
Lecture 14

Part I: Programming Tools

Rootkit

• Tools used to cover up tracks of a hacker
• Word has origins in UNIX, but applies to

other systems
• At the center of the Sony DRM controversy

Security Needs Trust

• Ken Thompson Turing Award Speech
“Reflections on Trust”
– How do you know if a program is secure?

• Look at the source code

– How do you know if the compiler is secure?

• Look at assembly code

– How do you know assembly is secure?
– ... until lowest levels of hardware

if (recognize-special-code)
compile-hacked();

else
compile-normal();

tar: Tape ARchiver

• tar: general purpose archive utility
(not just for tapes)
– Usage: tar [options] [files]
– Originally designed for maintaining an archive of files

on a magnetic tape.
– Now often used for packaging files for distribution
– If any files are subdirectories, tar acts on the entire

subtree.

tar: archiving files options

– c creates a tar-format file
– f filename specify filename for

tar-format file,
• Default is /dev/rmt0.
• If - is used for filename, standard input or standard

output is used as appropriate
– v verbose output
– x allows to extract named files

tar: archiving files (continued)

– t generates table of contents
– r unconditionally appends the

listed files to the archive files
– u appends only files that are more recent

than those already archived
– L follow symbolic links
– m do not restore file modification times
– l print error messages about links it

cannot find

cpio: copying files

• cpio: copy file archives in from or out of
tape or disk or to another location on the
local machine

• Similar to tar
• Examples:

– Extract: cpio -idtu [patterns]
– Create: cpio -ov
– Pass-thru: cpio -pl directory

cpio (continued)

•cpio -i [dtum] [patterns]
– Copy in (extract) files whose names match

selected patterns.
– If no pattern is used, all files are extracted
– During extraction, older files are not extracted

(unless -u option is used)
– Directories are not created unless –d is used
– Modification times not preserved with -m
– Print the table of contents: -t

cpio (continued)

• cpio -ov
• Copy out a list of files whose names are given on the

standard input. -v lists files processed.

• cpio -p [options] directory
• Copy files to another directory on the same system.

Destination pathnames are relative to the named
directory

• Example: To copy a directory tree:
– find . -depth -print | cpio -pdumv /mydir

pax: replacement for cpio and tar

• Portable Archive eXchange format
• Part of POSIX
• Reads/writes cpio and tar formats
• Union of cpio and tar functionality
• Files can come from standard input or command line
• Sensible defaults

– pax –wf archive *.c
– pax –r < archive

Distributing Software

• Pieces typically distributed:
– Binaries
– Required runtime libraries
– Data files
– Man pages
– Documentation
– Header files

• Typically packaged in an archive:
– e.g., perl-solaris.tgz or perl-5.8.5-9.i386.rpm

Packaging Source: autoconf
• Produces shell scripts that automatically

configure software to adapt to UNIX-like systems.
– Generates configuration script (configure)

• The configure script checks for:
– programs
– libraries
– header files
– typedefs
– structures
– compiler characteristics
– library functions
– system services

 and generates makefiles

Installing Software From Tarballs

tar xzf <gzipped-tar-file>

cd <dist-dir>

./configure

make

make install

Debuggers

• The GDB or DBX debuggers let you examine the
internal workings of your code while the program
runs.
– Debuggers allow you to set breakpoints to stop the

program's execution at a particular point of interest and
examine variables.

– To work with a debugger, you first have to recompile
the program with the proper debugging options.

– Use the -g command line parameter to cc, gcc, or CC
• Example: cc -g -c foo.c

Using the Debugger

• Two ways to use a debugger:
1. Run the debugger on your program, executing the

program from within the debugger and see what
happens

2. Post-mortem mode: program has crashed and core
dumped
• You often won't be able to find out exactly what happened,

but you usually get a stack trace.
• A stack trace shows the chain of function calls where the

program exited ungracefully
• Does not always pinpoint what caused the problem.

