

Simple Sample Complexity for Machine Learning

NYU, 2007

John Langford

Full Tutorial writeup at:

hunch.net/~jl/projects/prediction_bounds/tutorial/langford05a.ps

Quiz

For a dataset with 1000 binary features, how many examples are sufficient to learn:

1. A 100 node decision tree?
2. A 100 node neural network?
3. A 100 support vector machine with margin 0.1?

Outline

1. The Basic Model
2. Occam's Razor Bound
3. PAC-Bayes Bound
4. ... for margins

Model: Definitions

X = input space

$Y = \{-1, 1\}$ = output space

$c : X \rightarrow Y$ = classifier

Model: Basic Assumption

All samples are drawn independently from some unknown distribution $D(x, y)$.

$S = (x, y)^m \sim D^m$ is a sample set.

Model: Derived quantities

The thing we want to know:

$$c_D \equiv \Pr_{x,y \sim D} (c(x) \neq y) = \text{true error}$$

Model: Derived quantities

The thing we want to know:

$$c_D \equiv \Pr_{x,y \sim D} (c(x) \neq y) = \text{true error}$$

The thing we have:

$$\hat{c}_S \equiv m \Pr_{x,y \sim S} (c(x) \neq y) = \sum_{i=1}^m I [c(x) \neq y]$$

= “train error”, “test error”, or “observed error”, depending on context.

(note: we identify the set S with the uniform distribution on \mathcal{S})

Model: Basic Observations

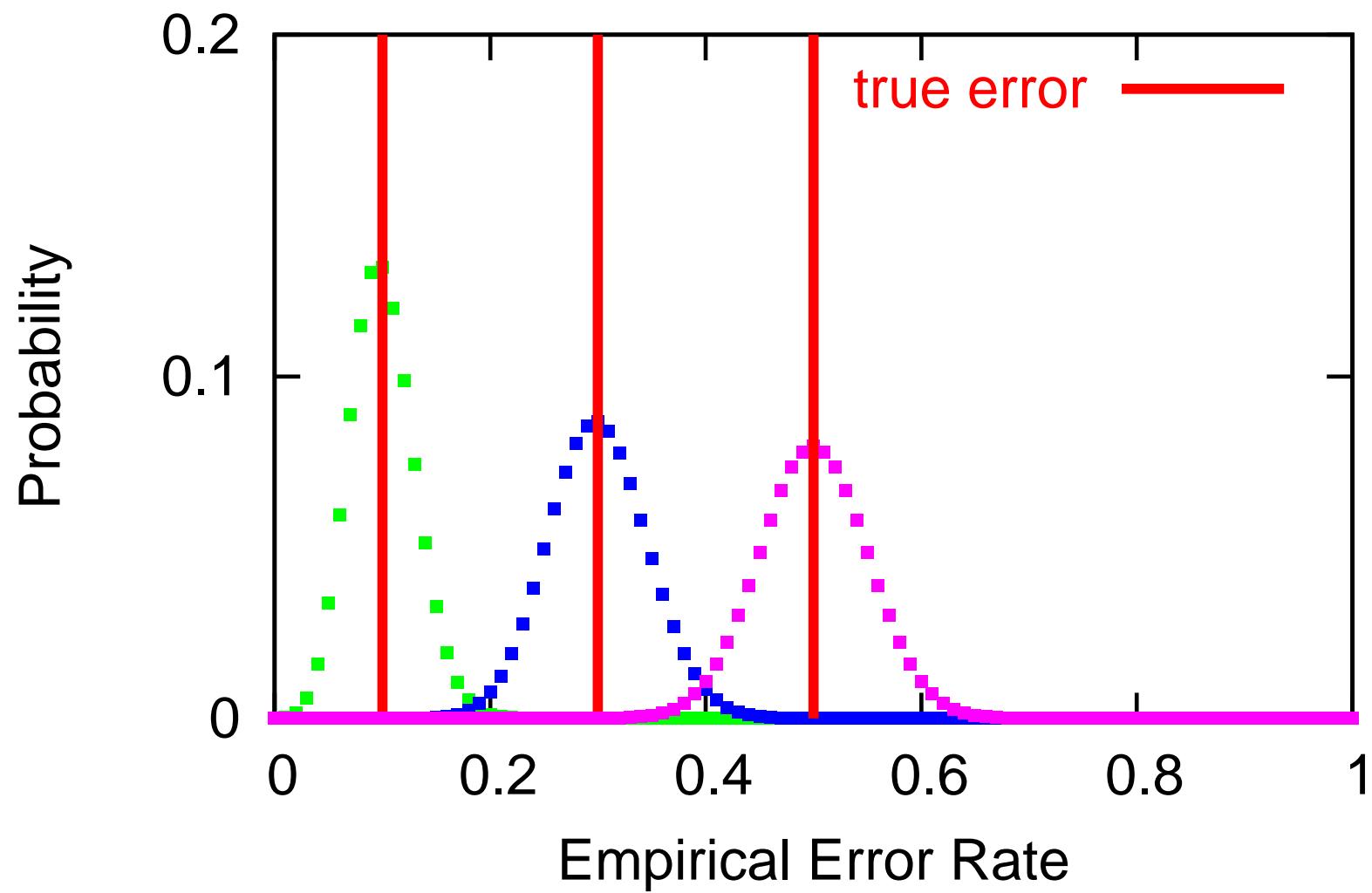
Q: What is the distribution of \hat{c}_S ?

