this piece of hardware?
– Can I stop a particular process that’s running?

A simple example

$ ls –l /bin/date
-rwxr-xr-x 1 root sys 43234 Jan 13 2006 /bin/date
$

read write execute

The UNIX File Hierarchy

Hierarchies are Ubiquitous

Definition: Filename

/

tmp etc bin

dmr wm4
foo who date

usr

.profile

foo

who
date
.profile

A sequence of characters other than slash.
Case sensitive.

Definition: Directory

/

tmp etc bin

dmr wm4
foo who date

usr

.profile

etc

usr
dmr
bin

Holds a set of files or other directories.
Case sensitive.

Definition: Pathname

/

tmp etc bin

dmr wm4
foo who date

usr

.profile /usr/wm4/.profile

A sequence of directory names followed by a simple
filename, each separated from the previous one by a /

Definition: Working Directory

/

tmp etc bin

dmr wm4
foo who date

usr

.profile

A directory that file names refer to by default.
One per process.

Definition: Relative Pathname

/

tmp etc bin

dmr wm4
foo who date

usr

.profile .profile
./.profile
../wm4/.profile

A pathname relative to the working directory (as
opposed to absolute pathname)

.. refers to parent directory

. refers to current directory

Files and Directories

• Files are just a sequence of bytes
– No file types (data vs. executable)
– No sections
– Example of UNIX philosophy

• Directories are a list of files and status of the files:
– Creation date
– Attributes
– etc.

Tilde Expansion

• Each user has a home directory
• Most shells (ksh, csh) support ~ operator:

– ~ expands to my home directory
• ~/myfile ◊ /home/kornj/myfile

– ~user expands to user’s home directory
• ~unixtool/file2 ◊ /home/unixtool/file2

• Useful because home directory locations
vary by machine

Mounting File Systems

• When UNIX is started, the directory hierarchy
corresponds to the file system located on a single
disk called the root device.

• Mounting allows root to splice the root directory
of a file system into the existing directory
hierarchy.

• File systems created on other devices can be
attached to the original directory hierarchy using
the mount mechanism.

• Commands mount and umount manage

Mounting File Systems

Device Mount Point
/

/a/b

a
b

/
a

b

/

a
b

/

a
b

Mount table

root device external device

Printing File Contents

• The cat command can be used to copy the contents
of a file to the terminal. When invoked with a list of
file names, it concatenates them.

• Some options:
-n number output lines (starting from 1)
-v display control-characters in visible

form (e.g. ^C)

• Interactive commands more and less show a page at
a time

Common Utilities for Managing files and
directories

• pwd print process working dir
• ed, vi, emacs… create/edit files
• ls list contents of directory
• rm remove file
• mv rename file
• cp copy a file
• touch create an empty file or update
• mkdir and rmdir create and remove dir
• wc counts the words in a file
• file determine file contents
• du directory usage

File Permissions

• UNIX provides a way to protect files based on
users and groups.

• Three types of permissions:
• read, process may read contents of file
• write, process may write contents of file
• execute, process may execute file

• Three sets of permissions:
• permissions for owner
• permissions for group (1 group per file)
• permissions for other

Directory permissions

• Same types and sets of permissions as for
files:
– read: process may a read the directory

contents (i.e., list files)
– write: process may add/remove files in the

directory
– execute: process may open files in directory or

subdirectories

Utilities for Manipulating file
attributes

• chmod change file permissions
• chown change file owner
• chgrp change file group
• umask user file creation mode mask
• only owner or super-user can change file

attributes
• upon creation, default permissions given to

file modified by process umask value

Chmod command
• Symbolic access modes {u,g,o} / {r,w,x}

• example: chmod +r file

• Octal access modes
octal read write execute
0 no no no
1 no no yes
2 no yes no
3 no yes yes
4 yes no no
5 yes no yes
6 yes yes no
7 yes yes yes

File System Internals

The Open File Table

• I/O operations are done on files by first
opening them, reading/writing/etc., then
closing them.

• The kernel maintains a global table
containing information about each open file.
Inode Mode Count

1023 read 1
1331 read/write 2

Position

0
50

…

The File Descriptor Table
• Each process contains a table

of files it has opened.
• Inherits open files from

parent
• Each open file is associated

with a number or handle,
called file descriptor, (fd).

• Each entry of this table
points to an entry in the open
file table.

• Always starts at 0

Why not directly use
the open file table?

• Convenient for kernel
– Indirection makes security easier

• Numbering scheme can be local to process (0
.. 128)

• Extra information stored:
– Should the open file be inherited by children?

(close-on-exec flag)

Standard in/out/err

• The first three entries in the file descriptor
table are special by convention:

cat

• Entry 0 is for input
• Entry 1 is for output
• Entry 2 is for error

messages

• What about reading/writing to the screen?

