Challenges of real-world data

We face an explosion in data from e.g.:
Internet transactions
Satellite measurements
Environmental sensors

Advances in
Privacy-Preserving Machine Learning

Real-world data can be:
Vast (many examples)
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Streaming, time-varying

Sensitive/private
Joint work with Kamalika Chaudhuri, UC San Diego
Machine learning Principled ML for real-world data
Given labeled data points, find a good classification rule. Goal: design algorithms to detect patterns in real-world data.

Want efficient algorithms, with performance guarantees.
In a given a hypothesis class, find a hypothesis that describes the

data, and generalizes well. Learning with online constraints:
Algorithms for streaming, or time-varying data.

E.g. linear separators: Active learning:

Algorithms for settings in which unlabeled data is abundant, and
labels are difficult to obtain.

Privacy-preserving machine learning:

Algorithms to detect cumulative patterns in real databases, while
maintaining the privacy of individuals.

New applications of machine learning:

E.g. Climate Informatics: Algorithms to detect patterns in climate
data, to answer pressing questions.




Privacy-preserving machine learning

Sensitive personal data is increasingly
being digitally aggregated and stored.

Problem: How to maintain the privacy of individuals, when
detecting patterns in cumulative, real-world data?

E.g.
Disease studies, insurance risk
Economics research, credit risk
Analysis of social networks

Anonymization: not enough

Anonymization does not ensure privacy. b &

Attacks may be possible e.g. with:

Auxiliary information
Structural information

Privacy attacks:

[Narayanan & Shmatikov ‘08] identify Netflix users from anonymized
records, IMDB.

[Backstrom, Dwork & Kleinberg ‘07] identify LiveJournal social relations
from anonymized network topology and minimal local information.

Related work

Data mining:

Algorithms, often lacking strong privacy guarantees. Subject
to various attacks.

Cryptography and information security:
Privacy guarantees, but machine learning less explored.

Learning theory

Learning guarantees for algorithms that adhere to strong
privacy protocols, but are not efficient algorithms.

Related work

Data mining:
k-anonymity [Sweeney ‘02], I-diversity [MGKV ‘06],
t-closeness [LLV ‘07]. Each found privacy attacks on previous.

Cryptography and information security:

[Dwork, McSherry, Nissim & Smith, TCC 2006]: Differential
privacy, and sensitivity method. Extensions, [NRS ’07].

Learning theory
[Blum et al. ‘08] method to publish data that is differentially
private under certain query types. (Can be computationally
prohibitive.)
[KLNRS ’08] exponential time (in dimension) algorithm to
find classifiers that respect differential privacy.




e—differential privacy

[DMNS ‘06]: Given two databases, D,, D, that differ in one
element:

f(D,)
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A random function f is e-private, if, for any t
Prif(Dy)=t]l< (1 +¢) Pr[f(D,) =t]

Idea: Effect of one person’s data on the ouput: low.

The sensitivity method

[DMNS ’06]: method to produce e—private approximation to any
function of a database.

Sensitivity: For function g, sensitivity S(g) is the maximum change in g with
oneinput. g(g) = max|g(z1,...,Tn_1,Tn = a)

(a,a’)
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[DMNS ’06]: Add noise, proportional to sensitivity. Output:
f(D) = 9(D) + Lap(0, S(g)/e)

f(Dy) >< f(D,)

Motivations and contributions

Goal: machine algorithms that maintain privacy yet output good
classifiers.

— Adapt canonical, widely-used machine learning algorithms
— Learning performance guarantees
— Efficient algorithms with good practical performance

[Chaudhuri & Monteleoni, NIPS 2008]:

A new privacy-preserving technique: perturb the optimization
problem, instead of perturbing the solution.

Applied both techniques to logistic regression, a canonical ML algorithm.

Proved learning performance guarantees that are significantly tighter
for our new algorithm.

Encouraging results in simulation.

Regularized logistic regression

We apply sensitivity method of [DMNS ‘06] to regularized logistic
regression, a canonical, widely-used algorithm for learning a
linear separator.

Regularized logistic regression:
Input: (Xy,¥Y1)reeer(X3¥Yy)-

X; in RY, norm at most 1. vy; in {-1, +1}
Output:

A 1
wrx = argmin H(w) = §wTw + = Zlog(l + exp(yiw” ;)
w n

where w in R9 predicts SIGN(wT™x) for x in Rd.




Sensitivity of regularized LR

Sensitivity method applied to LR

Lemma 1: The sensitivity of regularized logistic
regression is 2/nh.

Proof sketch:

Dy ={(z1,91),- -, (Tn—1,Yn-1), (a,9) }

Dy = {(z1,91), -+, (Tn-1,9n-1), (', ¥)}

Want to bound: |[wa — wa|
for solutions on n points that only differ by one point a, a’.

Lemma: comparing the solutions on any n points, and all but nth:

1
l[wn — wn—1]| < Y

Using triangle inequality,

[wa = war[| < [fwa = wn—1|| + [|wn—1 — war || < 2[[wp — wy—1]]

We apply sensitivity method of [DMNS ‘06] to regularized logistic
regression, a canonical, widely-used algorithm for learning a
linear separator.

Algorithm 1 [Sensitivity-based PPLR]:

1. Solve w = regularized logistic regression with
parameter A.

2. Pick a vector h:

Pick |h| from I'(d, 2/nke), Where density of
Pick direction of h uniformly. |I'(d,t) at x ~

3. Output w + h. xd-lg-|x|/t

Theorem 1: Algorithm 1 is e-private.

