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One Does Not Belong

• Mexico's outgoing ruling party is threatening to boycott 
the inauguration of the new President elect Vicente Fox...

• Leaders from around the world are arriving in Mexico for 
Friday's inauguration of President elect Vicente Fox...

• The curtain has come down on the Summer Games in 
Sydney but not before the U. S. men's basketball team...

• Mexico begins a new era today when President elect 
Vicente Fox takes the oath of office...

• History was made in Mexico today when Vicente Fox was 
sworn in as President. This was no ordinary inauguration...
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Novelty Detection

• Intuitive definition: find the outliers in a group or a stream 
of data points

• Some ideas in the (enormous) past literature

• Fit a Gaussian mixture, train a HMM, etc.; outliers are 
points with low likelihood

• Apply k-means clustering, k-nearest neighbors, etc.; 
outliers are points far from clusters/other points

• This work: ummm, Occam’s Razor? Why solve all these 
hard problems?
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Separating from Origin

• Want an algorithm that 
returns +1 in a “small” 
region enclosing most of 
the points, -1 outside this 
region

• Unsupervised setting: data 
points

• Linear classifier form 

• “separable case” here
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(w, r ) are a weight vector and an offset parameterizing a hyperplane in the
feature space associated with the kernel.

The main contribution of this work is that we propose an algorithm that
has tractable computational complexity, even in high-dimensional cases.
Our theory, which uses tools very similar to those used by Polonik, gives
results that we expect will be of more use in a !nite sample size setting.

3 Algorithms

We !rst introduce terminology and notation conventions. We consider train-
ing data

x1, . . . , x` 2 X , (3.1)

where ` 2 N is the number of observations and X is some set. For simplicity,
we think of it as a compact subset of RN. Let W be a feature map X ! F,
that is, a map into an inner product space F such that the inner product in
the image of W can be computed by evaluating some simple kernel (Boser,
Guyon, & Vapnik, (1992), Vapnik, (1995); Schölkopf, Burges, et al., (1999))

k(x, y) D (W (x) ¢ W (y) ) , (3.2)

such as the gaussian kernel

k(x, y) D e¡kx¡yk2/c. (3.3)

Indices i and j are understood to range over 1, . . . , ` (in compact notation:
i, j 2 [ ]̀). Boldface Greek letters denote -̀dimensional vectors whose com-
ponents are labeled using a normal typeface.

In the remainder of this section, we develop an algorithm that returns
a function f that takes the value C1 in a “small” region capturing most
of the data points and ¡1 elsewhere. Our strategy is to map the data into
the feature space corresponding to the kernel and to separate them from
the origin with maximum margin. For a new point x, the value f (x) is
determined by evaluating which side of the hyperplane it falls on in feature
space. Via the freedom to use different types of kernel functions, this simple
geometric picture corresponds to a variety of nonlinear estimators in input
space.

To separate the data set from the origin, we solve the following quadratic
program:

min
w2F,!2R`,r2R

1
2kwk2 C 1

º`

P
i ji ¡ r (3.4)

subject to (w ¢ W (xi) ) ¸ r ¡ji, ji ¸ 0. (3.5)

Here, º 2 (0, 1] is a parameter whose meaning will become clear later.

f(x) = sgn(w · x− ρ)

w · x = ρ

w · x = 0

ρ

‖w‖



Add Slack Variables, Kernel

• Allow points to violate       
margin constraints: slack

• # points:   , : learning parameter

• Kernel version uses mapping

• Add kernel

• Kernelized classifier:
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w · x = ρ

w · x = 0

ξi

ξj
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Since nonzero slack variables ji are penalized in the objective function,
we can expect that if w and r solve this problem, then the decision function

f (x) D sgn((w ¢ W (x) ) ¡ r ) (3.6)

will be positive for most examples xi contained in the training set,1 while
the SV type regularization term kwk will still be small. The actual trade-off
between these two goals is controlled by º.

