On the Margin Explanation of Boosting Algorithms (Wang, et al., COLT 2008)

Presented by Ameet Talwalkar, 10/7/08

Motivation

- "Finding many rough rules of thumb can be a lot easier than finding a single, highly accurate prediction rule" [Schapire, 2002]
- Produce highly accurate prediction rule by combining several moderately accurate rules of thumb

Motivation

- "Finding many rough rules of thumb can be a lot easier than finding a single, highly accurate prediction rule" [Schapire, 2002]
- Produce highly accurate prediction rule by combining several moderately accurate rules of thumb
- Goal: Explain why boosting works?

What is Boosting?

- Binary Classification
- Base classifier/weak learner
 - "moderately accurate rule of thumb"
 - Trained on (weighted) training data
- Boosting: combination of weak learners
 - Weighted majority vote

Outline

- Adaboost
 - Algorithm, Example, Analysis and Experiments
- Initial Margin bounds
 - Margin distribution and Min margin
- New Margin Bounds
 - E-margin

Outline

- Adaboost
 - Algorithm, Example, Analysis and Experiments
- Initial Margin bounds
 - Margin distribution and Min margin
- New Margin Bounds
 - E-margin

- Focus on "hard" training points
 - Increase mass of points misclassified by previous WL
- Weighted majority classification
 - More weight for accurate WLs

Animation from [Mohri, FML lecture 8]

Input:
$$S = (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

where $x_i \in X, y_i \in \{-1, 1\}.$

Input:
$$S = (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

where $x_i \in X, y_i \in \{-1, 1\}.$

Create WLs: $h_t : \overline{X} \to \{-1, 1\}$ (next slide)

Input:
$$S = (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

where $x_i \in X, y_i \in \{-1, 1\}.$

Create WLs: $h_t : X \to \{-1, 1\}$ (next slide)

Output:
$$f(x) = \operatorname{sgn}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

where $\sum \alpha_i = 1, \quad \alpha_i \ge 0$

Initialization: $D_1(i) = 1/n$.

Initialization: $D_1(i) = 1/n$.

for t = 1 to T do 1. Train base learner using $D_t \left[h_t : \bar{X} \to \{-1, 1\} \right]$

end

Initialization: $D_1(i) = 1/n$.

for
$$t = 1$$
 to T do
1. Train base learner using $D_t \left[h_t : \bar{X} \to \{-1, 1\} \right]$
2. Choose $\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$ error: $\Pr_{D_t}[h_t(x_i) \neq y_i]$

Initialization: $D_1(i) = 1/n$.

for
$$t = 1$$
 to T do
1. Train base learner using $D_t \left[h_t : \bar{X} \to \{-1, 1\} \right]$
2. Choose $\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$ error: $\Pr_{D_t} [h_t(x_i) \neq y_i]$

3. Update:

end

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$
Normalization constant

Boosting Example [Mohri, FML lecture 8] [Schapire & Singer, 1999]

- *n* training points, *m* features
- Weak learners = Decision stumps (trees of length 1)
- Algorithm:
 - Associate stump with each feature
 - Pre-sort each feature:
 O(mn log n)
 - Find best feature/threshold at each round: O(mnT)

Boosting Example [Mohri, FML lecture 8] [Schapire & Singer, 1999]

- *n* training points, *m* features
- Weak learners = Decision stumps (trees of length 1)
- Algorithm:
 - Associate stump with each feature
 - Pre-sort each feature:
 O(mn log n)
 - Find best feature/threshold at each round: O(mnT)

Initial Adaboost Theory

• Complexity (VC dim) of combined classifiers increases as T increases [Freund & Schapire, 1997]

- Initial analysis showed typical tradeoff between training error and complexity hypothesis class
 - overfitting as T increases

Adaboost Experiments

Theory implied overfitting with increased T

Adaboost Experiments

- Theory implied overfitting with increased T
- Empirical evidence does NOT follow
 - E.g., Boosting C4.5 trees [Freund & Schapire, 1998] [Mohri, FML lecture 8]

Outline

- Adaboost
 - Algorithm, Example, Analysis and Experiments
- Initial Margin bounds
 - Margin distribution and Min margin
- New Margin Bounds
 - E-margin

Why margin?

 Key idea: Look at confidence of training classification (margin) instead of number of incorrect classifications

Why margin?

- Key idea: Look at confidence of training classification (margin) instead of number of incorrect classifications
- Goal: bound that depend on margin and complexity of WLs but NOT on # of WLs

Why margin?