A: A Binomial.

$$\Pr_{S \sim D^m} (\hat{c}_S = k | c_D) = \binom{m}{k} c_D^k (1 - c_D)^{m-k}$$

= probability of k heads (errors) in m flips of a coin with bias c_D .

Possible Error distributions



Model: basic quantities

We use the cumulative:

$$\begin{aligned}\text{Bin}(m, k, c_D) &= \Pr_{S \sim D^m}(\hat{c}_S \leq k | c_D) \\ &= \sum_{i=0}^k \binom{m}{i} c_D^i (1 - c_D)^{m-i}\end{aligned}$$

= probability of observing k or fewer “heads” (errors) with m coins.

Model: basic quantities

Need confidence intervals \Rightarrow use the pivot of the cumulative instead

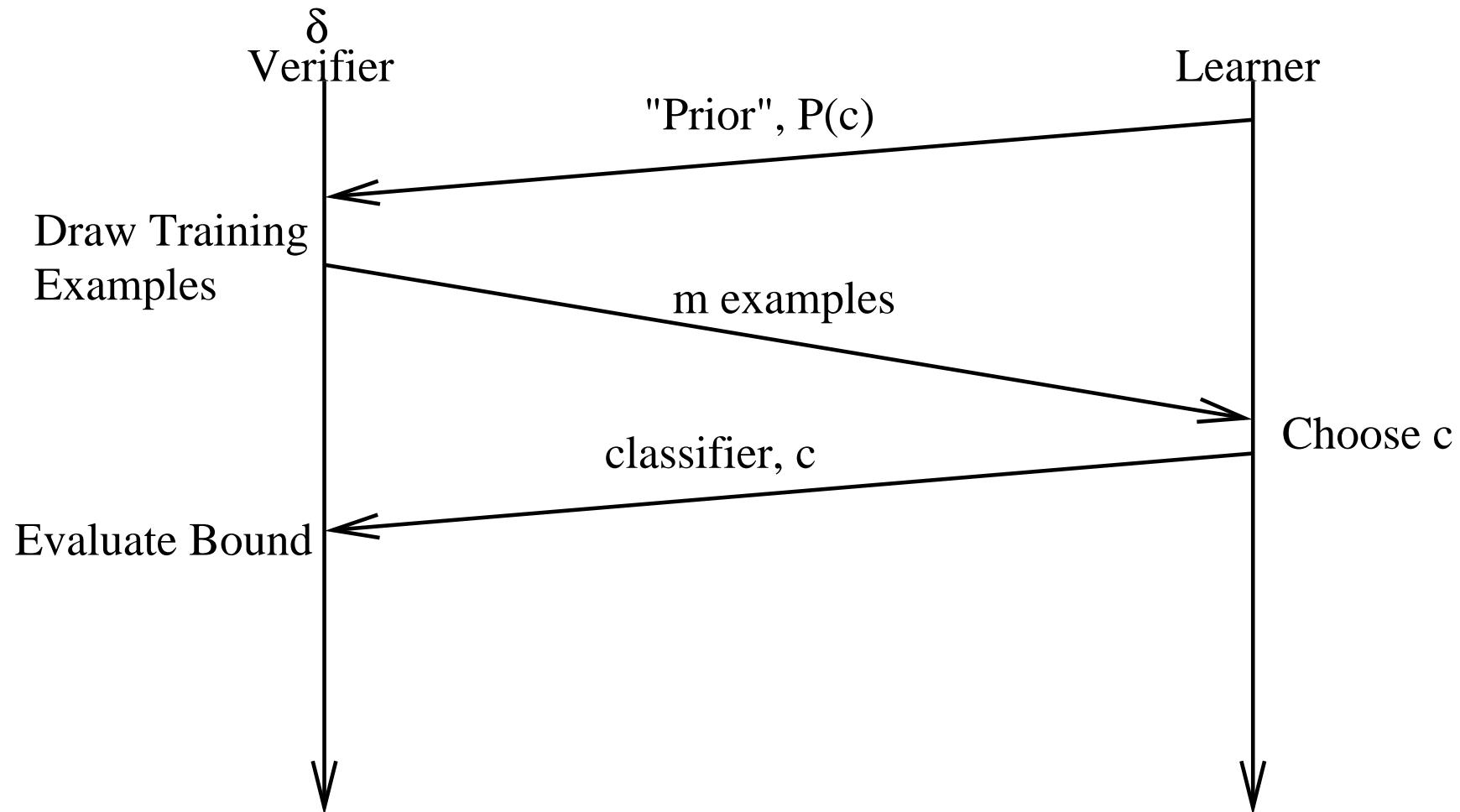
$$\overline{\text{Bin}}(m, k, \delta) = \max \{p : \text{Bin}(m, k, p) \geq \delta\}$$

= the largest true error such that the probability of observing k or fewer “heads” (errors) is at least δ .