Using multipliers ai, ¯i ¸ 0, we introduce a Lagrangian

L(w, !, r , ®, ¯) D 1
2

kwk2 C 1
º`

X

i
ji ¡ r

¡
X

i
ai ( (w ¢ W (xi) ) ¡ r C ji) ¡

X

i
¯iji, (3.7)

and set the derivatives with respect to the primal variables w, !, r equal to
zero, yielding

w D
X

i
aiW (xi) , (3.8)

ai D
1

º`
¡ ¯i · 1

º`
,

X

i
ai D 1. (3.9)

In equation 3.8, all patterns fxi: i 2 [ ]̀, ai > 0g are called support vec-
tors. Together with equation 3.2, the SV expansion transforms the decision
function, equation 3.6 into a kernel expansion:

f (x) D sgn

!
X

i
aik(xi, x) ¡ r

´
. (3.10)

Substituting equation 3.8 and equation 3.9 into L (see equation 3.7) and
using equation 3.2, we obtain the dual problem:

min
®

1
2

X

ij
aiajk(xi , xj) subject to 0 · ai · 1

º`
,

X

i
ai D 1. (3.11)

One can show that at the optimum, the two inequality constraints, equa-
tion 3.5, become equalities if ai and ¯i are nonzero, that is, if 0 < ai < 1/(º )̀.
Therefore, we can recover r by exploiting that for any such ai, the corre-
sponding pattern xi satis!es

r D (w ¢ W (xi) ) D
X

j
ajk(xj, xi) . (3.12)

1 We use the convention that sgn(z) equals 1 for z ¸ 0 and ¡1 otherwise.

Φ : X → F
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ν ∈ (0, 1]



Solving the Optimization

• Lagrangian

• Set derivatives w.r.t.            equal to zero

• Plug back in to get (kernelized) dual problem

• And the classifier form
6
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zero, yielding

w D
X

i
aiW (xi) , (3.8)

ai D
1

º`
¡ ¯i · 1

º`
,

X

i
ai D 1. (3.9)

In equation 3.8, all patterns fxi: i 2 [ ]̀, ai > 0g are called support vec-
tors. Together with equation 3.2, the SV expansion transforms the decision
function, equation 3.6 into a kernel expansion:

f (x) D sgn

!
X

i
aik(xi, x) ¡ r

´
. (3.10)

Substituting equation 3.8 and equation 3.9 into L (see equation 3.7) and
using equation 3.2, we obtain the dual problem:

min
®

1
2

X

ij
aiajk(xi , xj) subject to 0 · ai · 1

º`
,

X

i
ai D 1. (3.11)

One can show that at the optimum, the two inequality constraints, equa-
tion 3.5, become equalities if ai and ¯i are nonzero, that is, if 0 < ai < 1/(º )̀.
Therefore, we can recover r by exploiting that for any such ai, the corre-
sponding pattern xi satis!es

r D (w ¢ W (xi) ) D
X

j
ajk(xj, xi) . (3.12)

1 We use the convention that sgn(z) equals 1 for z ¸ 0 and ¡1 otherwise.

w, ξ, ρ
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(αi,βi ≥ 0)



Recovering the Threshold

• Two of the KKT conditions: 

• For any   such that                (SVs), we have

• So you get the threshold back as part of your solution

• i.e., no hacking/tuning/guessing the threshold!

7

i αi,βi > 0
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∀i, αi[w · Φ(xi)− ρ + ξi] = 0; βiξi = 0



Another View

• We can also do novelty detection by finding the smallest-
radius sphere/ball enclosing most of the points

8
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Note that if º approaches 0, the upper boundaries on the Lagrange mul-
tipliers tend to in!nity, that is, the second inequality constraint in equa-
tion 3.11 becomes void. The problem then resembles the corresponding
hard margin algorithm, since the penalization of errors becomes in!nite, as
can be seen from the primal objective function (see equation 3.4). It is still a
feasible problem, since we have placed no restriction on the offset r , so it can
become a large negative number in order to satisfy equation 3.5. If we had
required r ¸ 0 from the start, we would have ended up with the constraintP

i ai ¸ 1 instead of the corresponding equality constraint in equation 3.11,
and the multipliers ai could have diverged.

It is instructive to compare equation 3.11 to a Parzen windows estimator.
To this end, suppose we use a kernel that can be normalized as a density in
input space, such as the gaussian (see equation 3.3). If we useº D 1, then the
two constraints only allow the solution a1 D ¢ ¢ ¢ D a` D 1/ .̀ Thus the kernel
expansion in equation 3.10 reduces to a Parzen windows estimate of the
underlying density. For º < 1, the equality constraint in equation 3.11 still
ensures that the decision function is a thresholded density; however, in that
case, the density will be represented only by a subset of training examples
(the SVs)—those that are important for the decision (see equation 3.10) to
be taken. Section 5 will explain the precise meaning of º.