GDB, the GNU Debugger

• Text-based, invoked with:
gdb [<programfile> [<corefile>|<pid>]]

• Argument descriptions:
<programfile> executable program file
<corefile> core dump of program
<pid> process id of already running program

• Example:
gdb ./hello

• Compile <programfile> with –g for debug info

Basic GDB Commands
• General Commands:

file [<file>] selects <file> as the program to debug
run [<args>] runs selected program with arguments
<args>
attach <pid> attach gdb to a running process <pid>
kill kills the process being debugged
quit quits the gdb program
help [<topic>] accesses the internal help documentation

• Stepping and Continuing:
c[ontinue] continue execution (after a stop)
s[tep] step one line, entering called functions
n[ext] step one line, without entering functions
finish finish the function and print the return value

GDB Breakpoints

• Useful breakpoint commands:
b[reak] [<where>] sets breakpoints. <where> can be

a number of things, including a hex
address, a function name, a line
number, or a relative line offset

[r]watch <expr> sets a watchpoint, which will break
when <expr> is written to [or read]

info break[points] prints out a listing of all breakpoints
clear [<where>] clears a breakpoint at <where>
d[elete] [<nums>] deletes breakpoints by number

Playing with Data in GDB

• Commands for looking around:
list [<where>] prints out source code at <where>
search <regexp> searches source code for <regexp>
backtrace [<n>] prints a backtrace <n> levels deep
info [<what>] prints out info on <what> (like

local variables or function args)
p[rint] [<expr>] prints out the evaluation of <expr>

• Commands for altering data and control path:
set <name> <expr> sets variables or arguments
return [<expr>] returns <expr> from current

function
jump <where> jumps execution to <where>

Tracing System Calls
• Most operating systems contain a utility to

monitor system calls:
– Linux: strace, Solaris: truss, SGI: par

 27mS[1] : close(0) OK
 27mS[1] : open("try.in", O_RDONLY, 017777627464)
 29mS[1] : END-open() = 0
 29mS[1] : read(0, "1\n2\n|/bin/date\n3\n|/bin/sleep 2", 2048) = 31
 29mS[1] : read(0, 0x7fff26ef, 2017) = 0
 29mS[1] : getpagesize() = 16384
 29mS[1] : brk(0x1001c000) OK
 29mS[1] : time() = 1003207028
 29mS[1] : fork()
 31mS[1] : END-fork() = 1880277
 41mS[1] (1864078): was sent signal SIGCLD
 31mS[2] : waitsys(P_ALL, 0, 0x7fff2590, WTRAPPED|WEXITED, 0)
 42mS[2] : END-waitsys(P_ALL, 0, {signo=SIGCLD, errno=0,
code=CLD_EXITED, pid=1880277, status=0}, WTRAPPED|WEXITED, 0) = 0
 42mS[2] : time() = 1003207028

Lecture 14

Part II: User Interface

The Early Days

• The curses library allowed programs to take
advantage of terminal features (e.g. vt100)
– Special escape sequences to go to given position
– Clear the screen
– Font and color changes

• Examples:
– vi, emacs, pine, lynx
– More sophisticated: screen, w3m

Window System History

History of X

• Developed at MIT in 1984
• Derived from Stanford project called W
• X is now freely distributable, and available

for UNIX, Windows, and Mac.

X Windows

• The X Windows system is the standard
graphical interface for UNIX

• Distinguishing features:
– Allows multiple virtual terminals to be opened

at once
– Highly Customizable and extensible
– Highly Portable
– Works over networks

X Windows Architecture

• Separation of display and programs
• Connected by TCP/IP
• Your display is the X server
• Programs that run are clients
• Confusing because backwards from what

we are used to

X Windows Architecture

Display Server

port 6000
draw box

draw characters

mouse event

keyboard event

Display Client

X Windows Library

client machine
application server

Setting the display

• The DISPLAY environment variable is used by X
clients to decide which server to contact

• Format server:display
– One host can have multiple displays
– Display corresponds to port 6000 + display

• Default server: localhost
• Examples:

– :0
– mymachine.cs.nyu.edu:0
– 128.112.13.3:2

Security

• X Servers only accept commands from authorized
hosts

• The command xhost is used to enable/disable
– xhost +mymachine
– xhost -mymachine
– xhost + : Allow all hosts (dangerous!)

• X connections are not encrypted and therefore
insecure
– SSH tunneling solves this

Configuration
• X windows allows most things to be

configured:
– Colors
– Fonts
– Positions
– Decorations
– Borders
– Mouse bindings
– Key bindings

• Stored in ~/.Xdefaults

Window Managers

• Provide the look and feel of X Windows.
• In charge of:

– The placement of windows
– UI for moving/resizing/iconifying windows
– Window decorations

• Because window managers are separate from X
Windows, there are many to choose from:
– twm (tom's)
– fvwm (free/fast virtual window manager)
– mwm (Motif)
– olvwm (Open Look)

twm

Motif

OpenLook

CDE

• Common Desktop Environment
• Combines functionality of

– Motif
– OpenLook

• Response to threat of MS Windows

Disadvantages of X

• X is a resource hog
– On an 80x86 machine, 16 MB is the minimum amount

of memory for decent performance
• X has a large disk footprint

– OpenLook, Sun’s window manager, takes up 30+ MB
of disk space for the binaries and libraries

• On older, less powerful workstations, X also
takes a performance hit
– But this isn’t a big deal on reasonably modern

machines (386 and better, for PCs)

X Toolkits

• X windows provides an API for doing low
level graphics functionality (Xt)
– Too cumbersome to use for many applications

• Motif
– Higher level widgets
– Examples: buttons, scrollbars, menus, etc.

