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Common Approaches to Machine Learning 

!! Supervised Learning: Learn a concept from examples. 

!! Example: Spam Filtering 

or = ? 



Common Approaches to Machine Learning 

!! Reinforcement Learning: Learn optimal behavior from interactive 
experience. 

!! Example: Game playing 

[Tesauro 1995] 



This Talk 

!! In this talk, I will describe approaches to machine learning that 
combine features of supervised and reinforcement learning: 

1.! Apprenticeship Learning 

2.! Bandit Problems with Events 



Apprenticeship Learning 



Application: Car Driving 

!! Problem: Learn a good driving policy for this environment. 



What is a Policy? 

!! A policy assigns a driving action to each possible environment 

state: 

! Move Right 

! 

! 

Accelerate 

Brake 



Reinforcement Learning Procedure 

1.! Assign a reward to each environment state. 

!! e.g. Reward = (1 " high-speed?) + (-10 " collide?) 

3.! Let V(!) be the average total reward for following driving policy !.  

!! V(!) is called the value function. 

4.! By repeated interaction with the driving environment, find a driving 
policy !* such that  

 !* = arg max! V(!)  



Value of a Policy – Example 

!! When a car follows this driving policy… 

 …then at the end of an average driving episode: 

1.! The car was at high-speed in 3.5 time steps. 

2.! The car collided with another car in 57 time steps. 

!!  ! Value of policy = (1"3.5) + (-10"57) = -566.5 



Drawbacks of Reinforcement Learning 

!! Usually need to tune rewards manually. This can be tricky. 

2nd attempt  Nth attempt  

Collision 

penalty too 

low! 

Good! 

1st attempt  

Forgot 

penalty for 

off-road! 



Apprenticeship Learning (Abbeel & Ng, 2004) 

!! Given: Demonstrations from an expert policy !E. 

!! Objective: Learn an apprentice policy !A such that 

V(!A) # V(!E) 

 where the value function V(!) is unknown. 

Expert policy !E
 

Apprentice policy !A
 

Learning 

algorithm 



Apprenticeship Learning 

!! Our contribution: New algorithm for apprenticeship learning that: 

1.! Is simpler, 

2.! Is more efficient, and  

3.! Outputs a better apprentice policy 

 than existing algorithms. 



Assumptions 

!! Definition: Let µ(!) be the feature vector for policy !. For example: 

"!   µ"(!) = Average total collisions for ! (negated). 

"!   µ#(!) = Average total off-roads for ! (negated). 

"!   µ$(!) = Average total high-speed time steps for !. 

!! Main Assumption: There exists w* such that   

V(!) = w*·µ(!) 

 where w* is an unknown convex combination. 



A Basic Question 

!! Let's first ask what can we learn without the expert demonstrations. 

!! Can we always learn a policy ! such that V(!) is large? 

!! In general no, because we have no way of computing V(!). 

!! But we can learn a policy that is good in a conservative sense. 



A “Max-Min” Policy 

!! Objective: Find policy !* satisfying 

!* = arg max! minw w·µ(!) 

!! In other words, choose !* so that V(!*) is as large as possible for 

adversarially chosen weights. 

!! Since true weights w* are unknown, this is a suitably conservative 

approach. 



A “Max-Min” Policy 

!! Objective: Find policy !* satisfying 

!* = arg max! minw w·µ(!) 

!! Objective is essentially a two-player zero-sum game. 

"! Player 1 (algorithm) wants to maximize V(!). 

"! Player 2 (nature) wants to minimize V(!). 

!! Policy !* is an optimal strategy for Player 1. 



Computing Optimal Strategy 

!! An optimal strategy for two-player zero-sum games can be 

computed with a linear program. 

!! Size of linear program is proportional to size of the payoff matrix, 

which defines possible game outcomes.  

"! e.g. Payoff matrix for the game “Rock, Paper, Scissors”: 

Rock Paper Scissors 

Rock 0 +1 -1 

Paper -1 0 +1 

Scissors +1 -1 0 



!! Payoff matrix for the game max! minw w·µ(!):  

 where P(i, j) = µi(!
j) = ith feature value for jth policy. 

Computing Optimal Strategy 

Payoff 

Matrix P 

Policies 

Features 



Computing Optimal Strategy 

!! Problem: Payoff matrix is too big! 

!! k = # of features 

!! S = # of environment states 

!! A = # of driving actions 

Payoff 

Matrix P 

Policies 

Features k rows 

AS columns (!) 



Computing Optimal Strategy 

!! Solution: Use a multiplicative weights algorithm (Freund & Schapire, 
1996) instead. 

