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Topic Analysis

• ...this protest has brought out thousands of serbs calling 
for the end of the milosevic regime. opposition leaders 
are confident milosevic’s days in power are numbered. on 
capitol hill tonight the senate approved 600,000 visas for 
skilled high technology workers...

• Topic analysis: label text or speech stream with topic 
boundaries and/or identities. 
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Topic Modeling

• Idea: find low-dimensional descriptions of high-
dimensional text

• Topic models enable spoken/text document

• Summarization - finding concise restatements

• Similarity - evaluating closeness of texts

• This can help improve, e.g.,

• Navigation quality of speech/text collections

• Speech recognition quality (with topic-specific models)
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Latent Semantic Analysis

• Idea: text is explained by mixing latent topics/factors

• Topic models try to discover this underlying structure

• Latent Semantic Analysis/Indexing [Deerwester et al. ‘90]

• Measure occurrence frequency of terms in documents

• Write frequencies as term-document matrix

• Analyze using Singular Value Decomposition (SVD)

• Components: term-topic, topic-topic, and document-
term matrices
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Applying SVD

• Discover latent factors with approximate SVD (keep    
highest singular values).
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Using LSA

• Approximate SVD formulation of LSA:

• Term similarity matrix:

• Document similarity matrix:

• Factored document-term matrix     is used for indexing

• Retrieval: compute cosines between query vector, 

• Apply threshold (determines operating point)

• Medical abstracts database: 1033 documents, 30 queries

• Compare to two state-of-the art IR systems
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Indexing Results

• Good improvement on 
MED dataset

• But, some concern that 
this is artificial

• Mixed results on other 
corpora

• Summary: LSA is not 
explicitly a topic model but 
is the foundation for much 
later work
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Probabilistic Topic Models

• LSA: try to discover fixed factors underlying the text

• Document-term                  , singular values      , score:

• Want model with solid statistical foundation

• Based on likelihood principle, defines generative model

• PLSA [Hoffman ’99]: learn a set of models for hidden 
topics
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3 Topic Analysis

Automatic detection and identification of topics in natural language texts has been
of much recent interest. For speech recognition, labeling a recognized utterance as
belonging to a particular topic, or simply detecting when the topic changes, can be
beneficial in several ways. This information can be used to improve transcription
quality by using topic-dependent models in a second recognition pass over the data.
Furthermore, identifying the topic of an utterance can enable improved search and
navigation in the large collections of audio data mentioned in the previous section.
In real-time speech recognition applications, topicality information can be used both
to improve recognition quality and dialogue management.

3.1 Topic Models

The majority of previous work on topic analysis and segmentation has been formu-
lated in terms of generative models. In these models, the text serves as a sequence of
observations explained by a latent sequence of topic labels. Thus, a simple generative
formulation of the topic model can be written as

z = arg max
z

Pr(z|w) (8)

= arg max
z

Pr(w|z)Pr(z), (9)

where w is the sequence of observed text, and z is a topic label. The second line
follows by Bayes’ rule and the realization that the prior over the observations P (w)
does not change with respect to topic.

There has been a substantial body of work trying to discover the best model for
the conditional distribution of P (w|z). One approach is to decompose the observation
sequence into topic-coherent documents, and decompose the topic-dependent condi-
tional topic model into a word-topic model and a document-topic model, Pr(w|zk)
and Pr(d|zk), respectively. The latter likelihood defines a per-document weight on
each topic, and thus each document can be viewed as being associated with a partic-
ular mixture of topics. This model, known as PLSA [15], models the co-occurrence
of observations and documents as

Pr(w, d) =
∑

k

Pr(d|zk)Pr(w|zk)Pr(zk). (10)

During test time, a test sentence w is labeled in a maximum a posteriori fashion
as belonging to the document maximizing the above likelihood.

