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One Does Not Belong

Mexico's outgoing ruling party is threatening to boycott
the inauguration of the new President electVicente Fox...

Leaders from around the world are arriving in Mexico for
Friday's inauguration of President elect Vicente Fox...

The curtain has come down on the Summer Games in
Sydney but not before the U.S. men's basketball team...

Mexico begins a new era today when President elect
Vicente Fox takes the oath of office...

History was made in Mexico today when Vicente Fox was

sworn in as President. This was no ordinary inauguration...
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Novelty Detection

® |ntuitive definition: find the outliers in a group or a stream
of data points

® Some ideas in the (enormous) past literature

® Fit a Gaussian mixture, train a HMM, etc.; outliers are
points with low likelihood

® Apply k-means clustering, k-nearest neighbors, etc.;
outliers are points far from clusters/other points

® This work: ummm, Occam’s Razor? Why solve all these
hard problems?




Separating from Origin

® Want an algorithm that
returns +1 in a“small”
region enclosing most of
the points, -1 outside this
region

Unsupervised setting: data
points X1,...,Xg € X

® Linear classifier form
f(z) = sgn(w - x — p)

® “separable case” here




Add Slack Variables, Kernel

. . . 1 0 1 '
Allow points to violate min sllwl® + 55 > i& —p
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margin constraints: slack subject to (w - ®(x;) > p — &, & > 0.

# points:.¢, : learning parameter v € (0, 1]

Kernel version uses mapping
X — F
Add kernel

\
A \

Kernelized classifier:
f(x) = sgn((w - ®(x)) — p)




Solving the Optimization

® |agrangian L(w.&.p.a.f) = %nwn2 + V%Zgi —p
(@i, B 2 0) =2l @) —p + &) = 3B

® Set derivatives w.r.t. w, £, p equal to zero

W = ZaiCD(Xz‘),
1 1
_V_E_Bifl/_»e, Zaizl.
® Plug back in to get (kernelized) dual problem

1
molzn zlj: a;iojk(xi, xj) subject to 0 < o < e Zl: o = 1.

® And the classifier form f(x) =sgn (Z aik(xi, X) —p).
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Recovering the Threshold

® Two of the KKT conditions:
Vi, a;lw - (x;) —p+ &) =0;6:& =0
® For any i such that «;,3; > 0 (SVs), we have
p = (w- d(xi)) Za] X, Xi).
® So you get the threshold back as part of your solution

® i.e., no hacking/tuning/guessing the threshold!




Another View
Tax and Duin, ‘99

® We can also do novelty detection by finding the smallest-
radius sphere/ball enclosing most of the points

. 1
min R? + — Zéi
ReR,&cRE, ceF Ve i

subject to |®(x;) —c||®> < R* + &, & >0forie [4].
This leads to the dual
min Z ajoik(xi, Xj) — Z oik(xi, xi)
ij i

(87

) 1
subject to 0<aqg < A Zi:ai =1

and the solution
c=Y a®(x),
i

corresponding to a decision function of the form

i

f(x) = sgn (R2 — Z aiojk(xi, x;) + ZZ oik(xi, x) — k(x, x)) .
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Equivalence of Spheres

min Z o ok(xi, Xj) — Z oik(xi, X;)
ij i

«

. 1
subject to 0<ag < A zl: a =1

® If kernel k(x, y)depends on only x —y, k(x, x)is constant
® ec.g., Gaussian Kernel k(x,y) = p—lIx=yl?/c

® |n these cases, spheres equivalent to origin separation

.1 . 1
molénz ZZ]: a;ojk(xi, xj) subject to 0 < o < A Z o = 1.




Generalization Bound

® 34,35 .20 e+ Xisi—p 310 fx) = sgn (Z aik(xi, x) —p)

subject to (w - ®(x;)) > p — &, & > 0.

Theorem 1 (generalization error bound). Suppose we are given a set of £ ex-

PY 3 I 2 amples X € X* generated i.i.d. from an unknown distribution P, which does not

) ) contain discrete components. Suppose, moreover, that we solve the optimization

o N (o problem, equations 3.4 and 3.5 (or equivalently equation 3.11) and obtain a solu-
p=(w-oxi)) = Z a5k(xj, i) tion f, given explicitly by equation (3.10). Let Ry, , := {x: fw(x) > p} denote the
J induced decision region. With probability 1 — & over the draw of the random sample

£
Definition 2. Let f be a real-valued function on a space X. Fix 6 € R. For X S X /for any 7/ > 0/

x € X let d(x, f,0) = max{0, 0 — f(x)}. Similarly for a training sequence X :=
(X152 00s Xxe), we define

D(X. f.0) = Y d(x. £.0). . (5 7)
xeX . .
’ 1)

C1 log (Cz}/A 23) 2D (22 — 1))7
k = ~ +);10g e 2—D+1>+2, (58)

1 = 16C2/ €2 = ln(z)/ (4C2)/ c = 103/ j; = y/”w”I D = D(Xa fw,O, P) =
D(X, fw,p,0), and p is given by equation (3.12).




Generalization Comments

® Covering number argument, strong connections to soft-
margin binary classification bounds

® Bound is loose and thus not directly applicable in practice

® ¢ - 103 too large by a factor of >50




Experiments: Toy Data

® Synthetic 2-D data, Gaussian kernel k(x,y) = o Ix=ylI*/c

v, width ¢

0.5, 0.5

0.5, 0.5

0.1, 0.5

0.5,0.1

frac. SVs/QOLs

0.54, 0.43

0.59, 0.47

0.24, 0.03

0.65, 0.38

margin p/|w]|

0.84

0.70

0.62

0.48

Figure 1: (First two pictures) A single-class SVM applied to two toy problems;
v = ¢ = 0.5, domain: [—1, 1]*. Inboth cases, at least a fraction of v of all examples
is in the estimated region (cf. Table 1). The large value of v causes the additional
data points in the upper left corner to have almost no influence on the decision
function. For smaller values of v, such as 0.1 (third picture) the points cannot
be ignored anymore. Alternatively, one can force the algorithm to take these
outliers (OLs) into account by changing the kernel width (see equation 3.3). In
the fourth picture, using ¢ = 0.1, v = 0.5, the data are effectively analyzed on
a different length scale, which leads the algorithm to consider the outliers as
meaningful points.




Experiments:

® 9298 digits, 1 6x16=256
dimensionality, last
2007 are test

== Offset

Figure 3: Experiments on the U.S. Postal Service OCR data set. Recognizer for
digit 0; output histogram for the exemplars of 0 in the training /test set, and on
test exemplars of other digits. The x-axis gives the output values, that is, the
argument of the sgn function in equation 3.10. For v = 50% (top), we get 50%
SVs and 49% outliers (consistent with proposition 3 ), 44% true positive test
examples, and zero false positives from the “other” class. For v = 5% (bottom),
we get 6% and 4% for SVs and outliers, respectively. In that case, the true positive
rate is improved to 91%, while the false-positive rate increases to 7%. The offset
p is marked in the graphs. Note, finally, that the plots show a Parzen windows
density estimate of the output histograms. In reality, many examples sit exactly
at the threshold value (the nonbound SVs). Since this peak is smoothed out by
the estimator, the fractions of outliers in the training set appear slightly larger
than it should be.




Experiments: Digits
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Figure 5: Outliers identified by the proposed algorithm, ranked by the negative
output of the SVM (the argument of equation 3.10). The outputs (for convenience
in units of 107°) are written underneath each image in italics; the (alleged) class
labels are given in boldface. Note that most of the examples are “difficult” in
that they are either atypical or even mislabeled.