Outline

1. The Basic Model
2. Occam's Razor Bound
3. PAC-Bayes Bound
4. ... for margins

Occam's Razor Bound Protocol



Occam's Razor Bound

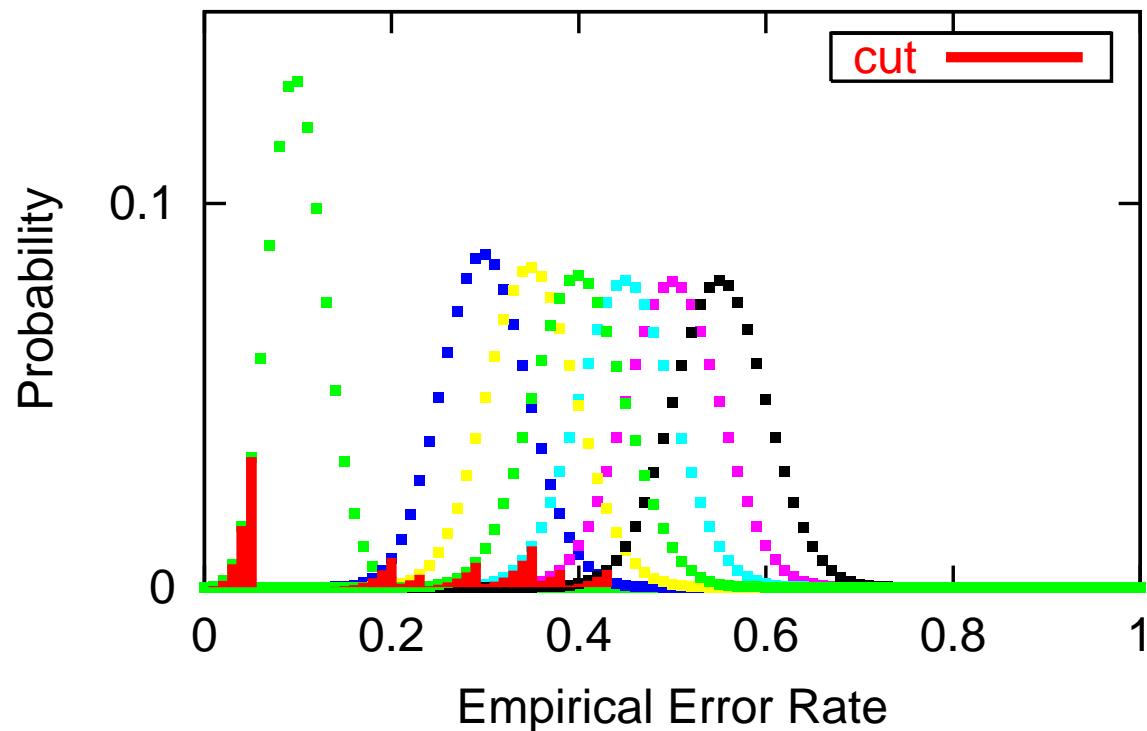
Theorem: (Occam's Razor Bound) For all “priors” $P(c)$ over the classifiers c , for all D , for all $\delta \in (0, 1]$:

$$\Pr_{S \sim D^m} \left(\forall c : c_D \leq \overline{\text{Bin}}(m, \hat{c}_S, \delta P(c)) \right) \geq 1 - \delta$$

Corollary: For all $P(c)$, for all D , for all $\delta \in (0, 1]$:

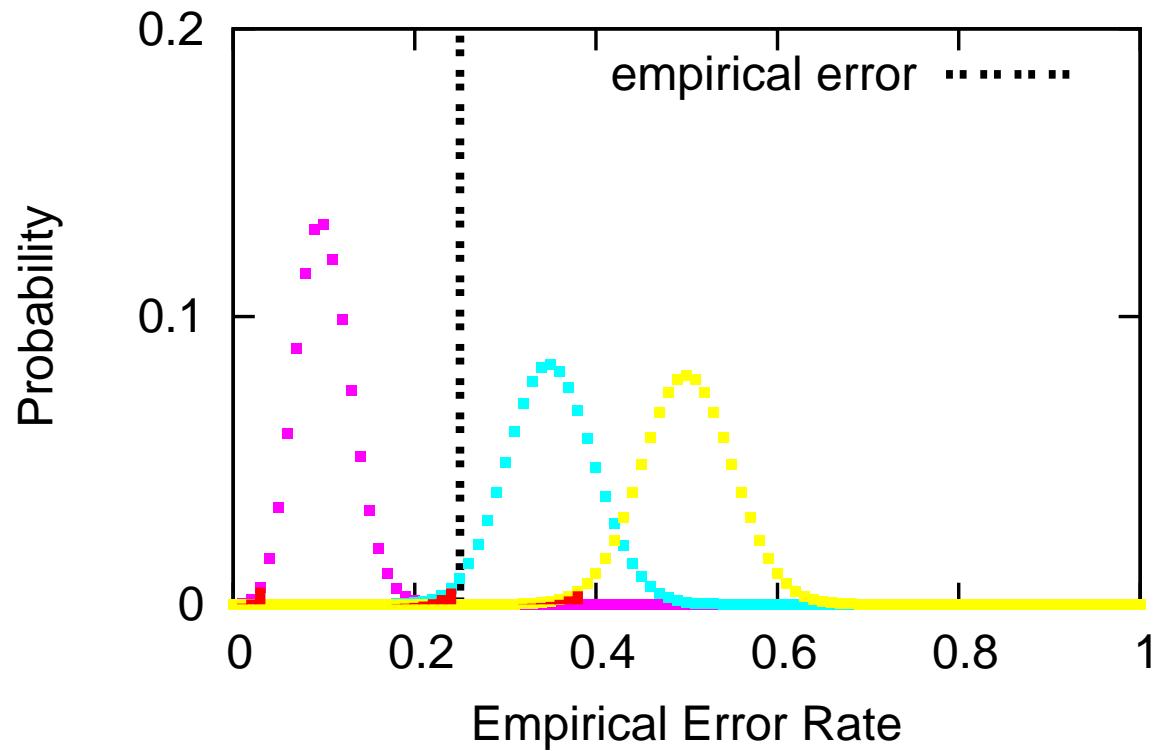
$$\Pr_{S \sim D^m} \left(c_D \leq \frac{\hat{c}_S}{m} + \sqrt{\frac{\ln \frac{1}{P(c)} + \ln \frac{1}{\delta}}{2m}} \right) \geq 1 - \delta$$