The PLSA model just described has major limitations. The first is that sentences
w are labeled in isolation without considering the context of the sentences around
it. This limitation was addressed in [5] by embedding the PLSA in a hidden Markov
model (HMM) structure. Each state of the HMM corresponds to a given PLSA doc-
ument and transition likelihoods are set according to counts over topic pair bigrams.
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PLSA

• Generative process:

• Testing scenario: indexing task as with LSA

• Given text   , calculate             , apply threshold
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PLSA Results

• Compare LSI, 
PLSI, plain cosine 
score

• Compare term-
frequency (tf) by 
itself and 
weighted by 
inverse document 
frequency (idf)
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Moving Away from LSA

• Want to model topic stream underlying arbitrary text

• So, move away from explicitly modeling documents

• Thus, the indexing task is no longer representative

• Simple generative model:

• Generative interpretation: pick topic    from prior 
distribution

• Pick words according to distribution of topic
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Generic Topic Models

• Any text can be explained by any topic sequence with 
some likelihood

• We can find the maximum a posteriori topic for a text

• An aside: what do we mean by “text”    ?

• It’s a generic bag-of-words, could be

• Single word

• Sentence

• Speech utterance 12

w

k = arg max
k

Pr(zk|w) = arg max
k

Pr(w|zk) Pr(zk)



Model Specifics

• PLSA:

• Generic topic models

• What kind of distributions to use?

• Simple choice: unigram/Naïve Bayes:

• e.g.,                                normalized number of times 
topic    is assigned to text    in the training data

• Can do smoothing here, many options, e.g., add-one:
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Automatic detection and identification of topics in natural language texts has been
of much recent interest. For speech recognition, labeling a recognized utterance as
belonging to a particular topic, or simply detecting when the topic changes, can be
beneficial in several ways. This information can be used to improve transcription
quality by using topic-dependent models in a second recognition pass over the data.
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Other Distributions

• Unigram is a simple distribution; smoothing is a 
rudimentary approximation for allowing unseen data

• More sophisticated: multinomial with Dirichlet prior

• Simple example: binomial; how many 6s in 10 die tosses?

•                                                  ,            ,

• Multinomial: generalization of this 

Pr(K = k) =

(

n

k

)

pk(1 − p)n−k
p =

1

6
n = 10



Dirichlet Details

•    -dimensional Dirichlet random variable    

• Real-number generalization of the factorial:

•                                    , for integers

•     is the parameter vector

• takes values in the            -simplex (i.e, sums to 1)

• Dirichlet: conjugate prior distribution to the multinomial

• Prior         conjugate to likelihood function class          
if posterior likelihood             in the same family as

BLEI, NG, AND JORDAN

We wish to find a probabilistic model of a corpus that not only assigns high probability to

members of the corpus, but also assigns high probability to other “similar” documents.

3. Latent Dirichlet allocation

Latent Dirichlet allocation (LDA) is a generative probabilistic model of a corpus. The basic idea is

that documents are represented as random mixtures over latent topics, where each topic is charac-

terized by a distribution over words.1

LDA assumes the following generative process for each document w in a corpus D:

1. Choose N ∼ Poisson(!).
2. Choose "∼ Dir(#).

3. For each of the N words wn:

(a) Choose a topic zn ∼Multinomial(").
(b) Choose a word wn from p(wn |zn,$), a multinomial probability conditioned on the topic

zn.

Several simplifying assumptions are made in this basic model, some of which we remove in subse-

quent sections. First, the dimensionality k of the Dirichlet distribution (and thus the dimensionality

of the topic variable z) is assumed known and fixed. Second, the word probabilities are parameter-

ized by a k×V matrix $ where $i j = p(wj = 1 |zi = 1), which for now we treat as a fixed quantity
that is to be estimated. Finally, the Poisson assumption is not critical to anything that follows and

more realistic document length distributions can be used as needed. Furthermore, note that N is

independent of all the other data generating variables (" and z). It is thus an ancillary variable and

we will generally ignore its randomness in the subsequent development.

A k-dimensional Dirichlet random variable " can take values in the (k−1)-simplex (a k-vector
" lies in the (k−1)-simplex if "i ≥ 0, %k

i=1"i = 1), and has the following probability density on this
simplex:

p(" |#) =
&

(

%k
i=1#i

)

'k
i=1&(#i)

"#1−11 · · ·"#k−1k , (1)

where the parameter # is a k-vector with components #i > 0, and where &(x) is the Gamma function.
The Dirichlet is a convenient distribution on the simplex — it is in the exponential family, has finite

dimensional sufficient statistics, and is conjugate to the multinomial distribution. In Section 5, these

properties will facilitate the development of inference and parameter estimation algorithms for LDA.