- Key idea: Look at confidence of training classification (margin) instead of number of incorrect classifications
- Goal: bound that depend on margin and complexity of WLs but NOT on # of WLs
- Results [SFBL, 1998]
 - margin bound on error for any voting classifier
 - bound on margin distribution for Adaboost

Margin definitions

- margin of (x, y): confidence of prediction
 - ranges from -1 to 1

$$-yf(x) = \sum_{i:y=h_i(x)} \alpha_i - \sum_{i:y\neq h_i(x)} \alpha_i$$

Margin definitions

- margin of (x, y): confidence of prediction
 - ranges from -1 to 1

$$-yf(x) = \sum_{i:y=h_i(x)} \alpha_i - \sum_{i:y\neq h_i(x)} \alpha_i$$

- margin distribution over training set (S)
 - fraction with margin at most θ , $-1 \le \theta \le 1$ - $P_S(yf(x) \le \theta)$

Margin definitions

- margin of (x, y): confidence of prediction
 - ranges from -1 to 1

$$-yf(x) = \sum_{i:y=h_i(x)} \alpha_i - \sum_{i:y\neq h_i(x)} \alpha_i$$

- margin distribution over training set (S)
 - fraction with margin at most θ , $-1 \le \theta \le 1$ - $P_S(yf(x) \le \theta)$
- min margin: smallest margin over S

- max θ s.t. $P_S(yf(x) \le \theta) = 0$

Margin Distribution

LEGEND: (small dash, large dash, solid) lines equal (5, 100, 1000) rounds of boosting

• Adaboost with C4.5 trees [Freund & Schapire, 1998]

Margin Distribution

- Adaboost with C4.5 trees [Freund & Schapire, 1998]
- Margin distribution "improves" with more rounds ($P_S(yf(x) \le \theta)$)

Theorem 1 [SFBL98] For any $\delta > 0$, with probability at least $1 - \delta$ over the random choice of the training set S of n examples, every voting classifier f satisfies the following bounds:

$$P_D\left(yf(x) \le 0\right) \le \inf_{\theta \in (0,1]} \left| P_S\left(yf(x) \le \theta\right) + O\left(\frac{1}{\sqrt{n}} \left(\frac{d\log^2(n/d)}{\theta^2} + \log\frac{1}{\delta}\right)^{1/2}\right)\right],$$

where d is the VC dimension of H.

Theorem 1 [SFBL98] For any $\delta > 0$, with probability at least $1 - \delta$ over the random choice of the training set S of n examples, every voting classifier f satisfies the following bounds:

$$P_D\left(yf(x) \le 0\right) \le \inf_{\theta \in \{0,1\}} \left[P_S\left(yf(x) \le \theta\right) + O\left(\frac{1}{\sqrt{n}} \left(\frac{d\log^2(n/d)}{\theta^2} + \log\frac{1}{\delta}\right)^{1/2}\right) \right],$$

where d is the VC dimension of H.

Theorem 1 [SFBL98] For any $\delta > 0$, with probability at least $1 - \delta$ over the random choice of the training set S of n examples, every voting classifier f satisfies the following bounds:

$$\begin{array}{l} P_D \left(yf(x) \leq 0 \right) \leq \inf_{\theta \in (0,1]} \left[P_S \left(yf(x) \leq \theta \right) \\ \\ \text{Generalization} \\ \text{Error} \\ + O \left(\frac{1}{\sqrt{n}} \left(\frac{d \log^2(n/d)}{\theta^2} + \log \frac{1}{\delta} \right)^{1/2} \right) \right], \end{array}$$

where d is the VC dimension of H.

Dependence on size of training set (*n*), VC dim of WLs (*d*) and confidence parameter

Theorem 1 [SFBL98] For any $\delta > 0$, with probability at least $1 - \delta$ over the random choice of the training set S of n examples, every voting classifier f satisfies the following bounds:

$$P_D\left(yf(x) \le 0\right) \le \inf_{\theta \in (0,1]} \left[P_S\left(yf(x) \le \theta\right) + O\left(\frac{1}{\sqrt{n}} \left(\frac{d\log^2(n/d)}{\theta^2} + \log\frac{1}{\delta}\right)^{1/2}\right) \right],$$

where d is the VC dimension of H.