Devices
• Besides files, input and output can go

from/to various hardware devices

• UNIX innovation: Treat these just like files!
– /dev/tty, /dev/lpr, /dev/modem

• By default, standard in/out/err opened with
/dev/tty

Redirection

• Before a command is executed, the input and
output can be changed from the default (terminal)
to a file
– Shell modifies file descriptors in child process
– The child program knows nothing about this

ls ls

Redirection of input/ouput

• Redirection of output: >
– example:$ ls > my_files

• Redirection of input: <
– example: $ mail mohri <input.data

• Append output: >>
– example: $ date >> logfile

• Bourne Shell derivatives: fd>
– example: $ ls 2> error_log

Using Devices

• Redirection works with devices (just like
files)

• Special files in /dev directory
– Example: /dev/tty
– Example: /dev/lp
– Example: /dev/null

• cat big_file > /dev/lp
• cat big_file > /dev/null

Links
• Directories are a list of files and directories.

– Each directory entry links to a file on the disk

– Two different directory entries can link to the same file
• In same directory or across different directories

– Moving a file does not actually move any data around.
• Creates link in new location
• Deletes link in old location

• ln command

Hello
World!

mydir
hello
file2
subdir

Links
• Directories are a list of files and directories.

– Each directory entry links to a file on the disk

– Two different directory entries can link to the same file
• In same directory or across different directories

– Moving a file does not actually move any data around.
• Creates link in new location
• Deletes link in old location

• ln command

Hello
World!

mydir
hello
file2
subdir cpy

Links
• Directories are a list of files and directories.

– Each directory entry links to a file on the disk

– Two different directory entries can link to the same file
• In same directory or across different directories

– Moving a file does not actually move any data around.
• Creates link in new location
• Deletes link in old location

• ln command

Hello
World!

mydir
hello
file2
subdir cpy

Symbolic links
• Symbolic links are different than regular links (often

called hard links). Created with ln -s
• Can be thought of as a directory entry that points to the

name of another file.
• Does not change link count for file

– When original deleted, symbolic link remains
• They exist because:

– Hard links don’t work across file systems
– Hard links only work for regular files, not directories

Hard link Symbolic Link

Contents of file Contents of file
dirent

dirent

direntsymlink

Example

etc

usr tmp etc bin

dmr wm4

.profile

who date
foo

Hard Link

etc

usr tmp etc bin

dmr wm4

.profile

who date
foo

Symbolic Link

etc

usr tmp etc bin

dmr wm4

.profile

who date
foo

/usr/wm4/.profile

Can a file have no links?

etc

usr tmp etc bin

dmr wm4

.profile

who date
foo

cat

Tree Walking

• How can we find a set of files in the hierarchy?
• One possibility:

– ls –l –R /

• What about:
– All files below a given directory in the hierarchy?
– All files since Jan 1, 2001?
– All files larger than 10K?

find utility

• find pathlist expression
• find recursively descends through pathlist

and applies expression to every file.
• expression can be:

– -name pattern
• true if file name matches pattern. Pattern may

include shell patterns such as *, must be in quotes
to suppress shell interpretation.

– Eg: find / -name '*.c'

find utility (continued)

• -perm [+-]mode
– Find files with given access mode, mode must be in octal. Eg:

find . 755

• -type ch
– Find files of type ch (c=character, b=block, f for plain file, etc..).

Eg: find /home –type f
• -user userid/username

– Find by owner userid or username
• -group groupid/groupname

– Find by group groupid or groupname
• -size size

– File size is at least size
• many more…

find: logical operations

• ! expression returns the logical
negation of expression

• op1 -a op2 matches both patterns
op1 and op2

• op1 -o op2 matches either op1 or op2
• () group expressions together

find: actions

• -print prints out the name of the
current file (default)

• -exec cmd
– Executes cmd, where cmd must be terminated by an

escaped semicolon (\; or ';').
– If you specify {} as a command line argument, it is

replaced by the name of the current file just found.
– exec executes cmd once per file.
– Example:

• find -name "*.o" -exec rm "{}" ";"

find Examples

• Find all files beneath home directory beginning with f
– find ~ -name 'f*' -print

• Find all files beneath home directory modified in last day
– find ~ -mtime 1 -print

• Find all files beneath home directory larger than 10K
– find ~ -size 10k -print

• Count words in files under home directory
– find ~ -exec wc -w {} \; -print

• Remove core files
– find / -name core –exec rm {} \;

diff: comparing two files

• diff: compares two files and outputs a description
of their differences
– Usage: diff [options] file1 file2
– -i: ignore case

apples
oranges
walnuts

apples
oranges
grapes

$ diff test1 test2
3c3
< walnuts

> grapes

Other file comparison utilities

• cmp
– Tests two files for equality
– If equal, nothing returned. If different, location of first

differing byte returned
– Faster than diff for checking equality

• comm
– Reads two files and outputs three columns:

• Lines in first file only
• Lines in second file only
• Lines in both files

– Must be sorted
– Options: fields to suppress ([-123])