Occam's Razor Tail Cuts

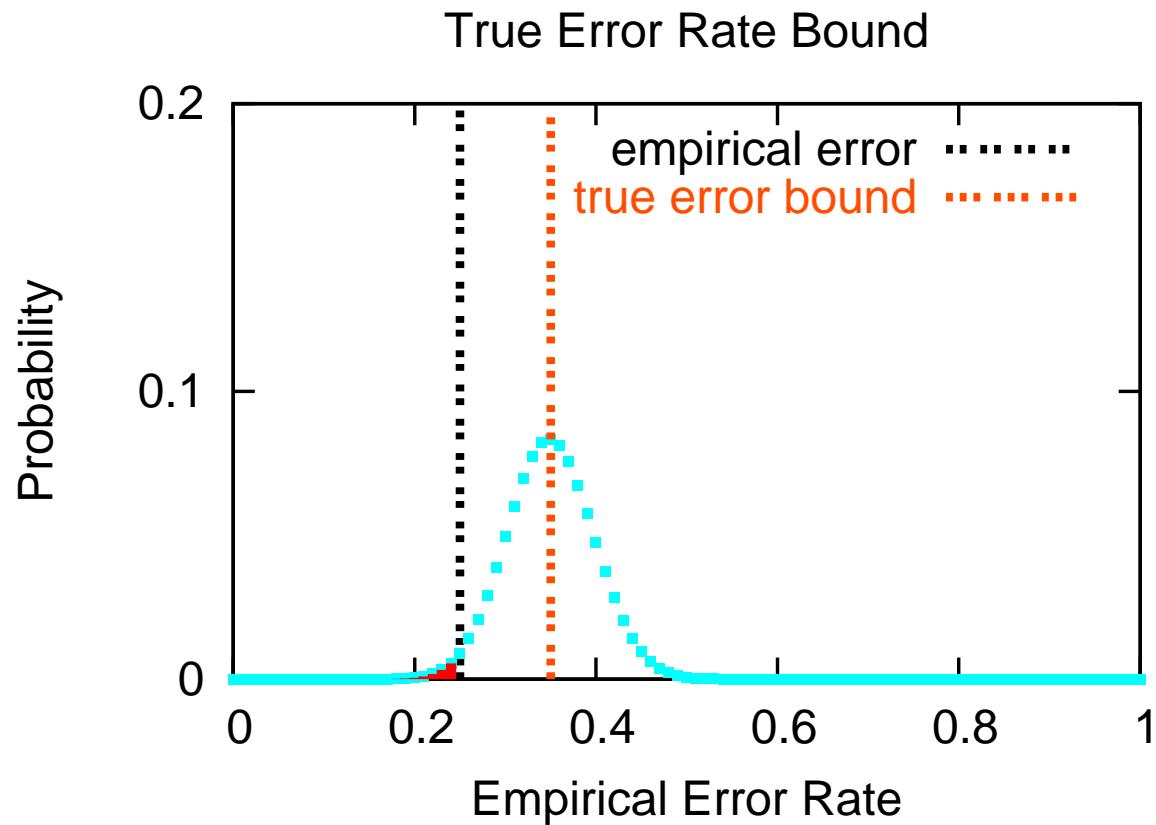


Each classifier is a Binomial with a different size tail cut.
With high probability no error falls in any tail.

Occam Bound Calculation



The chosen classifier has an unknown true error rate.



Bound = the largest true error rate for which the observation is not in the tail.