To conclude this section, we note that one can also use balls to describe the
data in feature space, close in spirit to the algorithms of Schölkopf, Burges,
and Vapnik (1995), with hard boundaries, and Tax and Duin (1999), with
“soft margins.” Again, we try to put most of the data into a small ball by
solving, for º 2 (0, 1),

min
R2R,!2R`,c2F

R2 C 1
º`

X

i
ji

subject to kW (xi ) ¡ ck2 · R2 C ji , ji ¸ 0 for i 2 [ ]̀. (3.13)

This leads to the dual

min
®

X

ij
aiajk(xi, xj) ¡

X

i
aik(xi, xi) (3.14)

subject to 0 · ai · 1
º`

,
X

i
ai D 1 (3.15)

and the solution

c D
X

i
aiW (xi) , (3.16)

corresponding to a decision function of the form

f (x) D sgn

0

@R2 ¡
X

ij
aiajk(xi , xj) C 2

X

i
aik(xi, x) ¡ k(x, x)

1

A . (3.17)

Tax and Duin, ‘99



Equivalence of Spheres

• If kernel         depends on only        ,         is constant

• e.g., Gaussian Kernel

• In these cases, spheres equivalent to origin separation

9
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R2R,!2R`,c2F

R2 C 1
º`

X

i
ji

subject to kW (xi ) ¡ ck2 · R2 C ji , ji ¸ 0 for i 2 [ ]̀. (3.13)

This leads to the dual

min
®

X

ij
aiajk(xi, xj) ¡

X

i
aik(xi, xi) (3.14)

subject to 0 · ai · 1
º`

,
X

i
ai D 1 (3.15)

and the solution

c D
X

i
aiW (xi) , (3.16)

corresponding to a decision function of the form

f (x) D sgn

0

@R2 ¡
X

ij
aiajk(xi , xj) C 2

X

i
aik(xi, x) ¡ k(x, x)

1

A . (3.17)
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Similar to the above, R2 is computed such that for any xi with 0 < ai <
1/(º )̀ , the argument of the sgn is zero.

For kernels k(x, y) that depend on only x ¡ y, k(x, x) is constant. In this
case, the equality constraint implies that the linear term in the dual target
function is constant, and the problem, 3.14 and 3.15, turns out to be equiv-
alent to equation 3.11. It can be shown that the same holds true for the
decision function; hence, the two algorithms coincide in that case. This is
geometrically plausible. For constant k(x, x) , all mapped patterns lie on a
sphere in feature space. Therefore, !nding the smallest sphere (containing
the points) really amounts to !nding the smallest segment of the sphere
that the data live on. The segment, however, can be found in a straightfor-
ward way by simply intersecting the data sphere with a hyperplane; the
hyperplane with maximum margin of separation to the origin will cut off
the smallest segment.

4 Optimization

Section 3 formulated quadratic programs (QPs) for computing regions that
capture a certain fraction of the data. These constrained optimization prob-
lems can be solved using an off-the-shelf QP package to compute the solu-
tion. They do, however, possess features that set them apart from generic
QPs, most notably the simplicity of the constraints. In this section, we de-
scribe an algorithm that takes advantage of these features and empirically
scales better to large data set sizes than a standard QP solver with time com-
plexity of order O

¡ 3̀¢
(cf. Platt, 1999). The algorithm is a modi!ed version

of SMO (sequential minimal optimization), an SV training algorithm origi-
nally proposed for classi!cation (Platt, 1999), and subsequently adapted to
regression estimation (Smola & Schölkopf, in press).

The strategy of SMO is to break up the constrained minimization of
equation 3.11 into the smallest optimization steps possible. Due to the con-
straint on the sum of the dual variables, it is impossible to modify individual
variables separately without possibly violating the constraint. We therefore
resort to optimizing over pairs of variables.

4.1 Elementary Optimization Step. For instance, consider optimizing
over a1 and a2 with all other variables !xed. Using the shorthand Kij :D
k(xi, xj), equation 3.11 then reduces to

min
a1 ,a2

1
2

2X

i, jD1
aiajKij C

2X

iD1
aiCi C C, (4.1)
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(w, r ) are a weight vector and an offset parameterizing a hyperplane in the
feature space associated with the kernel.