Want most examples to have large margin so that we have small $P_S(yf(x) \le \theta)$ for not too small θ

Adaboost's Margin

THEOREM 5. Suppose the base learning algorithm, when called by Ada-Boost, generates classifiers with weighted training errors $\varepsilon_1, \ldots, \varepsilon_T$. Then for any θ , we have that

$$\mathbf{P}_{(x, y) \sim S} \left[yf(x) \le \theta \right] \le 2^T \prod_{t=1}^T \sqrt{\varepsilon_t^{1-\theta} (1-\varepsilon_t)^{1+\theta}}$$
[SFBL, 1998]

Adaboost's Margin

THEOREM 5. Suppose the base learning algorithm, when called by Ada-Boost, generates classifiers with weighted training errors $\varepsilon_1, \ldots, \varepsilon_T$. Then for any θ , we have that

$$\mathbf{P}_{(x, y) \sim S} \left[yf(x) \le \theta \right] \le 2^T \prod_{t=1}^T \sqrt{\varepsilon_t^{1-\theta} (1-\varepsilon_t)^{1+\theta}}$$
[SFBL, 1998]

- If $\varepsilon_t \le 1/2 \gamma$ for all t and $\theta < \gamma$, then we have exponential convergence in T
 - Exponential convergence for small enough θ

Tighter bounds exist for min-margin

[Breiman, 1999]

Adaboost does not maximize min margin

[Rudin, 2004]

Tighter bounds exist for min-margin

[Breiman, 1999]

- Adaboost does not maximize min margin
 IRudin, 20041
- Arc-GV_[Breiman, 1999]
 - converges to min-margin
 - larger min-margin than Adaboost in practice

Tighter bounds exist for min-margin

[Breiman, 1999]

- Adaboost does not maximize min margin
 [Rudin, 2004]
- Arc-GV[Breiman, 1999]
 - converges to min-margin
 - larger min-margin than Adaboost in practice
 - worse generalization error!

• Tighter bounds exist for min-margin

[Breiman, 1999]

- Adaboost does not maximize min margin
 [Rudin, 2004]
- Arc-GV_[Breiman, 1999]
 - converges to min-margin
 - larger min-margin than Adaboost in practice
 - worse generalization error!
- So what really drives performance?

Outline

- Adaboost
 - Algorithm, Example, Analysis and Experiments
- Initial Margin bounds
 - Margin distribution and Min margin
- New Margin Bounds
 - E-margin

- Goal: Bounds that explain empirical results
 - clarify Adaboost vs Arc-GV issue

- Goal: Bounds that explain empirical results
 clarify Adaboost vs Arc-GV issue
- Bernoulli Relative Entropy $D(q||p) = q \log \frac{q}{p} + (1-q) \log \frac{1-q}{1-p}, \qquad 0 \le p,q \le 1$

- Goal: Bounds that explain empirical results
 clarify Adaboost vs Arc-GV issue
- Bernoulli Relative Entropy $D(q||p) = q\log\frac{q}{p} + (1-q)\log\frac{1-q}{1-p}, \qquad 0 \le p,q \le 1$
- Inverse for fixed ${\pmb q}$ and $q \le p \le 1$
 - exists b/c D(q||p) is a monotone increasing fct
 - not defined in paper

Warning: This is a monster!!!

Theorem 3 If $|H| < \infty$, then for any $\delta > 0$, with probability at least $1 - \delta$ over the random choice of the training set S of n examples, every voting classifier f satisfies the following bound:

$$P_D\left(yf(x) \le 0\right)$$

$$\le \frac{\log|H|}{n} + \inf_{q \in \{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}} D^{-1}\left(q, u\left[\hat{\theta}(q)\right]\right), \quad (3)$$

where

$$u\left[\hat{\theta}(q)\right] = \frac{1}{n} \left(\frac{8}{\hat{\theta}^2(q)} \log\left(\frac{2n^2}{\log|H|}\right) \log|H| + \log|H| + \log\frac{n}{\delta}\right),$$

and $\hat{\theta}(q)$ is given by

$$\hat{\theta}(q) = \sup\left\{\theta \in \left(\sqrt{8/|H|}, 1\right] : P_S\left(yf(x) \le \theta\right) \le q\right\}.$$