Quiz

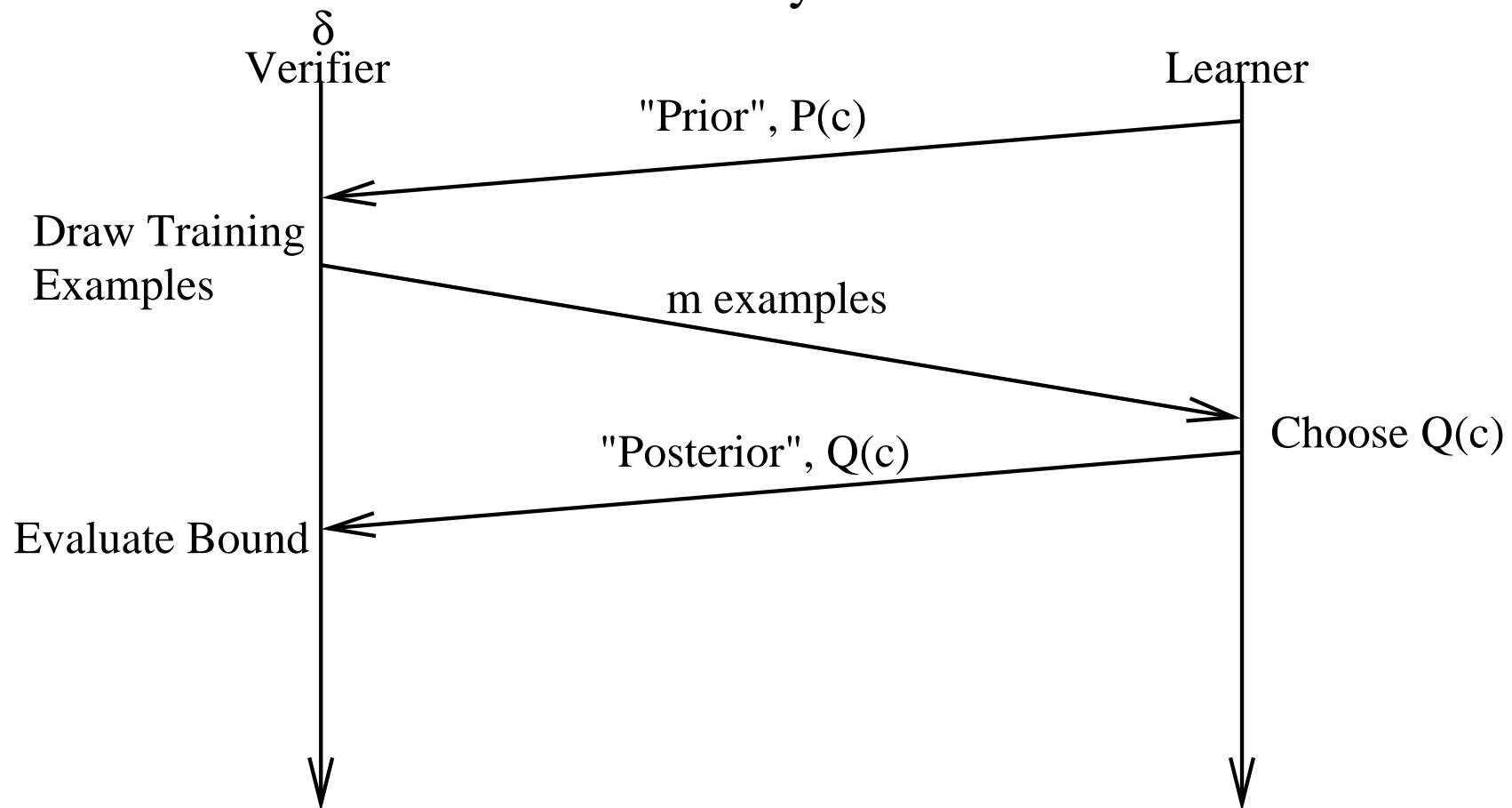
For a dataset with 1000 binary features, how many examples are sufficient to learn:

1. A 100 node decision tree?
2. A 100 node neural network?
3. A 100 support vector machine with margin 0.1?

Outline

1. The Basic Model
2. Occam's Razor Bound
3. PAC-Bayes Bound
4. ... for margins

PAC–Bayes Bound



PAC-Bayes Bound: Basic quantities

$Q_D \equiv E_{c \sim Q}[c_D]$ = average true error

$\hat{Q}_S \equiv E_{c \sim Q} \left[\frac{\hat{c}_S}{m} \right]$ = average train error

PAC-Bayes Bound: Theorem

Theorem: (PAC-Bayes Bound) For all “priors” $P(c)$ over the classifiers c , for all D , for all $\delta \in (0, 1]$:

$$\Pr_{S \sim D^m} \left(\forall Q(c) : \text{KL}(\hat{Q}_S || Q_D) \leq \frac{\text{KL}(Q || P) + \ln \frac{m+1}{\delta}}{m} \right) \geq 1 - \delta$$

where: $\text{KL}(Q || P) = E_{c \sim Q} \ln \frac{Q(c)}{P(c)}$

Corollary: For all $P(c)$, for all D , for all $\delta \in (0, 1]$:

$$\Pr_{S \sim D^m} \left(\forall Q(c) : Q_D \leq \hat{Q}_S + \sqrt{\frac{\text{KL}(Q || P) + \ln \frac{m+1}{\delta}}{2m}} \right) \geq 1 - \delta$$

Outline

1. The Basic Model
2. Occam's Razor Bound
3. PAC-Bayes Bound
4. ... for margins

PAC-Bayes Bound: Application

Is the PAC-Bayes bound tight enough to be useful?