The main contribution of this work is that we propose an algorithm that
has tractable computational complexity, even in high-dimensional cases.
Our theory, which uses tools very similar to those used by Polonik, gives
results that we expect will be of more use in a !nite sample size setting.

3 Algorithms

We !rst introduce terminology and notation conventions. We consider train-
ing data

x1, . . . , x` 2 X , (3.1)

where ` 2 N is the number of observations and X is some set. For simplicity,
we think of it as a compact subset of RN. Let W be a feature map X ! F,
that is, a map into an inner product space F such that the inner product in
the image of W can be computed by evaluating some simple kernel (Boser,
Guyon, & Vapnik, (1992), Vapnik, (1995); Schölkopf, Burges, et al., (1999))

k(x, y) D (W (x) ¢ W (y) ) , (3.2)

such as the gaussian kernel

k(x, y) D e¡kx¡yk2/c. (3.3)

Indices i and j are understood to range over 1, . . . , ` (in compact notation:
i, j 2 [ ]̀). Boldface Greek letters denote -̀dimensional vectors whose com-
ponents are labeled using a normal typeface.

In the remainder of this section, we develop an algorithm that returns
a function f that takes the value C1 in a “small” region capturing most
of the data points and ¡1 elsewhere. Our strategy is to map the data into
the feature space corresponding to the kernel and to separate them from
the origin with maximum margin. For a new point x, the value f (x) is
determined by evaluating which side of the hyperplane it falls on in feature
space. Via the freedom to use different types of kernel functions, this simple
geometric picture corresponds to a variety of nonlinear estimators in input
space.

To separate the data set from the origin, we solve the following quadratic
program:

min
w2F,!2R`,r2R

1
2kwk2 C 1

º`

P
i ji ¡ r (3.4)

subject to (w ¢ W (xi) ) ¸ r ¡ji, ji ¸ 0. (3.5)

Here, º 2 (0, 1] is a parameter whose meaning will become clear later.
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Since nonzero slack variables ji are penalized in the objective function,
we can expect that if w and r solve this problem, then the decision function

f (x) D sgn((w ¢ W (x) ) ¡ r ) (3.6)

will be positive for most examples xi contained in the training set,1 while
the SV type regularization term kwk will still be small. The actual trade-off
between these two goals is controlled by º.

Using multipliers ai, ¯i ¸ 0, we introduce a Lagrangian

L(w, !, r , ®, ¯) D 1
2

kwk2 C 1
º`

X

i
ji ¡ r

¡
X

i
ai ( (w ¢ W (xi) ) ¡ r C ji) ¡

X

i
¯iji, (3.7)

and set the derivatives with respect to the primal variables w, !, r equal to
zero, yielding

w D
X

i
aiW (xi) , (3.8)

ai D 1
º`

¡ ¯i · 1
º`

,
X

i
ai D 1. (3.9)

In equation 3.8, all patterns fxi: i 2 [ ]̀, ai > 0g are called support vec-
tors. Together with equation 3.2, the SV expansion transforms the decision
function, equation 3.6 into a kernel expansion:

f (x) D sgn

!
X

i
aik(xi, x) ¡ r

´
. (3.10)

Substituting equation 3.8 and equation 3.9 into L (see equation 3.7) and
using equation 3.2, we obtain the dual problem:

min
®

1
2

X

ij
aiajk(xi , xj) subject to 0 · ai · 1

º`
,

X

i
ai D 1. (3.11)

One can show that at the optimum, the two inequality constraints, equa-
tion 3.5, become equalities if ai and ¯i are nonzero, that is, if 0 < ai < 1/(º )̀.
Therefore, we can recover r by exploiting that for any such ai, the corre-
sponding pattern xi satis!es

r D (w ¢ W (xi) ) D
X

j
ajk(xj, xi) . (3.12)

1 We use the convention that sgn(z) equals 1 for z ¸ 0 and ¡1 otherwise.
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lies outside the estimated region. We present a “marginalized” analysis that
in fact provides a bound on the probability that a novel point lies outside
the region slightly larger than the estimated one.

De!nition 2. Let f be a real-valued function on a space X . Fix h 2 R. For
x 2 X let d(x, f, h ) D maxf0, h ¡ f (x)g. Similarly for a training sequence X :D
(x1, . . . , x`), we de!ne

D (X, f, h ) D
X

x2X
d(x, f, h ) .