Given the parameters # and $, the joint distribution of a topic mixture ", a set of N topics z, and

a set of N words w is given by:

p(",z,w |#,$) = p(" |#)
N

'
n=1

p(zn |")p(wn |zn,$), (2)

1. We refer to the latent multinomial variables in the LDA model as topics, so as to exploit text-oriented intuitions, but

we make no epistemological claims regarding these latent variables beyond their utility in representing probability

distributions on sets of words.
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Latent Dirichlet Allocation

• LDA [Blei, Jordan, 2003]:             modeled with 
multinomial distribution, Dirichlet prior

• Generative process:

• Choose multinomial parameters

• Choose a topic

• Choose a text    

• Inference: decode maximum a posteriori sequence of topic 
labels accounting for sentence
k = arg max

k
Pr(z|w) = arg max

k
Pr(w|zk)Pr(zk)

zk ∼ Multinomial(θ)

θ ∼ Dirichlet(α)

w ∼ Multinomial(φk)

P (zk)



Learning

• For unigram models, can optimize directly with EM

• Optimizing all LDA parameters is intractable

• Variational inference

• Remove part of the conditionality of generative model

• Replace with free variational parameters, optimize

• Find true distribution closest (in KL-divergence) to 
variational distribution

• Another possibility: sampling methods (MCMC)
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LDA Results: Perplexity

• Evaluate perplexity (roughly, 
10% held-out data likelihood)

• Single Unigram

• Mixture of unigrams

• PLSA

• Nematode: 5,255 biology 
abstracts

• AP: 16,333 newswire articles
18
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Figure 9: Perplexity results on the nematode (Top) and AP (Bottom) corpora for LDA, the unigram

model, mixture of unigrams, and pLSI.
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LDA Results: Classification

• Train binary SVM classifier on (1) LDA posteriors; (2) the 
words themselves

• Reuters-21578: 8000 documents labeled with classes
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Figure 10: Classification results on two binary classification problems from the Reuters-21578

dataset for different proportions of training data. Graph (a) is EARN vs. NOT EARN.

Graph (b) is GRAIN vs. NOT GRAIN.
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Figure 10 shows our results. We see that there is little reduction in classification performance

in using the LDA-based features; indeed, in almost all cases the performance is improved with the

LDA features. Although these results need further substantiation, they suggest that the topic-based

representation provided by LDA may be useful as a fast filtering algorithm for feature selection in

text classification.
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Context Dependency

• All the models so far labels bags-of-words in isolation

• We want to model the transition from topic to topic

• Typical approach: embed topic model in HMM

• i.e., assign a penalty to changing topics

• [Yamron et al. ’97]: hand-tuned penalty to move between 
unigram topic models

• [Blei+Moreno, ‘01]: add HMM structure to PLSA model

• [Gruber et al., ‘06]: add HMM structure to LDA; HMM 
transitions learned at the same time as LDA parameters
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Topic Segmentation

• Breaking up a stream of text or speech into topic-
coherent segments is of independent interest

• e.g., for presentation of indexed audio collections, etc.

• A topic model such as e.g., PLSA, LDA, HTMM implicitly 
gives topic segmentation

• But what if only the correct segmentation matters?

• Can we give algorithms directly focused on 
segmentation?

• How do we evaluate their performance?
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TextTiling

• [Hearst ‘94] Split text into windows of size    , for all pairs 
of adjacent windows (gaps)

• Calculate cosine measure

• Smooth with average smoothing

• Segmentation is based on heuristics

• Measure peak-to-trough differences in cosine signal

• Hypothesize boundaries when difference above cutoff

• Cutoff heuristic: 
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TextTiling Results

• Stargazers text: ~400 paragraphs

• Compare TextTiling to

• Sanity-check segmentations (33, 41% of paragraph gaps)

• Human segmentations
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Topic Segmentation Models

