Hybrid Machine Learning Algorithms

Umar Syed Princeton University

Includes joint work with: Rob Schapire (Princeton) Nina Mishra, Alex Slivkins (Microsoft)

Common Approaches to Machine Learning

- Supervised Learning: Learn a concept from examples.
- Example: Spam Filtering

or

?

Common Approaches to Machine Learning

- Reinforcement Learning: Learn optimal behavior from interactive experience.
- Example: Game playing

[Tesauro 1995]

This Talk

- In this talk, I will describe approaches to machine learning that <u>combine</u> features of supervised and reinforcement learning:
 - 1. Apprenticeship Learning
 - 2. Bandit Problems with Events

Apprenticeship Learning

Application: Car Driving

• Problem: Learn a good driving policy for this environment.

What is a Policy?

A *policy* assigns a driving action to each possible environment state:

Reinforcement Learning Procedure

- 1. Assign a *reward* to each environment state.
 - e.g. Reward = $(1 \times \text{high-speed}?) + (-10 \times \text{collide}?)$
- 3. Let V(π) be the average total reward for following driving policy π.
 V(π) is called the *value function*.
- 4. By repeated interaction with the driving environment, find a driving policy π^* such that

 $\pi^* = \arg \max_{\pi} V(\pi)$

Value of a Policy – Example

• When a car follows this driving policy...

...then at the end of an <u>average</u> driving episode:

- 1. The car was at high-speed in 3.5 time steps.
- 2. The car collided with another car in 57 time steps.
- ... Value of policy = $(1 \times 3.5) + (-10 \times 57) = -566.5$

Drawbacks of Reinforcement Learning

Usually need to tune rewards manually. This can be tricky.

• Given: Demonstrations from an expert policy π^{E} .

• Objective: Learn an apprentice policy π^A such that

 $V(\pi^A) \ge V(\pi^E)$

where the value function $V(\pi)$ is <u>unknown</u>.

Apprenticeship Learning

• Our contribution: New algorithm for apprenticeship learning that:

- 1. Is simpler,
- 2. Is more efficient, and
- 3. Outputs a better apprentice policy

than existing algorithms.

Assumptions

• Definition: Let $\mu(\pi)$ be the *feature vector* for policy π . For example:

- $\bigcirc \mu_1(\pi)$ = Average total collisions for π (negated).
- \cap $\mu_2(\pi)$ = Average total off-roads for π (negated).
- $\bigcirc \mu_3(\pi)$ = Average total high-speed time steps for π .

Main Assumption: There exists w^{*} such that

 $V(\pi) = w^* \cdot \mu(\pi)$

where w^* is an <u>unknown</u> convex combination.

A Basic Question

• Let's first ask what can we learn <u>without</u> the expert demonstrations.

• Can we always learn a policy π such that $V(\pi)$ is large?

• In general no, because we have no way of computing $V(\pi)$.

But we can learn a policy that is good in a <u>conservative</u> sense.

A "Max-Min" Policy

 $\pi^* = \arg \max_{\pi} \min_{w} w \cdot \mu(\pi)$

- In other words, choose π^* so that $V(\pi^*)$ is as large as possible for <u>adversarially</u> chosen weights.
- Since true weights w* are unknown, this is a suitably conservative approach.

A "Max-Min" Policy

• Objective: Find policy π^* satisfying

 $\pi^* = \arg \max_{\pi} \min_{w} w \cdot \mu(\pi)$

- Objective is essentially a *two-player zero-sum game*.
 - Player 1 (algorithm) wants to maximize $V(\pi)$.
 - Player 2 (nature) wants to minimize $V(\pi)$.
- Policy π^* is an *optimal strategy* for Player 1.

 An optimal strategy for two-player zero-sum games can be computed with a linear program.

 Size of linear program is proportional to size of the payoff matrix, which defines possible game outcomes.

○ e.g. Payoff matrix for the game "Rock, Paper, Scissors":

	Rock	Paper	Scissors
Rock	0	+1	-1
Paper	-1	0	+1
Scissors	+1	-1	0

• Payoff matrix for the game $\max_{\pi} \min_{w} w \cdot \mu(\pi)$:

where $P(i, j) = \mu_i(\pi^j) = i^{th}$ feature value for j^{th} policy.

• Problem: Payoff matrix is too big!

- k = # of features
- S = # of environment states
- A = # of driving actions

- Solution: Use a multiplicative weights algorithm (Freund & Schapire, 1996) instead.
- MW algorithm can compute optimal strategies for large even infinite — payoff matrices.
- MW algorithm is closely related to boosting, online learning.