Application: true error bounds for Support Vector Machines.

Classifier form:

$$c(x) = \text{sign}(\vec{w} \cdot \vec{x})$$

PAC-Bayes Margin bound

$\bar{F}(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ = cumulative distribution of a Gaussian

$Q(\vec{w}, \mu) = N(\mu, 1) \times N(0, 1)^{n-1}$ where first direction parallel to \vec{w}

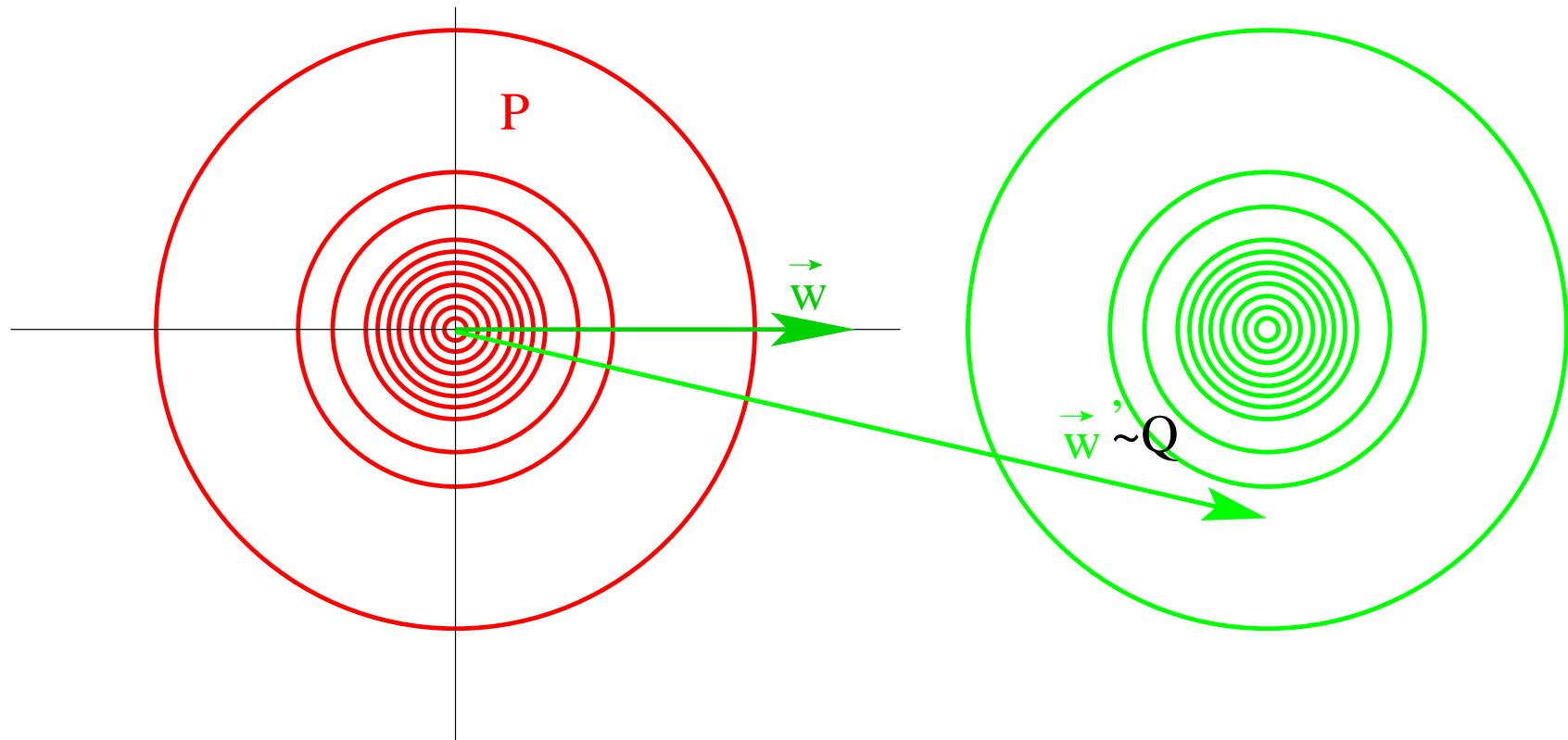
$\gamma(\vec{x}, y) = \frac{y\vec{w} \cdot \vec{x}}{\|\vec{w}\| \|\vec{x}\|}$ = normalized margin

$\hat{Q}(\vec{w}, \mu)_S = E_{\vec{x}, y \sim S} \bar{F}(\mu \gamma(\vec{x}, y))$ = stochastic error rate

Corollary: (PAC-Bayes Margin Bound) For all distributions D , for all $\delta \in (0, 1]$:

$$\Pr_{S \sim D^m} \left(\forall \vec{w}, \mu > 0 : \text{KL} \left(\hat{Q}(\vec{w}, \mu)_S \parallel Q(\vec{w}, \mu)_D \right) \leq \frac{\frac{\mu^2}{2} + \ln \frac{m+1}{\delta}}{m} \right) \geq 1 - \delta$$

