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Introduction
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Motivation
• In real world problems,

• much more unlabeled data than labeled data.

• labeling costly, both in terms of time and money.

• Examples: web document classifiers, speech recognition, protein 
sequences, ...

• Can unlabeled data help prediction accuracy?

• intuitively, if labels continuous, expect better performance.

• but, a precise theoretical analysis of the merits of SSL missing.
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Introduction
• Question: Can SSL help without any prior assumptions on the 

distribution of labels?

• Measure “help” in terms of reduced labeled sample complexity.

• Sample complexity: how much training data needed to learn 
effectively.

• Answer: For some simple hypotheses space, not significantly,

• at most a factor of 2 reduction in the sample complexity.
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• Binary classification problem.

• Access to labeled training data.

SSL in Practice
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• Binary classification problem.

• Access to labeled training data.

• More confidence with unlabeled data if labels “continuous”.

• But, need an assumption on the distribution of labels of       .

SSL in Practice
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SSL in Practice
• Common assumptions when using semi-supervised learning:

• decision boundary should lie in a low-density region.

• points in the same cluster likely to be of the same class.

• if two points in a high-density region are close, then so should be 
the corresponding outputs.

• Difficulty: assumptions hard to verify and not formalizable.

• No analysis of precise conditions under which SSL is better.

• There are bounds for classification and regression under SSL, 

• but none shown to be provably better than the supervised setting.
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• Low-density separators not always good,

• two overlapping gaussians;

• optimal separator in a very high-density region.

SSL in Practice
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• Low-density separators can be quite bad!

• two gaussians with different variances: 

SSL in Practice
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Preliminaries
• Let     be a domain set. 

• We focus on classification, so labels are                  . 

• Hypotheses are functions,                 . Hypothesis set    .

• Target function: a probability distribution over           .

• For this talk, assume     a deterministic function of    , i.e:

• Realizable setting: target function          , minimum error 0.

• Agnostic setting: target function          , minimum error not 0. 
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X

Y = {0, 1}

h : X !→ Y

X × Y

Y X

Pr[y = 1|x],Pr[y = 0|x] ∈ {0, 1}.

H

f ∈ H

f /∈ H
[also called the consistent case]

[also called the inconsistent case]
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Preliminaries
• In the SSL setting considered, the learning algorithm receives:

• a labeled training sample                              .

• the entire unlabeled distribution     .
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Preliminaries
• A supervised learning algorithm        :

• receives as input      labeled examples,                 .

• produces a hypothesis                   .

• An unsupervised learning algorithm             :

• receives as input      labeled examples,                  and a 
probability distribution      over     .

• produces a hypothesis                   .

• Risk (test error): 

• Training error (empirical error): 
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Preliminaries
• In the SSL setting considered, the learning algorithm receives:

• a labeled training sample 

• the entire unlabeled distribution

• really, this is the transductive setting (infinite unlabeled points)

• any lower bound carries over to fewer unlabeled points

• upper bounds only apply for a large number of unlabeled points
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Sample Complexity
• For a class     of hypotheses, the sample complexity of an SSL 

algorithm             , confidence         , accuracy    is

• In words, the number of samples needed for the error of the 
learning algorithm to be within    of the optimal hypothesis with 
a probability at least          .

• In the realizable case: 

• Symmetric difference of                  :
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Pr
S∼Dm

[
ErrD(A(S, D))− inf

h∈H
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Conjectures
• For any hypothesis class    , there exists a constant           there 

exists a single supervised algorithm    , such that for any dist.      
and any SSL algorithm    , the sample complexity of the super-
vised algorithm is larger by at most a factor of   .
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H c ≥ 1
A D

B
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sup
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Two Hypotheses Classes
• Thresholds:

• Union of     intervals:

• FYI, recall that:

• VC(thresholds) = 1, VC(    intervals) = 
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Learning Thresholds
• Focus on the realizable case.

• Will show that the sample complexity of SSL for learning 
thresholds is half the sample complexity of supervised learning.

• Easy part: sample complexity of supervised learning.