In the following, log denotes logarithms to base 2 and ln denotes natural
logarithms.

Theorem 1 (generalization error bound). Suppose we are given a set of ` ex-
amples X 2 X ` generated i.i.d. from an unknown distribution P, which does not
contain discrete components. Suppose, moreover, that we solve the optimization
problem, equations 3.4 and 3.5 (or equivalently equation 3.11) and obtain a solu-
tion fw given explicitly by equation (3.10). Let Rw,r :D fx: fw(x) ¸ rg denote the
induced decision region. With probability 1 ¡d over the draw of the random sample
X 2 X `, for any c > 0,

P
©
x0: x0 62 Rw,r ¡c

ª
· 2

`

!
k C log

2̀

2d

´
, (5.7)

where

k D
c1 log

¡
c2 Oc 2`

¢

Oc 2 C 2D
Oc log

!
e

!
(2`¡ 1) Oc

2D
C 1

´´
C 2, (5.8)

c1 D 16c2, c2 D ln(2) /
¡
4c2¢

, c D 103, Oc D c /kwk, D D D(X, fw,0, r ) D
D(X, fw,r , 0), and r is given by equation (3.12).

The training sample X de!nes (via the algorithm) the decision region
Rw,r . We expect that new points generated according to P will lie in Rw,r .
The theorem gives a probabilistic guarantee that new points lie in the larger
region Rw,r ¡c .

The parameter º can be adjusted when running the algorithm to trade
off incorporating outliers versus minimizing the “size” of Rw,r . Adjusting
º will change the value of D. Note that since D is measured with respect to
r while the bound applies to r ¡c , any point that is outside the region that
the bound applies to will make a contribution to D that is bounded away
from 0. Therefore, equation 5.7 does not imply that asymptotically, we will
always estimate the complete support.
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determined by evaluating which side of the hyperplane it falls on in feature
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geometric picture corresponds to a variety of nonlinear estimators in input
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To separate the data set from the origin, we solve the following quadratic
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min
w2F,!2R`,r2R

1
2kwk2 C 1

º`

P
i ji ¡ r (3.4)

subject to (w ¢ W (xi) ) ¸ r ¡ji, ji ¸ 0. (3.5)

Here, º 2 (0, 1] is a parameter whose meaning will become clear later.
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Since nonzero slack variables ji are penalized in the objective function,
we can expect that if w and r solve this problem, then the decision function

f (x) D sgn((w ¢ W (x) ) ¡ r ) (3.6)

will be positive for most examples xi contained in the training set,1 while
the SV type regularization term kwk will still be small. The actual trade-off
between these two goals is controlled by º.

Using multipliers ai, ¯i ¸ 0, we introduce a Lagrangian

L(w, !, r , ®, ¯) D 1
2

kwk2 C 1
º`

X

i
ji ¡ r

¡
X

i
ai ( (w ¢ W (xi) ) ¡ r C ji) ¡

X

i
¯iji, (3.7)

and set the derivatives with respect to the primal variables w, !, r equal to
zero, yielding

w D
X

i
aiW (xi) , (3.8)

ai D 1
º`

¡ ¯i · 1
º`

,
X

i
ai D 1. (3.9)

In equation 3.8, all patterns fxi: i 2 [ ]̀, ai > 0g are called support vec-
tors. Together with equation 3.2, the SV expansion transforms the decision
function, equation 3.6 into a kernel expansion:

f (x) D sgn

!
X

i
aik(xi, x) ¡ r

´
. (3.10)

Substituting equation 3.8 and equation 3.9 into L (see equation 3.7) and
using equation 3.2, we obtain the dual problem:

min
®

1
2

X

ij
aiajk(xi , xj) subject to 0 · ai · 1

º`
,

X

i
ai D 1. (3.11)

One can show that at the optimum, the two inequality constraints, equa-
tion 3.5, become equalities if ai and ¯i are nonzero, that is, if 0 < ai < 1/(º )̀.
Therefore, we can recover r by exploiting that for any such ai, the corre-
sponding pattern xi satis!es

r D (w ¢ W (xi) ) D
X

j
ajk(xj, xi) . (3.12)

1 We use the convention that sgn(z) equals 1 for z ¸ 0 and ¡1 otherwise.
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lies outside the estimated region. We present a “marginalized” analysis that
in fact provides a bound on the probability that a novel point lies outside
the region slightly larger than the estimated one.