!! MW algorithm can compute optimal strategies for large — even 
infinite — payoff matrices. 

!! MW algorithm is closely related to boosting, online learning. 



MW Algorithm for Apprenticeship Learning 

1.! Maintain a weight vector wt over several rounds. 

2.! In round t, compute best policy !t for reward function  

     R(s) = wt
 · µ(s) 

 using a standard reinforcement learning algorithm. 

3.! Update wt ! wt+1 by shifting weight to features where !t does 
badly. 

•! The update is essentially the boosting update. 

4.! After T rounds, output !* chosen uniformly at random from  

 {!1, …, !T}. 



Analysis 

!! Theorem: After O(log k) iterations of MW algorithm, it outputs a 
policy !* such that 

E[V(!*)] 

 is as large as possible for adversarially chosen w*. 

 (Expectation is over randomness in algorithm; k = # of features) 



Demo 

Conservative driving policy:  

Drives as fast as possible without hitting other cars  

or going off-road.  



Back to Apprenticeship Learning 

!! Given demonstrations from an expert policy !E, follow this 
procedure: 

1.! Use demonstrations to estimate µ(!E). 

"! i.e. Estimate expert’s average total crashes, off-roads, etc. 

2.! Use MW algorithm to solve this objective 

!A = arg max! min
w
 [w·µ(!) - w·µ(!E)] 

"! i.e. MW will choose !A so that V(!A) - V(!E) is as large as possible 
for adversarially chosen weights. 

New! 



Analysis 

!! Theorem: After O(log k) iterations of MW algorithm, it outputs a 
policy !A such that 

E[V(!A)] - V(!E) 

 is as large as possible for adversarially chosen w*. 

 (Expectation is over randomness in algorithm; k = # of features) 

!! Corollary: E[V(!A)] # V(!E) 

 Proof idea: Algorithm can always choose !A = !E, so we have  

 E[V(!A)] - V(!E) # 0. 



Demo 

!! Projection algorithm mimics expert. 

!! MW algorithm learns better policy than expert! 

"! This can happen when expert policy is dominated. 

Expert Projection algorithm 

(Abbeel & Ng, 2004) 

MW algorithm 



Demo 

!! An example where expert policy can’t be ignored. 

Expert Projection algorithm 

(Abbeel & Ng, 2004) 

MW algorithm 



Comparison of Algorithms 

Projection algorithm MW algorithm 

No. of 

iterations 

O((k / %2) log (k / %)) O((1 / %2) log k) 

Post-

processing 

Requires QP solver None 

Guarantee |V(!A) - V(!E)| $ % V(!A) # V(!E) - % 

and possibly 

V(!A) % V(!E) 

Applicable 

without  

expert? 

No Yes 

k = # of features 



Refining the Analysis 

!! Recall our earlier objective: 

!* = arg max! minw w·µ(!) 

!! Put differently: Choose !* so that smallest element of vector µ(!*) 
is maximized. 

!! What can we say about the other elements of µ(!*)? 



Refining the Analysis 

!! Smallest elements in µ(!1) and µ(!2) are equal. 

"! Both have the same average number of collisions. 

!! But !2 is clearly a better policy. 

!! So which policy does MW algorithm converge to? 

!1: “Bad” !2: “Bad, but on-road” 



Refining the Analysis 

!! Theorem: Under certain conditions, MW outputs a policy !* such 

that 

Smallest element of E[µ(!*)] is maximized, 

 and further, among all such policies, MW outputs a policy !* such 

that 

2nd smallest element of E[µ(!*)] is maximized, 

 and so on for 3rd smallest, 4th smallest, ... 



Refining the Analysis 

!! Proof Idea:  

"! Recall that the MW algorithm maintains a weight vector wt. 

"! MW constantly adjusts wt so as to place the most weight on the 
“hardest” feature. 

"! We show that MW also places the second-most weight on the 
second-hardest feature, and so on. 

!! Note: Result applies to the generic MW algorithm. Has 
implications beyond apprenticeship learning (e.g boosting). 



Bandit Problems with Events 



Application: Web Search 

!! Users issue queries to search engine, which tries to return the 
most relevant documents. 

!! Sometimes, a query will acquire a different meaning in response 
to an external event. 



Examples of Event-Sensitive Queries 

Query = “chrome” 

Event 

Google releases “Chrome” 

web browser 



Examples of Event-Sensitive Queries 

Query = “liz claiborne” 

!! Problem: Provide better search results for event-sensitive queries. 

Event 

Liz Claiborne dies 



The “Bandit” Approach to Search  

!! Methods like PageRank uses the link structure of the web to 

determine the most relevant document for a query. 

