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Quiz

For a dataset with 1000 binary features, how many examples are
sufficient to learn:

1. A 100 node decision tree?

2. A 100 node neural network?

3. A 100 support vector machine with margin 0.17
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Model: Definitions
X = input space
Y ={-1,1} = output space
c. X — Y = classifier
Model: Basic Assumption

All samples are drawn independently from some unknown distri-
bution D(x,vy).

S = (x,y)™ ~ D™ is a sample set.



Model: Derived quantities

The thing we want to know:

cp= Pr (c(x) #vy) = true error
z,y~D



Model: Derived quantities

The thing we want to know:

cp= Pr (c(x) #vy) = true error
z,y~D

The thing we have:
m
cs=m Pr (c(z) #y)= ) I[c(z)# ]
Ty~S i=1
= “train error’, “test error’, or "observed error’, depending on
context.

(note: we identify the set S with the uniform distribution on S)



Model: Basic Observations
Q: What is the distribution of cg?
A: A Binomial.

~ _ m k —k
Pl (s =klep) = ( 1 ) cp(1 —cp)™

— probability of k heads (errors) in m flips of a coin with bias
CD-
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Model: basic quantities

We use the cumulative:
Bin(m,k,cp)

Pre.pm(cs < k|lcp)
m \ By
— 27];6:0 ( - ) 071)(1 —cp)™

1

= probability of observing k or fewer “heads” (errors) with m
coins.



Model: basic quantities

Need confidence intervals = use the pivot of the cumulative
instead

Bin (m, k,§) = max{p : Bin (m, k,p) > 6}

— the largest true error such that the probability of observing k
or fewer “heads” (errors) is at least 4.
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Occam’s Razor Bound

Theorem: (Occam’s Razor Bound) For all “priors” P(c) over the
classifiers ¢, for all D, for all § € (0, 1]:

P (Ve: ep < Bin(m,ég,6P(c))) >1-36

Corollary: For all P(¢), for all D, for all § € (0, 1]:

A N =i« 4+ Ini
Pr cD<CS-|-\l o) “l>1-5
2m



Occam’s Razor Tail Cuts
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Each classifier is a Binomial with a different size tail cut.

With high probability no error falls in any tail.



Occam Bound Calculation
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The chosen classifier has an unknown true error rate.



True Error Rate Bound
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Bound = the largest true error rate for which the observation is
not in the tail.



Quiz

For a dataset with 1000 binary features, how many examples are
sufficient to learn:

1. A 100 node decision tree?

2. A 100 node neural network?

3. A 100 support vector machine with margin 0.17
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PAC-Bayes Bound: Basic quantities

Qp = E..glcp] = average true error

average train error

QS = ECNQ [%ﬂ



PAC-Bayes Bound: Theorem

Theorem: (PAC-Bayes Bound) For all “priors” P(c) over the
classifiers ¢, for all D, for all § € (0, 1]:

m+1
KL(Q||P) + In ™} ) 1

m

Pr (vmc) - KL (QsllQp) <

S~Dm

where: KL(Q||P) = E..gn g%

Corollary: For all P(¢), for all D, for all § € (0, 1]:

KL(Q||P) + In™FL

2m

Pr VQ(C):QDSQS‘FJ >1-9

S~Dm
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PAC-Bayes Bound: Application
Is the PAC-Bayes bound tight enough to be useful?
Application: true error bounds for Support Vector Machines.

Classifier form:

c(x) = sign (W - @)



PAC-Bayes Margin bound

F(x) = [° \/%e_“/z/z = cumulative distribution of a Gaussian

Q(W, ) = N(u,1) x N(0,1)* 1 where first direction parallel to &

Yyuw-x

Y@, Y) = [T

= normalized margin

Q(W,pn)s = Egz,.sF (wy(&,y)) = stochastic error rate

Corollary: (PAC-Bayes Margin Bound) For all distributions D,
for all § € (0, 1]:

2
ue m—+1
> +In75

Pr |V n> 01 KL(Q, )sl|Q(, 1)p) < >1-4
S~ D™ m




PAC-Bayes Margin Bound: Intuition

Isotropic Gaussian prior and posterior



PAC-Bayes Margin Bound: Proof

Start with PAC-Bayes bound:

vP(c) _Pr (vcxc): KL (QsllQp) <

(g” ) +1n ) ) >1-9
S~Dm

m

Set P = N(0,1)"
Q(W, n) = N(p,1) x N(0, 1)1 with first direction parallal to @

Gaussian = coordinate system reorientable

= KL(Q||P) = KL(N(0, )" 1||N(0, )" 1) +KL(N(u, 1)||N(0, 1))
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Qb 1) g = Ef,yms,w’NQ(w,u)I (y # sign (15’ : :7;’))
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Use properties of Gaussians to finish proof



PAC-Bayes Margin proof: the end

_ oy . B
— Ex’yNSEz/NN(O,1)Ewle(O,1)I (y,u < —yz wax>
The sum of two Gaussians is a Gaussian =

= bgyost 2
v~N [ 0,1+—%

T
|

>1 (yp < —yv)

= Ez ysb I (yp < —yv)
y~SE N0 L <
v N(O’v(f,yﬂ)

= Bz ysF (1y(Z,v))

= Corollary



PAC-Bayes: Application to SVM

SVM classifier:

c(x) = sign (i ozz-k(a:i,a:))
1=1

kis a kernel = 3® :  k(z;,z) = ®(z;) - P(z) SO:

W T = Z;Jm:l O‘ik(wia :U) w-w = Zi,j ozz-ajk(a:i, acj)

Yy Z;n:]_ aik(xia ZU)
\/k(CU, ZU) ZZ?:L]_ CEiOéjk’(iUi, ZU])

= v(z,y) =

= Margin bound for kernelized SVM also.
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My view of things

. Occam’s Razor bound is very useful for high altitude algo-
rithm choosing, but it's loose.

. PAC-Bayes fixes much of this looseness, with very little tight-
ness loss. PAC-Bayes says you pay only for the bits of preci-
sion which actually matter in making a decision.

. Less elemental bounds (VC, Rademacher, etc...) don't ap-
pear to add much to tightness and are often much looser.

. The bounds can be Martingalized without substantially al-
tering their form. (= works for online learning)