• Even higher level: portability outside X
– gtk
– Qt

A Sampling of Motif Widgets

Example X Windows Program
#include <Xm/PushB.h>

main(int argc, char *argv[]) {
 Widget toplevel, button;
 XtAppContext app;
 XmString label;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Hello", NULL, 0,
 &argc, argv, NULL, NULL);

 label = XmStringCreateLocalized ("Push here to say hello");
 button = XtVaCreateManagedWidget ("pushme",
 xmPushButtonWidgetClass, toplevel,
 XmNlabelString, label,
 NULL);
 XmStringFree (label);
 XtAddCallback (button, XmNactivateCallback, button_pushed, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
}

void button_pushed(Widget widget, XtPointer client_data, XtPointer call_data) {
 printf ("Hello Yourself!\n");
}

Gtk and Qt

• Make it possible to write applications that
work on X, Windows and MacOS
– Even PDAs

• Gtk: GNU license. C API
• Qt: Property of Trolltech, free to use. C++

API
• wxWindows: common API

User Interface Builders

glade

Linux Window Managers

• Trying to complete with MS Windows,
advanced window managers have been
developed:
– KDE
– Gnome

• Also include more advanced programming
APIs for inter-program communication

KDE

GNOME

Ximan Desktop

Star Office / Open Office

The Gimp

Mozilla/Firefox

Thunderbird

Graphical Scripting

• Several scripting languages exist with
graphical primitives

• The first widely used example was Tcl/Tk
– Tcl: scripting language
– Tk: built-in routines for graphics

• Very good for quick prototypes
– Similar to Visual Basic

Other Languages

• The graphics part of Tcl/Tk has been ported
to many other scripting languages:
– tkperl
– tkpython
– tksh

Other Scripting Extensions

• tcl/tk led the way for scripting languages to
allow user extended builtin commands.
– Perl, Python, Kornshell all allow compiled C-

libraries to be plugged into the interpreter
– SWIG: tool to wrap up any library
– Examples

• Database access
• OpenGL

Terminal Windows Still Alive!

• Popular terminal-oriented programs
– pine
– w3m
– screen

MySQL

• Open source database developed on Linux
(GPL)
– Others available include: berkeleydb, postgress
– Easy to administer:

mysqladmin -uroot create guestbookdb

mysql -uroot -e" CREATE TABLE guestbook (
name char(255) not null,
age int(3) unsigned,
email char(255) not null,
website char(255),
comments blob,
time int(10) unsigned
);" guestbookdb

MySQL Perl Example
use DBI;

$dbh = DBI->connect("DBI:mysql:database=$serverDb;host=$serverName;
 port=$serverPort",$serverUser,$serverPass);

$sth = $dbh->prepare("SELECT name,age,email,website,comments,time
 FROM $serverTabl ORDER BY time");

$sth->execute;

print "Existing Entries",hr;

while(@row = $sth->fetchrow_array) {
 $row[5] = scalar(localtime($row[5]));
 print "Name: ", $row[0], br;
 print "Age: ", $row[1], br;
 print "E-Mail Address: ", $row[2], br;
 print "Web Site Address: ", $row[3], br;
 print "Comments: ", $row[4], br;
 print "Added on ", $row[5], hr;
}

$sth->finish;

$dbh->disconnect;

MySQL PHP Example
<?

$username="username";
$password="password";
$database="your_database";

mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select database");
$query="SELECT * FROM contacts";
$result=mysql_query($query);
$num=mysql_numrows($result);
mysql_close();

echo "<center>Database Output</center>

";

$first=mysql_result($result,$i,"first");
$last=mysql_result($result,$i,"last");
$phone=mysql_result($result,$i,"phone");
$mobile=mysql_result($result,$i,"mobile");
$fax=mysql_result($result,$i,"fax");
$email=mysql_result($result,$i,"email");
$web=mysql_result($result,$i,"web");

<tr>
<td><? echo $first." ".$last;
?></td>
<td><? echo $phone; ?></td>
<td><? echo $mobile; ?></td>
<td><? echo $fax; ?></td>
<td><a href="mailto:<? echo $email;
?>">E-mail</td>
<td><a href="<? echo $web;
?>">Website</td>
</tr>

?>

Recent Directions in UNIX

• DotGNU / Mono
– Application framework for network services
– Extensive use of XML for data exchange (XML-RPC)
– Web-safe languages (C#), GUI, etc.