• [Beeferman et al. ‘99]: learn model          , 

• Exponential linear model form

• Look for model minimizing the KL-divergence to 
the empirical distribution

• Use iterative scaling algorithm to learn parameters

• Greedy feature selection algorithm

• Iteratively add feature most improving objective
24
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Segmentation Features

• Model: combination of trigram and 
salient word pairs

•      is the total history,               tests 
for trigger word pairs

• Final features are topicality

• ... and cue word features
25

STATISTICAL MODELS FOR TEXT SEGMENTATION 11

Underlined words mark where a long-range language model might reasonably be
expected to outperform (i.e., assign higher probabilities than) a short-range model:

Some doctors are more skilled at doing the procedure than
others so it’s recommended that patients ask doctors about
their track record. People at high risk of stroke include
those over age 55 with a family history of high blood pressure
or diabetes, and smokers. We urge them to be evaluated by
their family physicians and this can be done by a very simple
procedure simply by having them test with a stethoscope for
symptoms of blockage.

One means of injecting long-range awareness into a language model is by retaining
a cache of the most recently seen n-grams which is combined (typically by linear
interpolation) with the static model; see for example (?; ?). Another approach, us-
ing maximum entropy methods, introduces parameters for trigger pairs of mutually
informative words, so that occurrences of certain words in recent context boost the
probabilities of the words that they trigger (?).

The method we use here, described in (?), starts with a trigram model as a
prior, or default distribution, and tacks onto the model a set of features to account
for the long-range lexical properties of language. The features are trigger pairs,
automatically discovered by analyzing a corpus of text using a mutual information
heuristic described in (?). Figure 2 contains a sample of the (s, t) trigger pairs used
in the BN long-range model. A five million word subset of the BN corpus served
to create the long-range component of the BN model; a one-million word subset of
the WSJ corpus was mined to create the WSJ long-range model.

To incorporate triggers into a trigram language model, we build a family of con-
ditional exponential models of the general form

pexp(w | X) =
1

Zλ(X)
eλ·f(w,X) ptri(w | w−2, w−1)

where X ≡ w−N , w−N+1, . . . , w−1 is the history (i.e., the N words preceding w in
the text), and Zλ(X) is the normalization constant

Zλ(X) =
∑

w∈W
eλ·f(w,X) ptri(w | w−2, w−1) .

In the models that we built, a feature fi is an indicator function, testing for the
occurrence of a trigger pair (si, ti):

fi(w, X) =
{ 1 if si ∈ X and w = ti

0 otherwise.

To each trigger pair (s, t) there corresponds a real-valued parameter λs,t; the
probability of t is boosted by a factor of approximately eλs,t for N words following
the occurrence of s. The training algorithm we use for estimating these parame-
ters is the same improved iterative scaling algorithm used to train our exponential
segmentation models, as described in Section 3.
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s, t eλs,t

residues, carcinogens 2.3
Charleston, shipyards 4.0
microscopic, cuticle 4.1
defense, defense 8.4
tax, tax 10.5
Kurds, Ankara 14.8
Vladimir, Gennady 19.6
Steve, Steve 20.7
education, education 22.2
insurance, insurance 23.0
Pulitzer, prizewinning 23.6
Yeltsin, Yeltsin 23.7
sauce, teaspoon 27.1
flower, petals 32.3
picket, scab 103.1

Figure 2: A sample of the 59, 936 word pairs from the BN domain. Roughly

speaking, after seeing the word s, the empirical probability of witnessing the cor-
responding word t in the next N words is eλs,t more likely than otherwise. In the

experiments described herein, N = 500.

For a concrete example, if si =Vladimir and ti =Gennady, then fi = 1 if
and only if Vladimir appeared in the past N words and the current word w is
Gennady. Consulting Figure 2, we see that in the BN corpus, the presence of
Vladimir will (roughly speaking) boost the probability of Gennady by a factor
of 19.6 for the next 500 words.