De!nition 2. Let f be a real-valued function on a space X . Fix h 2 R. For
x 2 X let d(x, f, h ) D maxf0, h ¡ f (x)g. Similarly for a training sequence X :D
(x1, . . . , x`), we de!ne

D (X, f, h ) D
X

x2X
d(x, f, h ) .

In the following, log denotes logarithms to base 2 and ln denotes natural
logarithms.

Theorem 1 (generalization error bound). Suppose we are given a set of ` ex-
amples X 2 X ` generated i.i.d. from an unknown distribution P, which does not
contain discrete components. Suppose, moreover, that we solve the optimization
problem, equations 3.4 and 3.5 (or equivalently equation 3.11) and obtain a solu-
tion fw given explicitly by equation (3.10). Let Rw,r :D fx: fw(x) ¸ rg denote the
induced decision region. With probability 1 ¡d over the draw of the random sample
X 2 X `, for any c > 0,

P
©
x0: x0 62 Rw,r ¡c

ª
· 2

`

!
k C log

2̀

2d

´
, (5.7)

where

k D
c1 log

¡
c2 Oc 2`

¢

Oc 2 C 2D
Oc log

!
e

!
(2`¡ 1) Oc

2D
C 1

´´
C 2, (5.8)

c1 D 16c2, c2 D ln(2) /
¡
4c2¢

, c D 103, Oc D c /kwk, D D D(X, fw,0, r ) D
D(X, fw,r , 0), and r is given by equation (3.12).

The training sample X de!nes (via the algorithm) the decision region
Rw,r . We expect that new points generated according to P will lie in Rw,r .
The theorem gives a probabilistic guarantee that new points lie in the larger
region Rw,r ¡c .

The parameter º can be adjusted when running the algorithm to trade
off incorporating outliers versus minimizing the “size” of Rw,r . Adjusting
º will change the value of D. Note that since D is measured with respect to
r while the bound applies to r ¡c , any point that is outside the region that
the bound applies to will make a contribution to D that is bounded away
from 0. Therefore, equation 5.7 does not imply that asymptotically, we will
always estimate the complete support.
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º, width c 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1
frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38
margin r /kwk 0.84 0.70 0.62 0.48

Figure 1: (First two pictures) A single-class SVM applied to two toy problems;
º D c D 0.5, domain: [¡1, 1]2. In both cases, at least a fraction of ºof all examples
is in the estimated region (cf. Table 1). The large value of º causes the additional
data points in the upper left corner to have almost no in!uence on the decision
function. For smaller values of º, such as 0.1 (third picture) the points cannot
be ignored anymore. Alternatively, one can force the algorithm to take these
outliers (OLs) into account by changing the kernel width (see equation 3.3). In
the fourth picture, using c D 0.1, º D 0.5, the data are effectively analyzed on
a different length scale, which leads the algorithm to consider the outliers as
meaningful points.

Figure 2: A single-class SVM applied to a toy problem; c D 0.5, domain: [¡1, 1]2,
for various settings of the offset r . As discussed in section 3, º D 1 yields a
Parzen windows expansion. However, to get a Parzen windows estimator of
the distribution’s support, we must in that case not use the offset returned
by the algorithm (which would allow all points to lie outside the estimated
region). Therefore, in this experiment, we adjusted the offset such that a fraction
º0 D 0.1 of patterns would lie outside. From left to right, we show the results for
º 2 f0.1, 0.2, 0.4, 1g. The right-most picture corresponds to the Parzen estimator
that uses all kernels; the other estimators use roughly a fraction of º kernels.
Note that as a result of the averaging over all kernels, the Parzen windows
estimate does not model the shape of the distribution very well for the chosen
parameters.
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(w, r ) are a weight vector and an offset parameterizing a hyperplane in the
feature space associated with the kernel.

The main contribution of this work is that we propose an algorithm that
has tractable computational complexity, even in high-dimensional cases.
Our theory, which uses tools very similar to those used by Polonik, gives
results that we expect will be of more use in a !nite sample size setting.

