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Motivation

® Critical Assumption: Samples for training are
drawn according to the target distribution.
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® Does not necessarily hold in practice!
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Sample Selection Bias: Only a biased sub-sample is
available for training. (Heckman ’79)




Example

Building a classifier to detect disease.

Features: age, weight, height, family history,
etc...

Labels: presence/absence of disease

Training Set: People who are voluntarily
tested.

Bias:Volunteers are probably at risk for the
disease! NOT representative of general
population.




Motivation

® Approach: Re-weight sample points to account for
bias.

® |mportant question we address:

® How do imperfections in re-weighting effect
algorithm accuracy!?

® Related questions:

® How well does the re-weighting reconstitute the
target distribution?

® How does one compare different re-weighting
algorithms!?




Sample Bias Correction

® Model bias with additional random variable s (as in
Zadrozny et al., 2003).
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® Using Bayes’ rule, we find re-weighting factors.
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® We will assume bias is independent of label.
Pr(s = 1]
Priz| = P
Dr[z] Pris = 1|z] D]/CM
N— ——

Wy




Estimate Performance

® How does our empirical estimate effect
performance!

Small error in distribution
weighting = large deviation in
hypothesis selection?

® Analysis follows two main steps:
® |ntroduction of distributional stability.

® Analysis of distributional stable algorithms,
under imperfect re-weighting.




Distributional Stability

® This definition is an extension of point-based
stability (Bousquet & Elisseeff, 2002).

Given divergence measure d and cost function ¢, an
algorithm is P-distributionally stable if for two
hypotheses hyy and hyyproduced by weighted
samples Syy and Syy- the following bound holds,

Vz € X X Y, ‘C(hV\UZ) - C(hW’72)| < ﬁd(W,W/)

® |mplies,

[R(hw) — R(hw)| < Bd(WV, W)




Distributional Stability

® What type of algorithms are distributional stable?
® First some definitions,

® sigma-admissible cost function:

c(h, z) —c(W, 2)| < olh(x) = W' ()

® bounded kernel function:

co>k>K(x,z), Ve e X
® define the maximum eigenvalue of the kernel
matrix as: Amax (K)




Distributional Stability

® We show that regularized kernel algorithms of the
type:

e

~ ~ 1
in Ryy(h) + A|h||%, where Ryy(h) = — Y wjc(h, z;
iy By (1) + Al where Byy(1) = 3 wie(h.

I\ Weight

he H

are stable, with the following coefficients: sensitive

empirical error.
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® The ¢1bound coincides with point-based stability.




Empirical Estimates

® How do we estimate re-weighting factors!?

® Make use of unlabeled data.

For example, partially
labeled sample: U
U = (xl,...,a’;n)

® One simple method, use counts (histogram).
Given sample, U = (x1,...,Z,)
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Empirical Estimates

® Other methods:
® Kernel Mean Matching (Huang et al.,, 2006)
® Discriminative Methods (Bickel et al., 2007)
® Density Estimation Methods
® Kernel Density Estimation
® | ogistic Regression

® However Note: No need to generalize, need to
reweight only training points.




WWeight Estimation Error

® For distinct point x equal to sampled point x;
define p(x;) = Pr[s = 1|x] andp(z;) = my/ny.

® Thus, perfectly and estimated re-weightings are

written (modulo constant).
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labeled points and B = max max(1/p(x;),1/p(x;))
then w.h.p. we show, ‘=1

L < B? log 2m/ + log%. I, < B’ log 2m’ + log%
- pon - ponm




Final Bound

® For any regularization algorithm based on L2 norm
and count-based weights, the following bounds

hold with probability (I - ).
_ o Kk* B? \/log 2m' + log 3
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® For kernel matrix with bounded eigenvalue, L2
based bound converges at least as fast.




Empirical Results

® We use several public regression data sets, and
artificially introduce bias into training sample.

DATA SET

U]

S| ntest UNWEIGHTED

IDEAL

CLUSTERED

ABALONE
BANKJ32NH
BANKSFM
CAL-HOUSING
CPU-ACT
CPU-SMALL
HOUSING
KINSNM
PUMASNH

2000 724 2177
4500 2384 3693
4499 1998 3693

16512 9511 4
4000 2400 41

|28
192

4000 2368 41

192

300 116 206

5000 2510 3192
4499 2246 3693

.654-
.903=
.085=
399
673
.682=
.009=
094
689

-.019
-.022
-.003
-.010

-.014
-.053
-.049
-.008

-.013

001
.610-
0582
360z
.023-
AT
.390=
.023-
674

=.032
-.044
-.001
-.009

=.080
=.097
-.003
-.045

-.019

.623-
6392
0682
3791
0082
408
4824
074
.641-

-.034
-.046
=.002
-.010

-.018
-.071
-.042
-.018

-.012

® Since we know exact cause of the (artificial) bias,
we can compare to ideal re-weighting.




Summary

Problem of sample selection bias occurs
often in practice in important applications.

We give general methods to measure
effectiveness of re-weighting methods.

Theory inspires new algorithms that work
well in practice.

Future work - Can we combine learning
and




Thank You!



Proofs

® | |-convergence of count-based estimate:

® Claim: with probability as least (I - 0)
simultaneously for all x,
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Proof: By Hoeffding’s inequality for fixed x,
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Proofs

® Note thatr, is a binomial r.v. with parameters
Prylz] = prandn.

9 —2ie” p =
Z e Ur[n ]

SZZ —2ie ( )px L —p.)"

= 2(1 = po(1 — e72))" < 2exp(—pyn(l — e72)).

® Using the factl — e™® > /2 forx € |0, 1| shows,
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Proofs

e Taking a union bound over the m'distinct points in
the training set completes the claim.

® Now to bound the L2 distance,

® Using the previous claim completes the proof.