Theorem 3 If $|H| < \infty$, then for any $\delta > 0$, with probability at least $1 - \delta$ over the random choice of the training set S of n examples, every voting classifier f satisfies the following bound:

$$P_{D}\left(yf(x) \leq 0\right)$$

$$\leq \frac{\log|H|}{n} + \inf_{q \in \{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}} D^{-1}\left(q, u\left[\hat{\theta}(q)\right]\right), \quad (3)$$
where
$$u\left[\hat{\theta}(q)\right] = \frac{1}{n}\left(\frac{8}{\hat{\theta}^{2}(q)}\log\left(\frac{2n^{2}}{\log|H|}\right)\log|H|\right) \quad \theta^{*} = \hat{\theta}(q^{*})$$

$$+ \log|H| + \log\frac{n}{\delta}\right), \quad E\text{-margin}$$
and $\hat{\theta}(q)$ is given by
$$\hat{\theta}(q) = \sup\left\{\theta \in \left(\sqrt{8/|H|}, 1\right]: P_{S}\left(yf(x) \leq \theta\right) \leq q\right\}.$$

Reduction to Margin Distribution bound (and proof relies on very similar techniques)

Reduction to Previous Bound

Lemma 9

$$\inf_{q} D^{-1} \left(q, u \left[\hat{\theta}(q) \right] \right) \leq \inf_{q} \left(q + \left(\frac{u \left[\hat{\theta}(q) \right]}{2} \right)^{1/2} \right)$$
Margin
[SFBL, 1998]
Distribution Bound

$$P_D\left(yf(x) \le 0\right) \le \inf_{\theta \in (0,1]} \left| P_S\left(yf(x) \le \theta\right) + O\left(\frac{1}{\sqrt{n}} \left(\frac{\log n \log |H|}{\theta^2} + \log \frac{1}{\delta}\right)^{1/2}\right) \right]$$

- Reduction to Margin Distribution bound (and proof relies on very similar techniques)
- Tighter than min-margin bound (Theorem 6)
 - suggests that E-margin (not min-margin) dictates generalization error!

- Reduction to Margin Distribution bound (and proof relies on very similar techniques)
- Tighter than min-margin bound (Theorem 6)
 - suggests that E-margin (not min-margin) dictates generalization error!
- Theorem 7 Compare voting classifiers: If voting classifier *f1* has larger E-margin and smaller E-margin error than another voting classifier (*f2*), then *f1* will have smaller generalization error

- Reduction to Margin Distribution bound (and proof relies on very similar techniques)
- Tighter than min-margin bound (Theorem 6)
 - suggests that E-margin (not min-margin) dictates generalization error!
- Theorem 7 Compare voting classifiers: If voting classifier *f1* has larger E-margin and smaller E-margin error than another voting classifier (*f2*), then *f1* will have smaller generalization error
 - Is this true empirically?

E-margin Experiments

		Emargin	Emargin Error
Breast	AdaBoost	0.313	0.803
	arc-gv	0.281	0.909
Diabetes	AdaBoost	0.110	0.748
	arc-gv	0.049	0.759
German	AdaBoost	0.157	0.824
	arc-gv	0.034	0.780
Image	AdaBoost	0.196	0.610
	arc-gv	0.195	0.705
Ionosphere	AdaBoost	0.323	0.800
	arc-gv	0.131	0.577
Letter	AdaBoost	0.078	0.645
	arc-gv	0.063	0.958
Satimage	AdaBoost	0.133	0.521
	arc-gv	0.133	0.956
USPS	AdaBoost	0.108	0.972
	arc-gv	0.053	0.990
Vehicle	AdaBoost	0.129	0.737
	arc-gv	0.052	0.794
Wdbc	AdaBoost	0.350	0.581
	arc-gv	0.350	0.710

E-margin Experiments

		Emargin	Emargin Error	Test Error
Breast	AdaBoost	0.313	0.803	0.052
	arc-gv	0.281	0.909	0.057
Diabetes	AdaBoost	0.110	0.748	0.255
	arc-gv	0.049	0.759	0.256
German	AdaBoost	0.157	0.824	0.258
	arc-gv	0.034	0.780	0.261
Image	AdaBoost	0.196	0.610	0.023
	arc-gv	0.195	0.705	0.021
Ionosphere	AdaBoost	0.323	0.800	0.100
	arc-gv	0.131	0.577	0.106
Letter	AdaBoost	0.078	0.645	0.174
	arc-gv	0.063	0.958	0.178
Satimage	AdaBoost	0.133	0.521	0.053
	arc-gv	0.133	0.956	0.057
USPS	AdaBoost	0.108	0.972	0.450
	arc-gv	0.053	0.990	0.460
Vehicle	AdaBoost	0.129	0.737	0.297
	arc-gv	0.052	0.794	0.304
Wdbc	AdaBoost	0.350	0.581	0.035
	arc-gv	0.350	0.710	0.035

