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QuizFor a dataset with 1000 binary features, how many examples aresu�
ient to learn:

1. A 100 node de
ision tree?

2. A 100 node neural network?

3. A 100 support ve
tor ma
hine with margin 0.1?



Outline

1. The Basi
 Model

2. O

am's Razor Bound

3. PAC-Bayes Bound

4. ... for margins



Model: De�nitions

X = input spa
e
Y = {−1,1} = output spa
e
c : X → Y = 
lassi�erModel: Basi
 AssumptionAll samples are drawn independently from some unknown distri-bution D(x, y).

S = (x, y)m ∼ Dm is a sample set.



Model: Derived quantitiesThe thing we want to know:
cD ≡ Pr

x,y∼D
(c(x) 6= y) = true error

�train error�, �test error�, or �observed error�, depending on 
on-text.(note: we identify the set S with the uniform distribution on S)



Model: Derived quantitiesThe thing we want to know:
cD ≡ Pr

x,y∼D
(c(x) 6= y) = true errorThe thing we have:

ĉS ≡ m Pr
x,y∼S

(c(x) 6= y) =
m
∑

i=1

I [c(x) 6= y]= �train error�, �test error�, or �observed error�, depending on
ontext.(note: we identify the set S with the uniform distribution on S)



Model: Basi
 ObservationsQ: What is the distribution of ĉS?A: A Binomial.
Pr

S∼Dm
(ĉS = k| cD) =

(

m
k

)

ck
D(1 − cD)m−k

= probability of k heads (errors) in m �ips of a 
oin with bias

cD.
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Model: basi
 quantitiesWe use the 
umulative:Bin (m, k, cD) = PrS∼Dm (ĉS ≤ k| cD)

=
∑k

i=0

(

m
i

)

ci
D(1 − cD)m−i= probability of observing k or fewer �heads� (errors) with m
oins.



Model: basi
 quantitiesNeed 
on�den
e intervals ⇒ use the pivot of the 
umulativeinstead
Bin (m, k, δ) = max {p : Bin (m, k, p) ≥ δ}

= the largest true error su
h that the probability of observing kor fewer �heads� (errors) is at least δ.
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Verifier Learner

m examples

Draw Training 
Examples

Evaluate Bound

"Prior", P(c)

classifier, c Choose c

δ
Occam’s Razor Bound Protocol



O

am's Razor BoundTheorem: (O

am's Razor Bound) For all �priors� P(c) over the
lassi�ers c, for all D, for all δ ∈ (0,1]:

Pr
S∼Dm

(

∀c : cD ≤ Bin (m, ĉS, δP (c))
)

≥ 1 − δ

Corollary: For all P(c), for all D, for all δ ∈ (0,1]:
Pr

S∼Dm









cD ≤ ĉS

m
+

√

√

√

√

ln 1
P (c)

+ ln 1
δ

2m









≥ 1 − δ
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cut

Ea
h 
lassi�er is a Binomial with a di�erent size tail 
ut.With high probability no error falls in any tail.



 0

 0.1

 0.2

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y

Empirical Error Rate

Occam Bound Calculation

empirical error

The 
hosen 
lassi�er has an unknown true error rate.
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true error bound

Bound = the largest true error rate for whi
h the observation isnot in the tail.
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PAC-Bayes Bound: Basi
 quantities

QD ≡ Ec∼Q[cD] = average true error
Q̂S ≡ Ec∼Q

[

ĉS
m

] = average train error



PAC-Bayes Bound: TheoremTheorem: (PAC-Bayes Bound) For all �priors� P(c) over the
lassi�ers c, for all D, for all δ ∈ (0,1]:

Pr
S∼Dm



∀Q(c) : KL (Q̂S||QD

)

≤

KL(Q||P) + ln m+1
δ

m



 ≥ 1 − δ

where: KL(Q||P) = Ec∼Q ln Q(c)
P (c)Corollary: For all P(c), for all D, for all δ ∈ (0,1]:

Pr
S∼Dm





∀Q(c) : QD ≤ Q̂S +

√

√

√

√

KL(Q||P) + ln m+1
δ

2m





 ≥ 1 − δ
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PAC-Bayes Bound: Appli
ationIs the PAC-Bayes bound tight enough to be useful?Appli
ation: true error bounds for Support Ve
tor Ma
hines.Classi�er form:

c(x) = sign (~w · ~x)



PAC-Bayes Margin bound

F̄(x) =
∫∞
x

1√
2π

e−x2/2 = 
umulative distribution of a Gaussian

Q(~w, µ) = N(µ,1)×N(0,1)n−1 where �rst dire
tion parallel to ~w

γ(~x, y) = y ~w·~x
||~w||||~x|| = normalized margin

Q̂(~w, µ)S = E~x,y∼SF̄ (µγ(~x, y)) = sto
hasti
 error rateCorollary: (PAC-Bayes Margin Bound) For all distributions D,for all δ ∈ (0,1]:

Pr
S∼Dm





∀~w, µ > 0 : KL (Q̂(~w, µ)S||Q(~w, µ)D

)

≤
µ2

2 + ln m+1
δ

m





 ≥ 1−δ



PAC-Bayes Margin Bound: Intuition

w ’

w

~Q

P

Isotropi
 Gaussian prior and posterior



PAC-Bayes Margin Bound: ProofStart with PAC-Bayes bound:
∀P(c) Pr

S∼Dm



∀Q(c) : KL (Q̂S||QD

)

≤

KL(Q||P) + ln m+1
δ

m



 ≥ 1−δSet P = N(0,1)n

Q(~w, µ) = N(µ,1) × N(0,1)n−1 with �rst dire
tion parallal to ~wGaussian ⇒ 
oordinate system reorientable
⇒ KL(Q||P) = KL(N(0,1)n−1||N(0,1)n−1)+KL(N(µ,1)||N(0,1))

=
µ2

2



w ’

w ’

w ’

x
xw ’ w ’

x

x

x w ’ x

w ’

w ’

w

. = . .+

∼Ν(0,1)

µ∼Ν(  ,1) ~Q

Q̂(~w, µ)S = E
~x,y∼S,~w

′∼Q(~w,µ)
I
(

y 6= sign (~w
′ · ~x

))

= E~x,y∼SE
w
′
||∼N(µ,1)

E
w
′
⊥∼N(0,1)

I
(

y(w
′
||x|| + w

′
⊥x⊥) ≤ 0

)

Use properties of Gaussians to �nish proof



PAC-Bayes Margin proof: the end

= E~x,y∼SE
z
′∼N(0,1)

E
w
′
⊥∼N(0,1)

I



yµ ≤ −yz
′ − yw

′
⊥

x⊥
x||



The sum of two Gaussians is a Gaussian ⇒

= E~x,y∼SE
v∼N

(

0,1+
x2⊥
x2||

)I (yµ ≤ −yv)

= E~x,y∼SE
v∼N

(

0, 1
γ(~x,y)2

)I (yµ ≤ −yv)

= E~x,y∼SF̄ (µγ(~x, y))

⇒ Corollary



PAC-Bayes: Appli
ation to SVMSVM 
lassi�er:
c(x) = sign m

∑

i=1

αik(xi, x)





k is a kernel ⇒ ∃~Φ : k(xi, x) = ~Φ(xi) · ~Φ(x) so:

~w · ~x =
∑m

i=1 αik(xi, x) ~w · ~w =
∑

i,j αiαjk(xi, xj)

⇒ γ(x, y) =
y
∑m

i=1 αik(xi, x)
√

k(x, x)
∑m,m

i,j=1,1 αiαjk(xi, xj)

⇒ Margin bound for kernelized SVM also.



PAC-Bayes Margin Bound Results
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My view of things

1. O

am's Razor bound is very useful for high altitude algo-rithm 
hoosing, but it's loose.

2. PAC-Bayes �xes mu
h of this looseness, with very little tight-ness loss. PAC-Bayes says you pay only for the bits of pre
i-sion whi
h a
tually matter in making a de
ision.

3. Less elemental bounds (VC, Radema
her, et
...) don't ap-pear to add mu
h to tightness and are often mu
h looser.

4. The bounds 
an be Martingalized without substantially al-tering their form. (⇒ works for online learning)