MW Algorithm for Apprenticeship Learning

- 1. Maintain a weight vector w_t over several rounds.
- 2. In round t, compute best policy π_t for reward function $R(s) = w_t \cdot \mu(s)$

using a standard reinforcement learning algorithm.

- 3. Update $w_t \rightarrow w_{t+1}$ by shifting weight to features where π_t does badly.
 - The update is essentially the boosting update.
- 4. After T rounds, output π^* chosen uniformly at random from $\{\pi_1, ..., \pi_T\}$.

Analysis

• Theorem: After O(log k) iterations of MW algorithm, it outputs a policy π^* such that

Ε[V(π*)]

is as large as possible for adversarially chosen w*.

(Expectation is over randomness in algorithm; **k** = # of features)

Conservative driving policy: Drives as fast as possible without hitting other cars or going off-road.

Back to Apprenticeship Learning

- Given demonstrations from an expert policy π^{E} , follow this procedure:
- 1. Use demonstrations to estimate $\mu(\pi^{E})$.
 - i.e. Estimate expert's average total crashes, off-roads, etc.
- 2. Use MW algorithm to solve this objective $\pi^{A} = \arg \max_{\pi} \min_{w} [w \cdot \mu(\pi) - w \cdot \mu(\pi^{E})]$
 - i.e. MW will choose π^A so that $V(\pi^A) V(\pi^E)$ is as large as possible for adversarially chosen weights.

Analysis

• Theorem: After O(log k) iterations of MW algorithm, it outputs a policy π^{A} such that

$\mathsf{E}[\mathsf{V}(\pi^\mathsf{A})] - \mathsf{V}(\pi^\mathsf{E})$

is as large as possible for adversarially chosen w*.

(Expectation is over randomness in algorithm; k = # of features)

• Corollary: $E[V(\pi^A)] \ge V(\pi^E)$

Proof idea: Algorithm can always choose $\pi^{A} = \pi^{E}$, so we have $E[V(\pi^{A})] - V(\pi^{E}) \ge 0$.

- Projection algorithm mimics expert.
- MW algorithm learns <u>better</u> policy than expert!
 - This can happen when expert policy is *dominated*.

• An example where expert policy can't be ignored.

Comparison of Algorithms

	Projection algorithm	MW algorithm
No. of iterations	O((k / ε²) log (k / ε))	O((1 / ϵ^2) log k)
Post- processing	Requires QP solver	None
Guarantee	$ V(\pi^A)$ - $V(\pi^E) \leq \epsilon$	$egin{array}{lll} V(\pi^A) \geq V(\pi^E) extsf{-} \epsilon \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Applicable without expert?	No	Yes

k = # of features

Refining the Analysis

• Recall our earlier objective:

```
\pi^* = \arg \max_{\pi} \min_{w} w \cdot \mu(\pi)
```

- Put differently: Choose π^* so that smallest element of vector $\mu(\pi^*)$ is maximized.
- What can we say about the <u>other</u> elements of $\mu(\pi^*)$?

- Smallest elements in μ(π₁) and μ(π₂) are equal.
 O Both have the same average number of collisions.
- But π_2 is clearly a better policy.
- So which policy does MW algorithm converge to?

Refining the Analysis

• Theorem: Under certain conditions, MW outputs a policy π^* such that

Smallest element of $E[\mu(\pi^*)]$ is maximized,

and further, among all such policies, MW outputs a policy π^* such that

2nd smallest element of $E[\mu(\pi^*)]$ is maximized,

and so on for 3rd smallest, 4th smallest, ...

Refining the Analysis

Proof Idea:

- \bigcirc Recall that the MW algorithm maintains a weight vector w_t .
- MW constantly adjusts w_t so as to place the most weight on the "hardest" feature.
- We show that MW also places the second-most weight on the second-hardest feature, and so on.
- Note: Result applies to the generic MW algorithm. Has implications beyond apprenticeship learning (e.g boosting).

Bandit Problems with Events

Application: Web Search

- Users issue *queries* to search engine, which tries to return the most relevant documents.
- Sometimes, a query will acquire a different meaning in response to an external *event*.

Event

Google releases "Chrome" web browser

Examples of Event-Sensitive Queries

Event

Liz Claiborne dies

• **Problem:** Provide better search results for event-sensitive queries.