Using the model—that is, calculating pexp(w | X)—is a three-step process:

1. Start with the probability ptri assigned by the trigram model;

2. Multiply this probability by the boosting factor eλs,t corresponding to each
“active” trigger pair: that is, each (s, t) for which s appeared in X and t = w;

3. Divide by the normalizing term Zλ(X).

One propitious manner of viewing this model is to imagine that, when assigning a
probability to a word w following a history X , the model consults a cache containing
words which appeared in X and which are the left half of some (s, t) trigger pair. In
general, the cache consists of content words s which promote the probability of their
mate t, and correspondingly demote the probability of other words. We say that a
pair (s, t) is a self trigger if s = t, and a non-self trigger otherwise. In Section 9
we investigate the contribution of each trigger pair type to the performance of our
segmentation model.
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5. Features for Segmenting

5.1. Topicality features

A long-range language model uses words from previous sentences to bias itself
regarding the identity of the next word. This is likely to make for a more accurate
model if all of the previous sentences are in the same document as the current word.
In the case of the trigger model described in Section 4.2, the cache will be filled
with “relevant” words.

On the other hand, if the present document has just recently begun, the long-
range model is wrongly conditioning its decision on information from a different—
and presumably unrelated—document. A soap commercial, for instance, doesn’t
provide a helpful context to a long-range model in assigning probabilities to the
words in the news segment following the commercial. In fact, a long-range model
will likely be misled by such irrelevant context.

So at the beginning of a document, the myopia of the trigram model actually gives
it an advantage over a long-range model. But sufficiently far into a document, the
long-range model will, by adapting itself to the growing context, outperform the
trigram model. By monitoring the long- and short-range models, one might be more
inclined towards a boundary when the long-range model suddenly shows a dip in
performance—a lower assigned probability to the observed words—compared to the
short-range model. Conversely, when the long-range model is consistently assigning
higher probabilities to the observed words, a boundary is less likely.

This motivates the measure of topicality T (w, X), which we define as

T (w, X) ≡ log
pexp(w | X)

ptri(w | w−2, w−1)

When the exponential model outperforms the trigram model, T > 0.
Observing the behavior of T as a function of the position of the word within a

segment, one discovers that on average T slowly increases from below zero to well
above zero. Figure 3 gives a striking graphical illustration of this phenomenon.
The figure plots the average value of T as a function of relative position in the
segment, in words, with position zero indicating the beginning of a segment. This
plot shows that when a segment boundary is crossed (where the horizontal axis is
labeled 0), the predictions of the adaptive model undergo a dramatic and sudden
degradation, and then steadily become more accurate as relevant content words for
the new segment are encountered and added to the cache.

This observed behavior is consistent with our intuition: the cache of the long-
range model is unhelpful early in a document, when the new content words bear
little in common with the content words from the previous article. Gradually, as the
cache fills with words drawn from the current article, the long-range model gains
steam and T increases. While Figure 3 shows that this behavior is very pronounced
when averaged over many trials, our feature selection results indicate that topicality
is also a very good predictor of boundaries for individual events.

X f(w, X)
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of Pk ≡ PDk ≈ 1
2 (Figure 12). With this justification, we use the error metric Pk

in our quantitative analysis.
This measure is a probability and therefore a real number between zero and one.

An algorithm scores one with respect to some text if and only if it exactly predicts
the location of the boundaries in the text. The metric captures the notion of near-
ness in a principled way, gently penalizing algorithms that hypothesize boundaries
that aren’t quite right, and scaling down with the algorithm’s degradation. Fur-
thermore, it is not possible to obtain a high score by “cheating” with a degenerate
model, such as the all or none algorithms. We refer to Section 9 for sample results
on how these trivial algorithms score.

The number Pk(ref, hyp) is the probability that a randomly chosen pair of words
a distance of k words apart is inconsistently classified; that is, for one of the seg-
mentations the pair lies in the same segment, while for the other the pair spans
a segment boundary. This probability can be decomposed into two conditional
probabilities, called the miss and false alarm probabilities:

p(error | ref, hyp, k) =
p(miss | ref, hyp, different ref segments, k) p(different ref segments | ref, k)

+p(false alarm | ref, hyp, same ref segment, k) p(same ref segment | ref, k)

The miss and false alarm probabilities give a more detailed look at the error, al-
lowing an assessment in terms of precision and recall.