!! These methods are slow to adapt to abrupt changes in query 

meaning caused by external events. 

!! Our approach is to use feedback from user clicks to determine the 

most relevant document. 

"! Document gets more clicks & Document is more relevant. 

!! We call this a bandit problem with events. 



Bandit Problem 

!! Fix a query q, and let D be a set of candidate documents for q. 

!! For time t = 1 … T: 

1.! User searches for q. 

2.! Search engine returns one document dt
 ' D to user.  

 (For simplicity, we focus on returning the single best document.) 

3.! User clicks on dt with unknown probability pdt,t
. 

!! Goal: Choose d1, … dT to maximize expected total number of 
clicks. 



Bandit Problem with Events 

!! Assume at most k events can occur during T searches. 

"! Times of events are unknown and arbitrary. 

!! pd,t ! pd,t+1 ( An event occurs at time t 

"! New click probabilities are unknown and arbitrary. 

!! So values of click probabilities can be divided into phases: 

!"#$%&'()*+*#"#,-.&'/0&10&'232& !"#$%&'()*+*#"#,-.&'4/0&10&'4232&

)&
56-78&)$$9(.&:-(-&

;#<-&!&

!"#$%&'()*+*#"#,-.&'44/0&10&'44232&

)&
56-78&)$$9(.&:-(-&

8&=&/& 8&=&;&



Bandit Problem with Events 

!! Our contribution: A new algorithm that: 

1.! Is O(log T) suboptimal for this problem, while existing 

algorithms are "(      ) suboptimal. 

2.! Performs better than existing algorithms in experiments on 
web search data. 



UCB Algorithm (Auer et al, 2002) 

!! Suitable for the special case of k = 0 (no events). 

"! i.e. pd,t = pd for all documents d. 

!! Theorem [Auer et al 2002]:  

  EUCB[# of clicks] # EOpt[# of clicks] – O(log T) 

 where Opt is the algorithm that always chooses the document 

with highest click probability. 

!! Details interesting, but not relevant: our algorithm uses UCB as a 

black-box subroutine. 

>-?(-8&



Handling Events 

!! UCB algorithm assumes that click probabilities are fixed, i.e. no 
events. 

!! So what happens if there are events? 



Lower Bound 

!! Theorem: If the click probabilities can change even once, then for 

any algorithm: 

EAlgorithm[# of clicks] # EOpt[# of clicks] – "(       ) 

!! The number of impressions T can be very large (millions/day). 

!! So even one event can result in large regret. 



Lower Bound 

!! Proof sketch: Let there be two documents, x and y, with click 

probabilities px > py. 

!! Divide the time period into         phases, each of length       : 

@:+.-&/& @:+.-&A& &&&&@:+.-&&

time steps 

;#<-&!&8&=&/& 8&=&;&

1&



Lower Bound 

!! For any algorithm A, there are two cases: 

1.! A selects both documents at least once per phase. 

#! "(      ) regret. 

2.! A selects only document x in some phase. Then in that phase, 

increase py so that py > px. 
#! "(      ) regret. 

!! Note: This lower bound is not based on |px - py| being small 
(unlike existing lower bounds). 

@:+.-&/& @:+.-&A& &&&&@:+.-&&1&

time steps 

;#<-&!&8&=&/& 8&=&;&



Lower Bound – Caveat 

!! Proof of lower bound assumes that algorithm has no knowledge 

about when events occur.  

!! But this is not really the case! 



Signals Correlated with Events 

!! An event related to query q may have occurred if: 

"! Increased volume for q. 

"! Increased mentions of q in news stories/blogs. 

"! Increased reformulations of q by users. 

"! Change in geographical distribution of q 

!! e.g. “independence day” in US vs. India 



Event Oracle 

!! Suppose that on every time step t we receive a feature vector xt. 

!! Assume there exists an event oracle function f such that:  

f(xt) = +1  

 * 

Event occurs at time t. 



!! Assume that f is a linear separator in feature space:  

f(x) = sign(w · x) for some unknown weight vector w. 

!! Also assume a margin & for all examples from the separator. 

Event Oracle 

&!
&!

B&



UCB Algorithm with Event Oracle 

!! For each time t = 1 … T: 

1.! User searches for q. 

2.! Choose document dt according to UCB algorithm. 

3.! Receive feature vector xt. 

4.! If f(xt) = +1 then restart UCB algorithm. 

!"#$%&'()*+*#"#,-.&'+/0&10&'
+
232&
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UCB Algorithm with Event Oracle 

!! Theorem: EUCB+Oracle[# of clicks] # EOpt[# of clicks] – O(k log T), 

 where k = number of events. 