The "Bandit" Approach to Search

- Methods like PageRank uses the link structure of the web to determine the most relevant document for a query.
- These methods are slow to adapt to abrupt changes in query meaning caused by external events.
- Our approach is to use <u>feedback from user clicks</u> to determine the most relevant document.
 - O Document gets more clicks \Rightarrow Document is more relevant.
- We call this a *bandit problem with events*.

Bandit Problem

Fix a query q, and let D be a set of candidate documents for q.

- For time t = 1 ... T:
 - 1. User searches for q.
 - 2. Search engine returns one document $d_t \in D$ to user. (For simplicity, we focus on returning the single best document.)
 - 3. User clicks on d_t with <u>unknown</u> probability $p_{d_t,t}$.

Goal: Choose d₁, ... d_T to maximize expected total number of clicks.

Bandit Problem with Events

- Assume at most k events can occur during T searches.
 Times of events are <u>unknown and arbitrary</u>.
- $p_{d,t} \neq p_{d,t+1} \Leftrightarrow An event occurs at time t$
 - O New click probabilities are <u>unknown and arbitrary</u>.
- So values of click probabilities can be divided into phases:

Bandit Problem with Events

- Our contribution: A new algorithm that:
 - 1. Is $O(\log T)$ suboptimal for this problem, while existing algorithms are $\Omega(\sqrt{T})$ suboptimal.
 - 2. Performs better than existing algorithms in experiments on web search data.

UCB Algorithm (Auer et al, 2002)

Suitable for the special case of k = 0 (no events).

• i.e. $p_{d,t} = p_d$ for all documents d.

• Theorem [Auer et al 2002]: $E_{UCB}[\# \text{ of clicks}] \ge E_{Opt}[\# \text{ of clicks}] - O(\log T)$

where Opt is the algorithm that always chooses the document with highest click probability.

 Details interesting, but not relevant: our algorithm uses UCB as a black-box subroutine.

Handling Events

- UCB algorithm assumes that click probabilities are fixed, i.e. no events.
- So what happens if there are events?

Lower Bound

 Theorem: If the click probabilities can change even once, then for any algorithm:

 $E_{Algorithm}$ [# of clicks] $\ge E_{Opt}$ [# of clicks] – $\Omega(\sqrt{T})$

- The number of impressions T can be very large (millions/day).
- So even one event can result in large regret.

Lower Bound

- Proof sketch: Let there be two documents, x and y, with click probabilities $p_x > p_y$.
- Divide the time period into \sqrt{T} phases, each of length \sqrt{T} :

- For any algorithm A, there are two cases:
 - 1. A selects both documents at least once per phase.

 $\Rightarrow \Omega(\sqrt{T})$ regret.

- A selects only document x in some phase. Then in that phase, increase p_y so that p_y > p_x.
 ⇒ Ω(√T) regret.
- Note: This lower bound is <u>not</u> based on |p_x p_y| being small (unlike existing lower bounds).

Lower Bound – Caveat

- Proof of lower bound assumes that algorithm has <u>no knowledge</u> about when events occur.
- But this is not really the case!

Signals Correlated with Events

- An event related to query q may have occurred if:
 - Increased volume for q.
 - Increased mentions of q in news stories/blogs.
 - Increased reformulations of q by users.
 - Change in geographical distribution of q
 - e.g. "independence day" in US vs. India

Event Oracle

- Suppose that on every time step t we receive a feature vector x_t .
- Assume there exists an event oracle function f such that:

Event Oracle

• Assume that f is a linear separator in feature space: $f(x) = sign(w \cdot x)$ for some unknown weight vector w.

• Also assume a margin δ for all examples from the separator.

UCB Algorithm with Event Oracle

• For each time $t = 1 \dots T$:

- 1. User searches for q.
- 2. Choose document d_t according to UCB algorithm.
- 3. Receive feature vector x_t .
- 4. If $f(x_t) = +1$ then <u>restart</u> UCB algorithm.

t = 1	$Time \to$	t = T
Click probabilities $p_1,, p_{ D }$	Click probabilities p' ₁ ,, p' _D	Click probabilities p ["] ₁ ,, p ["] _D
f(x+	$\uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \qquad \qquad$	- = +1

UCB Algorithm with Event Oracle

- Theorem: $E_{UCB+Oracle}$ [# of clicks] $\ge E_{Opt}$ [# of clicks] O(k log T), where k = number of events.
- Proof: UCB algorithm suffers O(log T) regret in each phase, and there are O(k) phases.

$$\begin{array}{ccc} t = 1 & Time \rightarrow & t = T \\ \hline Click \ probabilities \ p_1, ..., p_{|D|} & Click \ probabilities \ p'_1, ..., p'_{|D|} & Click \ probabilities \ p'_1, ..., p'_{|D|} & Click \ probabilities \ p''_1, ..., p''_{|D|} \\ \hline Regret = O(\log T) & Regret = O(\log T) & Regret = O(\log T) \\ \uparrow & f(x_t) = +1 & f(x_t) = +1 \end{array}$$

Event Classifier

- Of course, the event oracle function f will not be known in advance.
- So we want to <u>learn</u> a function $c \approx f$ as we go, from examples of events and non-events.
- This is a classification problem, and we call c an event classifier.