3 Algorithms

We !rst introduce terminology and notation conventions. We consider train-
ing data

x1, . . . , x` 2 X , (3.1)

where ` 2 N is the number of observations and X is some set. For simplicity,
we think of it as a compact subset of RN. Let W be a feature map X ! F,
that is, a map into an inner product space F such that the inner product in
the image of W can be computed by evaluating some simple kernel (Boser,
Guyon, & Vapnik, (1992), Vapnik, (1995); Schölkopf, Burges, et al., (1999))

k(x, y) D (W (x) ¢ W (y) ) , (3.2)

such as the gaussian kernel

k(x, y) D e¡kx¡yk2/c. (3.3)

Indices i and j are understood to range over 1, . . . , ` (in compact notation:
i, j 2 [ ]̀). Boldface Greek letters denote -̀dimensional vectors whose com-
ponents are labeled using a normal typeface.

In the remainder of this section, we develop an algorithm that returns
a function f that takes the value C1 in a “small” region capturing most
of the data points and ¡1 elsewhere. Our strategy is to map the data into
the feature space corresponding to the kernel and to separate them from
the origin with maximum margin. For a new point x, the value f (x) is
determined by evaluating which side of the hyperplane it falls on in feature
space. Via the freedom to use different types of kernel functions, this simple
geometric picture corresponds to a variety of nonlinear estimators in input
space.

To separate the data set from the origin, we solve the following quadratic
program:

min
w2F,!2R`,r2R

1
2kwk2 C 1

º`

P
i ji ¡ r (3.4)

subject to (w ¢ W (xi) ) ¸ r ¡ji, ji ¸ 0. (3.5)

Here, º 2 (0, 1] is a parameter whose meaning will become clear later.
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test     
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other    
offset

test     
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other    
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Figure 3: Experiments on the U.S. Postal Service OCR data set. Recognizer for
digit 0; output histogram for the exemplars of 0 in the training/test set, and on
test exemplars of other digits. The x-axis gives the output values, that is, the
argument of the sgn function in equation 3.10. For º D 50% (top), we get 50%
SVs and 49% outliers (consistent with proposition 3 ), 44% true positive test
examples, and zero false positives from the “other ” class. For º D 5% (bottom),
we get 6% and 4% for SVs and outliers, respectively. In that case, the true positive
rate is improved to 91%, while the false-positive rate increases to 7%. The offset
r is marked in the graphs. Note, !nally, that the plots show a Parzen windows
density estimate of the output histograms. In reality, many examples sit exactly
at the threshold value (the nonbound SVs). Since this peak is smoothed out by
the estimator, the fractions of outliers in the training set appear slightly larger
than it should be.
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9!513 1!507 0!458 1!377 7!282 2!216 3!200 9!186 5!179 0!162

3!153 6!143 6!128 0!123 7!117 5!93 0!78 7!58 6!52 3!48

Figure 5: Outliers identi!ed by the proposed algorithm, ranked by the negative
output of the SVM (the argument of equation 3.10). The outputs (for convenience
in units of 10¡5) are written underneath each image in italics; the (alleged) class
labels are given in boldface. Note that most of the examples are “dif!cult” in
that they are either atypical or even mislabeled.

Table 1: Experimental Results for Various Values of the Outlier Control Constant
º, USPS Test Set, Size ` D 2007.

Training Time
º Fraction of OLs Fraction of SVs (CPU sec)

1% 0.0% 10.0% 36
2% 0.0 10.0 39
3% 0.1 10.0 31
4% 0.6 10.1 40
5% 1.4 10.6 36
6% 1.8 11.2 33
7% 2.6 11.5 42
8% 4.1 12.0 53
9% 5.4 12.9 76

10% 6.2 13.7 65
20% 16.9 22.6 193
30% 27.5 31.8 269
40% 37.1 41.7 685
50% 47.4 51.2 1284
60% 58.2 61.0 1150
70% 68.3 70.7 1512
80% 78.5 80.5 2206
90% 89.4 90.1 2349

Notes: º bounds the fractions of outliers and support vec-
tors from above and below, respectively (cf. Proposition 3).
As we are not in the asymptotic regime, there is some slack
in the bounds; nevertheless, º can be used to control the
above fractions. Note, moreover, that training times (CPU
time in seconds on a Pentium II running at 450 MHz) in-
crease as º approaches 1. This is related to the fact that al-
most all Lagrange multipliers will be at the upper bound
in that case (cf. section 4). The system used in the outlier
detection experiments is shown in boldface.