Summary

- Adaboost
 - Combine weak learners => excellent classifier
 - Does not seem to overfit
- Initial Margin bounds
 - based on margin distribution/min margin
 - make intuitive sense, but inconsistent with empirical results
- New Margin Bounds
 - complicated, but consistent with experiments

Initial Margin Bound

THEOREM 1. Let \mathscr{D} be a distribution over $X \times \{-1, 1\}$, and let S be a sample of m examples chosen independently at random according to \mathscr{D} . Assume that the base-classifier space \mathscr{H} is finite, and let $\delta > 0$. Then with probability at least $1 - \delta$ over the random choice of the training set S, every weighted average function $f \in \mathscr{C}$ satisfies the following bound for all $\theta > 0$:

$$\mathbf{P}_{\mathscr{D}}[yf(x) \le 0] \le \mathbf{P}_{S}[yf(x) \le \theta] + O\left(\frac{1}{\sqrt{m}}\left(\frac{\log m \log|\mathscr{H}|}{\theta^{2}} + \log(1/\delta)\right)^{1/2}\right).$$

Brief Proof Sketch (finite)

- \mathscr{C} : set of majority vote classifiers (MVC)
- Uniform MVC: $\mathscr{C}_N \doteq \left\{ f: x \mapsto \frac{1}{N} \sum_{i=1}^N h_i(x) \middle| h_i \in \mathscr{H} \right\}$
- *f* ∈ *C* induces distribution over *H* select *h* ∈ *H* from distribution to get *g* ∈ *C*_N
 Q is distribution over *C*_N induced by *f* ∈ *C*

Brief Proof Sketch (finite)

- \mathscr{C} : set of majority vote classifiers (MVC)
- Uniform MVC: $\mathscr{C}_N \doteq \left\{ f: x \mapsto \frac{1}{N} \sum_{i=1}^N h_i(x) \middle| h_i \in \mathscr{H} \right\}$
- $f \in \mathscr{C}$ induces distribution over \mathscr{H} - select $h \in \mathscr{H}$ from distribution to get $g \in \mathscr{C}_N$ - \mathscr{Q} is distribution over \mathscr{C}_N induced by $f \in \mathscr{C}$
- $\mathbf{P}[A] = \mathbf{P}[B \cap A] + \mathbf{P}[\overline{B} \cap A] \le \mathbf{P}[B] + \mathbf{P}[\overline{B} \cap A]$ $\mathbf{P}_{\mathscr{D}}[yf(x) \le 0] \le \mathbf{P}_{\mathscr{D}}[yg(x) \le \theta/2]$ $+ \mathbf{P}_{\mathscr{D}}[yg(x) > \theta/2, yf(x) \le 0]$

Brief Proof Sketch (finite) • $\mathbf{P}_{\mathscr{D}}[yf(x) \le 0] \le \mathbf{P}_{\mathscr{D}}[yg(x) \le \theta/2]$ $+ \mathbf{P}_{\mathscr{D}}[yg(x) > \theta/2, yf(x) \le 0]$

• This holds for all $g \in \mathscr{C}_N$ so we can take expectation and bound each term separately

•
$$\mathbf{P}_{\mathcal{D},g \sim \mathcal{Q}}[yg(x) \leq \theta/2]$$

- bound difference of empirical and test error for particular g and θ (Chernoff bound)
- union bound over (finite!)
- bound $\mathbf{P}_{S,g \sim \mathscr{Q}}[yf(x) \le \theta]$ by $\mathbf{P}_{S}[yf(x) \le \theta]$

$$\begin{split} & \text{Brief Proof Sketch (finite)} \\ \bullet \ \mathbf{P}_{\mathscr{D}}[yf(x) \leq 0] \leq \mathbf{P}_{\mathscr{D}}[yg(x) \leq \theta/2] \\ & + \mathbf{P}_{\mathscr{D}}[yg(x) > \theta/2, yf(x) \leq 0] \end{split}$$

- This holds for all $g \in \mathscr{C}_N$ so we can take expectation and bound each term separately
- $\mathbf{P}_{\mathcal{D},g\sim\mathcal{Q}}[yg(x) > \theta/2, yf(x) \le 0]$
 - Use fact that $f(x) = \mathbf{E}_{g \sim \mathscr{Q}}[g(x)]$ and apply Chernoff bound