PAC-Bayes Margin Bound: Intuition



Isotropic Gaussian prior and posterior

PAC-Bayes Margin Bound: Proof

Start with PAC-Bayes bound:

$$\forall P(c) \Pr_{S \sim D^m} \left(\forall Q(c) : \text{KL}(\hat{Q}_S || Q_D) \leq \frac{\text{KL}(Q || P) + \ln \frac{m+1}{\delta}}{m} \right) \geq 1 - \delta$$

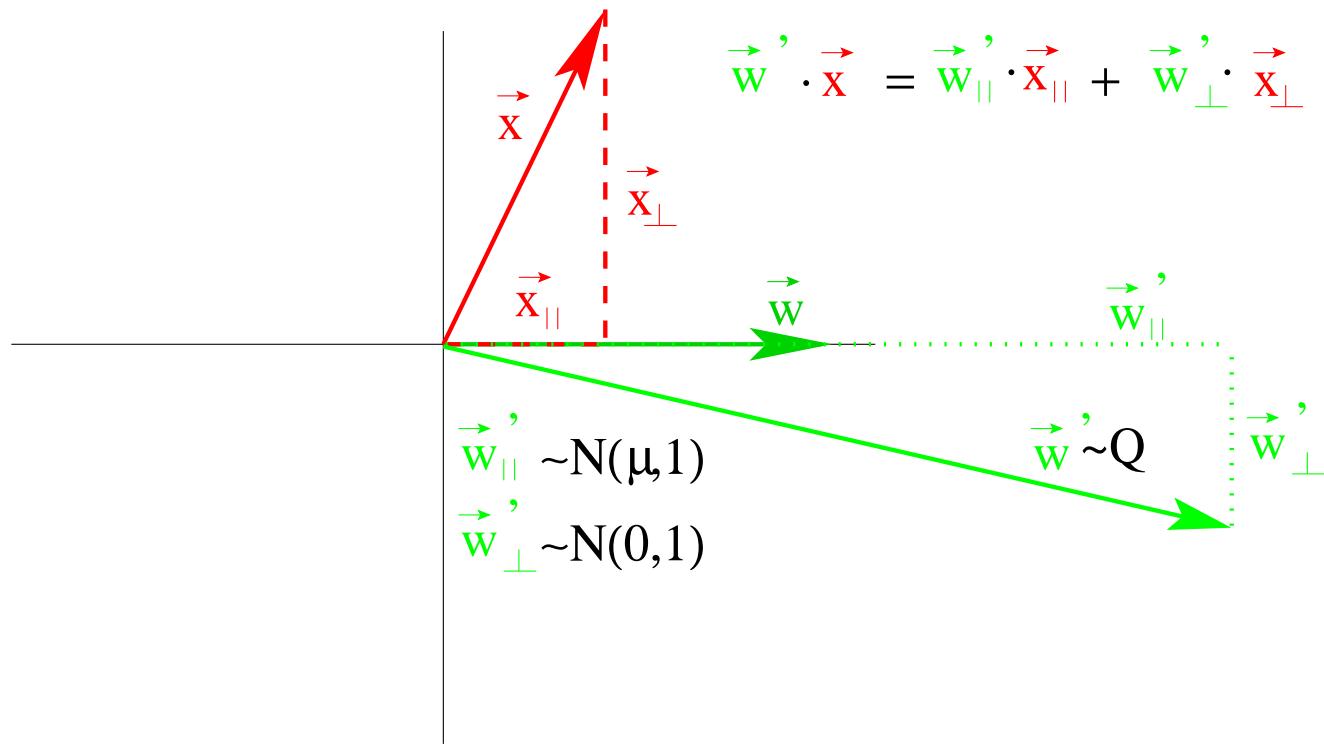
Set $P = N(0, 1)^n$

$Q(\vec{w}, \mu) = N(\mu, 1) \times N(0, 1)^{n-1}$ with first direction parallel to \vec{w}

Gaussian \Rightarrow coordinate system reorientable

$$\Rightarrow \text{KL}(Q || P) = \text{KL}(N(0, 1)^{n-1} || N(0, 1)^{n-1}) + \text{KL}(N(\mu, 1) || N(0, 1))$$

$$= \frac{\mu^2}{2}$$



$$\begin{aligned}
 \hat{Q}(\vec{w}, \mu)_S &= E_{\vec{x}, y \sim S, \vec{w}' \sim Q(\vec{w}, \mu)} I(y \neq \text{sign}(\vec{w}' \cdot \vec{x})) \\
 &= E_{\vec{x}, y \sim S} E_{w_{||}' \sim N(\mu, 1)} E_{w_{\perp}' \sim N(0, 1)} I(y(w_{||}' x_{||} + w_{\perp}' x_{\perp}) \leq 0)
 \end{aligned}$$

Use properties of Gaussians to finish proof

PAC-Bayes Margin proof: the end

$$= E_{\vec{x}, y \sim S} E_{z' \sim N(0, 1)} E_{w'_{\perp} \sim N(0, 1)} I \left(y\mu \leq -yz' - yw'_{\perp} \frac{x_{\perp}}{x_{\parallel}} \right)$$