• Theorem: let     be the hypothesis space and    the learning 
algorithm that returns the left-most hypothesis that is consistent 
with the training set. Then for any distribution    , for any            
and any target           ,
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Learning Thresholds
• Theorem: let     be the hypotheses space and    the learning 

algorithm that returns the left-most hypothesis that is consistent 
with the training set. Then for any distribution    , for any            
and any target           ,

• Failure probability the same as no point lies in the shaded area. 
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Learning Thresholds
• An SSL algorithm for learning thresholds: [explain via picture]

• Theorem: Let     be a hypothesis space and     the above SSL 
learning algorithm.  For any continuous distribution    , any      
and any target           ,
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Learning Thresholds
• Theorem: Let     be a hypothesis space and     the above SSL 

learning algorithm.  For any continuous distribution    , any      
and any target           ,

• Proof: Let    be the open interval containing

• Step 1: Map    to           via a function        . Transform training 
sample               via 

• Step 2: 

• Step 3: 

H B
D ε, δ

h ∈ H

m(B(·, D),H, ε, δ) ≤ ln(1/δ)
2ε

+
ln2
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I D

I (0, 1) F (·)

m(B(·, D),H, ε, δ) ≤ m(A(·, U(0,1)),H, ε, δ)

S !→ S′ F

Pr
S∼Um

[
ErrU (A(S′, U)) ≥ ε

]
≤ 2(1− 2ε)m
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Learning Thresholds
• Proof: Let    be the open interval containing

• Step 1: Map    to           via a function        . Transform training 
sample               via 

• The mapping [in pictures]:

I D

I (0, 1) F (·)
S !→ S′ F

0 1
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Learning Thresholds
• Proof: Let    be the open interval containing

• Step 1: Map    to           via a function        . Transform training 
sample               via 

• The mapping [in pictures]: naturally stretches out      to a uniform 
distribution in         .

• Define the corresponding SSL algorithm on         .

I D

I (0, 1) F (·)
S !→ S′ F

0 1

D
(0, 1)

(0, 1)
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Learning Thresholds
• Proof: Let    be the open interval containing

• Step 3:

• Proof: technical and (unnecessarily?) complicated.

• Based on bad events. Can possibly be made simpler.

I D

0 1

Pr
S∼Um

[
ErrU (A(S′, U)) ≥ ε

]
≤ 2(1− 2ε)m
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Learning Thresholds
• Theorem: For any (randomized) SSL algorithm    , any small   ,  

any   , any continuous distribution     over an open interval, there 
exists a target            such that

• Proof:

• Step 1: assume that      is uniform (similar trick as before)

• Step 2: Fix    ,    and   . Pick                     and consider  

•   is a random variable. Show that:

• Theorem follows by the Probabilistic Method.
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Learning Thresholds
• Proof (sketch):

• Step 1: assume that      is uniform (similar trick as before)

• Step 2: Fix    ,    and   . Pick                     and consider  

•   is a random variable. Show that:
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Agnostic Case
• Notion of                          distributions:    clusters can be 

shattered by the concept class.  Probabilistic targets.

• Learning thresholds on the real line:

• Union of     intervals:  

• Lemma [Anthony, Bartlett]: Suppose     uniformly distributed 
over two Bernoulli distributions,               such that probability 
of heads: 
Further, suppose                 are            -valued random 
variables, with                                for all   . Then for any 
decision function                                        
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Agnostic Case
• Lemma: Fix any               and an             Suppose there are 

              such that                     . Define probability dist.
over             such that:

• note that            have the same marginal distribution when
agree and have “close” distributions when        disagree. 
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X, H,D m > 0.
h, g ∈ H D(h∆g) > 0

X × Y
Ph, Pg
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Ph, Pg h, g
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Agnostic Case
• Lemma: Fix any               and an             Suppose there are 

              such that                     . Define probability dist.
over             such that:

• Let                                       be any function. Then for
                              there exists  
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X, H,D m > 0.
h, g ∈ H D(h∆g) > 0

X × Y
Ph, Pg

Ph((x, h(x)) | x) = Pg((x, g(x)) | x) = 1/2 + γ

AD : (h∆g × Y )m "→ H
x1, . . . , xm ∈ h∆g, P ∈ {Ph, Pg}, yi ∼ Pxi

Pr
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ErrP (AD((xi, yi)m

i=1)−OPTP > γD(h∆g)
]

>
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4
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Agnostic Case
• Use the previous lemma to construct a probabilistic target that 

achieves the desired sample complexity.
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Conclusion
• Formal analysis of sample complexity of SSL.

• Comparison to sample complexity of supervised learning.

• No assumptions on the relationship between distribution of 
labels and distribution of unlabeled data.

• Limited advantage of SSL for basic concept classes over the real 
line.

• Open question: extend the result to any concept class of  VC 
dimension   . 
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Thank You.