!! Proof: UCB algorithm suffers O(log T) regret in each phase, and 

there are O(k) phases. 

!"#$%&'()*+*#"#,-.&'+/0&10&'
+
232&

)&
BCD8E&=&F/&

!"#$%&'()*+*#"#,-.&'++/0&10&'
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Regret = O(log T) Regret = O(log T) Regret = O(log T) 

!"#$%&'()*+*#"#,-.&'/0&10&'232&



Event Classifier 

!! Of course, the event oracle function f will not be known in 
advance. 

!! So we want to learn a function c , f as we go, from examples of 
events and non-events. 

!! This is a classification problem, and we call c an event classifier. 



UCB Algorithm with Event Classifier 

!! For each time t = 1 … T: 

1.! User searches for q. 

2.! Choose document dt according to UCB algorithm. 

3.! Receive feature vector xt. 

4.! If c(xt) = +1, then restart UCB algorithm. 

5.! If c(xt) = +1 prediction was wrong, then improve c. 

!"#$%&'()*+*#"#,-.&'/0&10&'232& !"#$%&'()*+*#"#,-.&'+/0&10&'
+
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UCB Algorithm with Event Classifier 

!! As time goes on, we want c , f. 

!! So how do we … 

"! … determine that a prediction was wrong? 

"! … represent classifier c, and improve c after a mistake? 

"! … bound the impact of mistakes on regret? 



Determining That a Prediction Was Wrong 

!! If an event occurred, then click probability pd of some document d 

must have changed. 

!! For each d, we can estimate pd by repeatedly displaying d, and 

recording its empirical click frequency. 

!! So to check whether c(xt) = +1 was a false positive: 

"! Spend a little time immediately after the prediction to estimate pd for 

all d. 

;#<-&!&8&=&/& 8&=&;&

= Estimation phase 

)&
$CD8E&=&F/&

)&
$CD8E&=&F/&

)&
$CD8E&=&F/&



Classifier c 

!! Let R be the “&-extended” convex hull of previous false positives. 

!! We predict c(xt) = -1 if and only if xt ' R 

&!

>

D8

D8
D8



!! Fact: We will never predict a false negative! 

"! Our negative predictions are very conservative. 

!! Fact: Every time we predict a false positive, the convex hull 
grows. 

"! So we can bound the number of false positives. 

Bounding Mistakes 

B&



!! Technically, due to complications such as: 

"! Noise 

"!Multiple events occurring in a brief time span. 

 we can never be certain that a prediction is a false positive. 

!! Hence, we can never be certain that an example inside the convex 

hull is really a negative. 

D8G&

Technicalities 



!! So we maintain several convex hulls: 

!! And predict c(xt) = -1 only if xt is inside all of them. 

!! We will be correct with high probability. 

D8

Technicalities 



UCB Algorithm with Event Classifier 

!! Theorem: 

 EUCB+Classifier[# of clicks] # EOpt[# of clicks] – O((1/&)d k log T)) 

!! where: 

"! & = Margin 

"! d = Dimension of feature space 

"! k = Number of events 

!! Intuition: Convex hulls grow very slowly, hence strong 

dependence on d. 

H)'.I&



Another Lower Bound 

!! Theorem: For any algorithm, one of the following holds: 

1.! EAlg[# of clicks] # EOpt[# of clicks] – "((1/&)d log T), or 

2.! EAlg[# of clicks] # EOpt[# of clicks] – "(      /(1/&)d) 

!! Intuition: Convex hull-based prediction necessary, because we 
can’t afford to miss even one event (remember lower bound). 

!! Moral: You can have subexponential dependence on d, or 
logarithmic dependence on T, but never both. 



Experiment: Setup 

!! Used search log data from Microsoft Live Search. 

!! Used data for the query “liz claiborne”, from the year of her death. 

!! To conduct a realistic experiment, we just “replayed” the log data 
against our algorithms. 

!! We replayed the same year’s data five consecutive times. 

"! So in this experiment, Liz dies five times. 

"! This simulates multiple events. 

!! We use only d = 3 features, so we don’t suffer from 
exponential dependence on d. 



Results 

Method Total Clicks Over Five Years 

UCB 49,679 

UCB+Classifer 50,621 (+1.9%) 

UCB+Oracle 51,207 (+3.1%) 



Recap 

!! New algorithms for … 

"! … apprenticeship learning, which can output policies that outperform 
the expert being followed. 

"! … web search, which efficiently provide relevant search results for 
queries whose meaning can abruptly change. 

!! Thanks!  