The sum of two Gaussians is a Gaussian \Rightarrow

$$= E_{\vec{x}, y \sim S} E_{v \sim N \left(0, 1 + \frac{x_{\perp}^2}{x_{\parallel}^2} \right)} I (y\mu \leq -yv)$$

$$= E_{\vec{x}, y \sim S} E_{v \sim N \left(0, \frac{1}{\gamma(\vec{x}, y)^2} \right)} I (y\mu \leq -yv)$$

$$= E_{\vec{x}, y \sim S} \bar{F} (\mu \gamma(\vec{x}, y))$$

\Rightarrow Corollary

PAC-Bayes: Application to SVM

SVM classifier:

$$c(x) = \text{sign} \left(\sum_{i=1}^m \alpha_i k(x_i, x) \right)$$

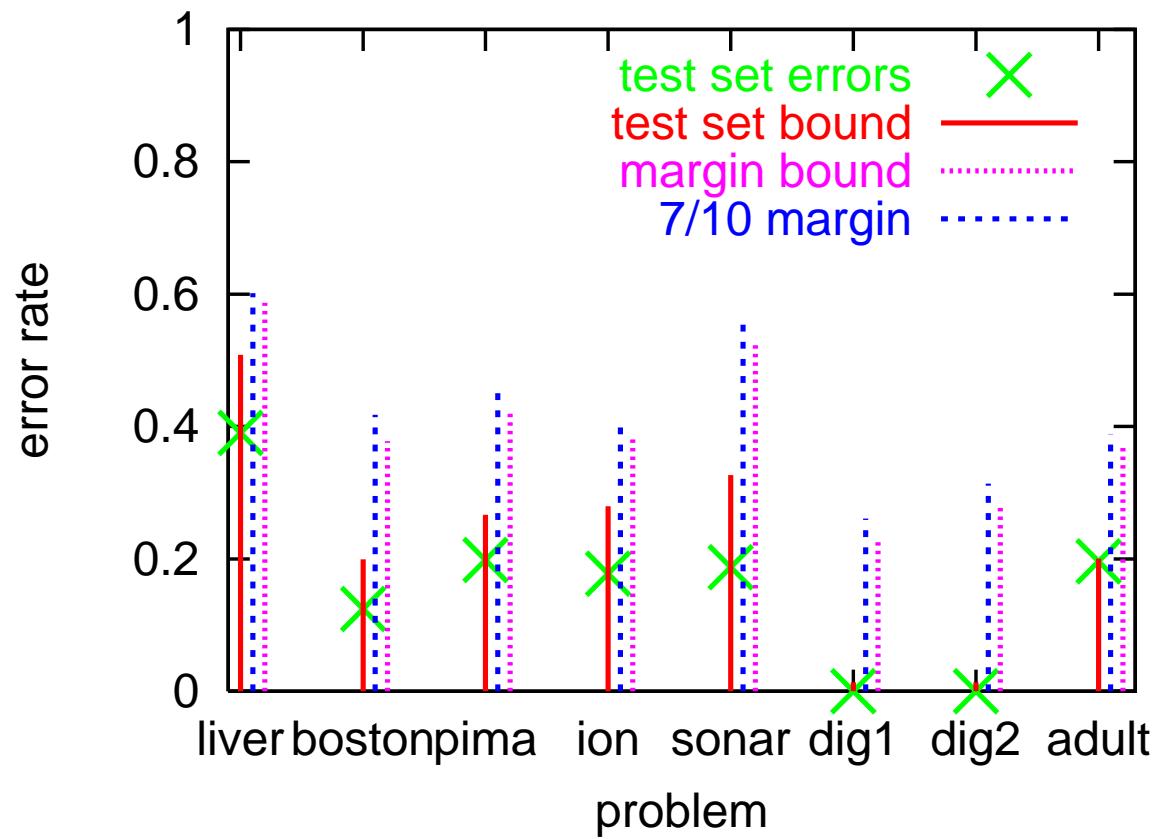
k is a kernel $\Rightarrow \exists \vec{\Phi} : k(x_i, x) = \vec{\Phi}(x_i) \cdot \vec{\Phi}(x)$ so:

$$\vec{w} \cdot \vec{x} = \sum_{i=1}^m \alpha_i k(x_i, x) \quad \vec{w} \cdot \vec{w} = \sum_{i,j} \alpha_i \alpha_j k(x_i, x_j)$$

$$\Rightarrow \gamma(x, y) = \frac{y \sum_{i=1}^m \alpha_i k(x_i, x)}{\sqrt{k(x, x) \sum_{i,j=1,1}^m \alpha_i \alpha_j k(x_i, x_j)}}$$

\Rightarrow Margin bound for kernelized SVM also.

PAC-Bayes Margin Bound Results



My view of things

1. Occam's Razor bound is very useful for high altitude algorithm choosing, but it's loose.
2. PAC-Bayes fixes much of this looseness, with very little tightness loss. PAC-Bayes says you pay only for the bits of precision which actually matter in making a decision.
3. Less elemental bounds (VC, Rademacher, etc...) don't appear to add much to tightness and are often much looser.
4. The bounds can be Martingalized without substantially altering their form. (\Rightarrow works for online learning)