• XML tools
– libxml (developed by GNOME)
– Tools similar to grep, sed, cut, etc.
– Good for processing formats like RSS/RDF, config

files, etc.
• Embedded UNIX

– Stripped down versions of UNIX to work on portable
devices

Final Review

The UNIX Philosophy
• Small is beautiful
• Make each program do one thing well

– More complex functionality by combining
programs

– Make every program a filter
– Good for reuse

• Avoid captive interfaces
• Portability over efficiency
• Use ASCII

The UNIX Philosophy

• Scripting increases leverage and portability

print $(who | awk '{print $1}' | sort | uniq) | sed 's/ /,/g'

2,093sed

302uniq

2,614sort

3,412awk

755who

List the logins of a system’s users on a single line.

9,176 lines

• Build prototypes quickly (high level
interpreted languages)

..continued

Unix System Structure

user

 shell and utilities

kernel

hardware

c programs
scripts

ls
ksh

gcc
find

open()
fork()
exec()

UNIX Concepts

• File System
• Standard in, out, error
• Users and groups
• Permissions
• The shell
• Pipes

Pipes

• General idea: The input of one program is
the output of the other, and vice versa

• Both programs run at the same time

A B

UNIX Programs

• Means of input:
– Program arguments

[control information]
– Environment variables

[state information]
– Standard input [data]

• Means of output:
– Return status code [control information]
– Standard out [data]
– Standard error [error messages]

Commands and Filters

• Basic UNIX Commands
– rm, cp, mv, ls
– ps, kill

• Unix Filters
– cat, head, tail, tee, wc
– cut, paste, tr
– grep, egrep, fgrep
– find, xargs
– diff, cmp, comp

Regular Expressions

• A regular expression (regex) describes a set
of possible input strings.

• Regular expressions are endemic to Unix
– vi, ed, sed, and emacs
– awk, tcl, perl and Python
– grep, egrep, fgrep

x

xyz

Ordinary characters match themselves
(NEWLINES and metacharacters excluded)
Ordinary strings match themselves

\m
^

$
.

[xy^$x]
[^xy^$z]

[a-z]
r*

r1r2

Matches literal character m

Start of line

End of line
Any single character
Any of x, y, ^, $, or z
Any one character other than x, y, ^, $, or z
Any single character in given range
zero or more occurrences of regex r
Matches r1 followed by r2

\(r\)
\n

\{n,m\}

Tagged regular expression, matches r
Set to what matched the nth tagged expression
(n = 1-9)
Repetition

r+
r?

r1|r2

(r1|r2)r3
(r1|r2)*

{n,m}

One or more occurrences of r
Zero or one occurrences of r
Either r1 or r2

Either r1r3 or r2r3
Zero or more occurrences of r1|r2, e.g., r1, r1r1,
r2r1, r1r1r2r1,…)
Repetition

fgrep, grep, egrep

grep, egrep

grep

egrep

This is one line of text
o.*
o

input line
regular expression

UNIX Scripting Languages

• There are
many choices
for shells

• Shell features
evolved as
UNIX grew

CGI Scripting

Development Tools

• Compilation and building: make
• Managing files: RCS, SCCS, CVS
• Editors: vi, emacs
• Archiving: tar, cpio, pax, RPM
• Configuration: autoconf
• Debugging: gdb, dbx, prof, strace, purify
• Programming tools: yacc, lex, lint, indent

Important Aspects of Security

• Make sure data is accessible
to only those authorized to see
it

• Make sure people can’t do
things they’re not supposed to
do

• Make sure data is protected
against corruption or loss

System Administration

• Install, update and configure software
• Define user accounts
• Configure peripherals (disks, printers, etc)
• Allocate disk storage
• Back-up files and data, recover lost data
• Monitor performance
• Communication with users
• Maintain system integrity (security, hardware)

Graphical Interfaces

Final Exam

• Mostly material that was on midterm (75%)
– Should be more familiar now

• Basic questions about:
– Administration
– Development tools
– Security
– Windowing Systems
– Kernel