UCB Algorithm with Event Classifier

• For each time $t = 1 \dots T$:

- 1. User searches for q.
- 2. Choose document d_t according to UCB algorithm.
- 3. Receive feature vector \mathbf{x}_{t} .
- 4. If $c(x_t) = +1$, then <u>restart</u> UCB algorithm.
- 5. If $c(x_t) = +1$ prediction was wrong, then <u>improve</u> c.

t = 1	$Time \to$	t = T
Click probabilities $p_1,, p_{ D }$	Click probabilities p' ₁ ,, p' _D	Click probabilities p ["] ₁ ,, p ["] _D
	↑ 1	`
C	$c(x_t) = +1$ $c(x_t)$	$= +1$ $c(x_t) = +1$

UCB Algorithm with Event Classifier

• As time goes on, we want $c \approx f$.

- So how do we …
 - O ... determine that a prediction was wrong?
 - ... represent classifier c, and improve c after a mistake?
 - ... bound the impact of mistakes on regret?

Determining That a Prediction Was Wrong

- If an event occurred, then click probability p_d of some document d must have changed.
- For each d, we can estimate p_d by repeatedly displaying d, and recording its empirical click frequency.
- So to check whether $c(x_t) = +1$ was a <u>false positive</u>:
 - Spend a little time immediately after the prediction to estimate p_d for all d.

Classifier c

• Let R be the " δ -extended" convex hull of previous <u>false positives</u>.

• We predict $c(x_t) = -1$ if and only if $x_t \in R$

Bounding Mistakes

- Fact: We will never predict a false negative!
 - O Our negative predictions are <u>very</u> conservative.

- Fact: Every time we predict a false positive, the convex hull grows.
 - So we can bound the number of false positives.

Technicalities

- Technically, due to complications such as:
 - O Noise
 - Multiple events occurring in a brief time span.

we can never be <u>certain</u> that a prediction is a false positive.

 Hence, we can never be <u>certain</u> that an example inside the convex hull is really a negative.

Technicalities

• So we maintain <u>several</u> convex hulls:

- And predict $c(x_t) = -1$ only if x_t is inside <u>all</u> of them.
- We will be correct with high probability.

UCB Algorithm with Event Classifier

• Theorem: $E_{UCB+Classifier}$ [# of clicks] $\ge E_{Opt}$ [# of clicks] $- O((1/\delta)^d \log T)$)

where:

- \circ δ = Margin
- O d = Dimension of feature space
- \bigcirc k = Number of events
- Intuition: Convex hulls grow very slowly, hence strong dependence on d.

Another Lower Bound

- Theorem: For <u>any</u> algorithm, one of the following holds:
 - 1. E_{Alg} [# of clicks] $\ge E_{Opt}$ [# of clicks] $\Omega((1/\delta)^d \log T)$, or
 - 2. E_{Alg} [# of clicks] $\geq E_{Opt}$ [# of clicks] $\Omega(\sqrt{T}/(1/\delta)^d)$
- Intuition: Convex hull-based prediction necessary, because we can't afford to miss even one event (remember lower bound).
- Moral: You can have subexponential dependence on d, or logarithmic dependence on T, but never both.

Experiment: Setup

- Used search log data from Microsoft Live Search.
- Used data for the query "liz claiborne", from the year of her death.
- To conduct a realistic experiment, we just "replayed" the log data against our algorithms.
- We replayed the same year's data <u>five consecutive times</u>.
 - So in this experiment, Liz dies five times.
 - This simulates multiple events.
- We use only d = 3 features, so we don't suffer from exponential dependence on d.

Results

Method	Total Clicks Over Five Years
UCB	49,679
UCB+Classifer	50,621 (+1.9%)
UCB+Oracle	51,207 (+3.1%)

Recap

- New algorithms for ...
 - ... apprenticeship learning, which can output policies that outperform the expert being followed.
 - ... web search, which efficiently provide relevant search results for queries whose meaning can abruptly change.

Thanks!