New method for PPML

New method for PPML

A new privacy-preserving technique: perturb the optimization
problem, instead of perturbing the solution.

No need to bound sensitivity (may be difficult for other ML algorithms)

Noise does not depend on (the sensitivity of) the function to be learned.

Optimization happens after perturbation.
Application to regularized logistic regression:

Algorithm 2 [New PPLR]
1. Pick a vector b:

Pick |b| from I'(d, 2/¢),

Pick direction of b uniformly.
2. Solve:

* . A T 1 T 1 T
w' = arg min Sw w-q-ﬁZlog(l—l-eXp(yiw xi))"‘gb w

Theorem 2: Algorithm 2 is e-private.

Remark: Algorithm 2 solves a convex program similar to standard,
regularized LR, so similar running time.

General PPML for a class of convex loss functions:

Theorem 3: Given database X={x,...,X,}, to minimize functions of the
oM F(w) = Glw) + 3 l(w, z;)
=1

If G(w), /(w, x;) everywhere differentiable, have continuous derivatives
G(w) strongly convex, /(w, x) convex Vi and ||V, l(w, z)| < & for any x
n
then outputting w* = arg min G(w) + Z lw,z;) + bTw
w
=1

where b = B, s.t. B is drawn from I'(d, 2k/¢), r is a random unit vector,
is e-private.




Privacy of Algorithm 2

Proof outline (Theorem 2):
Want to show Pr[ f(D,) = w*] < (1 + ¢) Pr[ f(D,) = w*].

Dy ={(z1,91), -+ (@n—1,Yn-1), (a,9)} Vi, [zl <1

Dy = {(x1,91), -+, (Tn-1,Yn-1), (@', 9)} llall,]la’]| < 1

Pr[f(D1) = w*] = Prlw*|2x1, ..., Zn—1,Y1,- - s Yn-1,Tn = Gy Yn = Y]

Pr[f(Ds) = w*] = Pr[w*|z1, .. -, Zn-1,Y1s- -+ Yn-1,Tn = @', yn = ']
We must bound the ratio:

Pr[w*|$1:---7xn—17y17-~-7yn—17xn :aayn:y] _ h(bl) __—=(lIball=11b=21D
= —e 2
Pr[w*l‘rly ey Tp—1,Y1y -3 Yn—1,Tn = a/7y’n = y,] h(b2

Where b, is the unique value of b that yields w* on input D,. (Likewise b,)

- b’s are unique because both terms in objective differentiable everywhere.

Where h(b) is T density function at b;.

Bound RHS, using optimality of w* for both problems, and bounded norms.

Learning guarantees

Theorem 4: For iid data, w.r.t. any classifier w, with loss L(w),
Algorithm 2 outputs a classifier with loss L(wg) + 9 if:

[|lwol[? [ |wol|d
n>C-maX<(52,65

where L(w) = E[ log (1 + exp(-y wTx)) ].

Theorem 5: Bound for Algorithm 1 in identical framework:

|[wol | [Jwo|d  |Jwo|[*d
52 7 ed 7 €h3/?

n>C-max<

The bound for Algorithm 2 is tighter than that of Algorithm 1, for cases in which
(non-private) regularized logistic regression is useful, i.e. ||wy|| = 1 (otherwise
L(wg) = log(1 + 1/e)).

Learning guarantees

Proof ideas for Theorems 4 and 5:

¢ Lemmas bounding regret w.r.t. (non-private) regularized LR:
1. Lemma (Algorithm 1):

falwy) < fr(w') + 2d%(1 + A) log®(d/9)

A2n2e2

2. Lemma (Algorithm 2):
5 . 8d% log?(d /)
fA(wz) < f)\(w/) + W

where w’ optimizes regularized LR objective, I(w).

e Use techniques of:
— [Shalev-Schwartz & Srebro, ICML 2008]
— [Sridharan, Srebro, & Shalev-Schwartz, NIPS 2008].

to obtain generalization guarantees from these approximate
optimization guarantees (vs. ERM).

Experiments
Uniform, margin=0.03 | Unseparable (uniform with noise 0.2 in margin 0.1)
Sensitivity method | 0.2962+0.0617 0.3257+0.0536
New method 0.1426+0.1284 0.1903+0.1105
Standard LR 0+0.0016 0.0530+0.1105

Figure 1: Test error: mean =+ standard deviation over five folds. N=17,500.
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Avg test error over 5-fold cross-valid. 200 random restarts.

Avg test error over 5-fold cross-valid. 200 random restarts.
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Experiments

Future work

Dependence on ¢

=&= Our method =®= Our method
== Sensitivity method == Sensitivity method

lid. 200 random restarts.

Avg test error over 5-fold cross-valid. 200 random restarts.
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Epsilon. Uniform data, d=10, n=10,000, margin=0.03, lambda=0.01 Epsilon. Unseparable data, d—10, n~10,000, Jambda<0.01

Other standard ML algorithms, e.g.
SVM, boosting, clustering, etc.

Repercussions of our results for general loss functions

Work to remove some of the assumptions, for a general technique to
turn a convex optimization problem into a privacy-preserving version.

With increasing reliance on the internet for day-to-day tasks,
emerging, necessary synergy between security/privacy and
machine learning research, e.g.

PPML

Spam filtering

Identity theft detection
Fraud/anomaly/phishing detection

Thank you!

And many thanks to my coauthor:

Kamalika Chaudhuri (UC San Diego)