9. Experimental Results

This section presents the results of applying the feature selection algorithm dis-
cussed in the earlier sections to segment CNN broadcast news data and Wall Street
Journal text. (See the end of the paper for a more detailed description of the data
we used for training and testing our models.) These results are compared to those
obtained using decision tree methods, and we evaluate the relative contributions
made by the cue-word and topicality features. In order to give the reader an intu-
itive feel for the performance of these algorithms, we also present qualitative results
by displaying graphs of the segmentations on test data.

9.1. Quantitative results

In Section 3 we divided the segmentation task into a modeling problem—constructing
a model q(b |X)—and a decision problem—using the model to assign segment
boundaries to a stream of data. The decision procedure we employ is straightfor-
ward: hypothesize a segment boundary at each position for which 1) q(yes |X) > α
and 2) no higher scoring position occurs within ±ε positions, where α and ε are
fixed constants. The minimum separation ε was set to six sentences for CNN data,
and two sentences for WSJ data. The error probability Pk is evaluated by fixing
k to be half of the average reference segment length. The model threshold α is
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segmentation
model Pk

miss
probability

false alarm
probability

exponential model 9.5% 12.1% 6.8%

decision tree 11.3% 16% 6.6%

hidden Markov model 16.7% 16% 17.6%

interpolated (exp + dtree) models 7.8% 7.2% 8.4%

random boundaries 49.5% 60.1% 38.9%

all boundaries 47.5% 0% 100%

no boundaries 49.7% 100% 0%

evenly spaced 50.3% 50.3% 50.3%

Figure 13: Quantitative results for segmentation of the broadcast news portion of

the TDT corpus. The TDT models were trained on two million words of CNN
transcripts furnished with segment boundaries, and tested on one million words

from the TDT corpus. A total of 100 features were induced. The performance

of a decision tree grown with exactly the same candidate feature set is also given.
The tree had 609 nodes, and was smoothed using the EM algorithm as indicated in

the text. A simple linear interpolation (weight 1
2 ) of the decision tree model with

the exponential model resulted in an error rate of Pk = 0.078, with window size

k = 289 words, equal to half of the average segment size. The decision thresholds

for the exponential and decision tree models were chosen so that the probability of a
hypothesized boundary falling within a window of k = 289 words is roughly equal to

the probability of a reference boundary falling in the window. The thresholds were

thus not chosen to minimize the error rate Pk. The default segmentation models,
described in the text, are also presented.

then determined on heldout data by requiring that the probability of a hypothe-
sized boundary falling within a window of k words is equal to the probability of a
reference boundary falling in the window. In other words, the threshold is set so
that the number of segments hypothesized is approximately equal to the number of
segments appearing in the reference set. The threshold is not chosen to minimize
the error rate Pk. Of course, a given application may require trading off recall for
precision, or vice-versa, which may motivate a different choice of thresholds.

Two sets of experiments are reported here on broadcast news data. The first
set of experiments was carried out in the context of the TDT pilot study, using
the CNN portion of the corpus specifically prepared for this study, and the second
using CNN data in the broadcast news corpus. One of the main differences between
these corpora, for our purposes, is that the average document length of the TDT
broadcast news data is nearly 400 words smaller than that in the broadcast news
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segmentation
model Pk

miss
probability

false alarm
probability

exponential model 19.0% 24.0% 15.75%

decision tree 24.6% 32.7% 19.4%

interpolated (exp + dtree) models 18.5% 24.7% 14.5%

cue-word features only 23.7% 35.6% 15.8%

topicality features only 35.8% 45.4% 29.6%

TextTiling 29.6% 45.7% 19.1%

Figure 15: Quantitative results for segmentation of Wall Street Journal text. The

models were trained on one million words of WSJ text furnished with segment
boundaries, and tested on 325,000 words of unseen text. A 100 feature exponential

model combining cue-word and topicality features had an error rate of Pk = 0.19,

evaluated with a window size of k = 214 words, equal to half of the average segment
size.
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Figure 16: Performance of the segmentation model on 1 million words of heldout
CNN broadcast news data, as a function of the number of features induced.

In order to compare our use of exponential models to more established statistical
learning algorithms, we grew a decision tree on the same data, using a candidate
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