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Motivation
• Critical Assumption:  Samples for training are 

drawn according to the target distribution.

• Does not necessarily hold in practice!
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Sample Selection Bias: Only a biased sub-sample is 
available for training. (Heckman ’79)



Example
• Building a classifier to detect disease.

• Features: age, weight, height, family history, 
etc...

• Labels: presence/absence of disease

• Training Set: People who are voluntarily 
tested.

• Bias: Volunteers are probably at risk for the 
disease!  NOT representative of general 
population.



Motivation
• Approach: Re-weight sample points to account for 

bias. 

• Important question we address:

• How do imperfections in re-weighting effect 
algorithm accuracy?

• Related questions:

• How well does the re-weighting reconstitute the 
target distribution?

• How does one compare different re-weighting 
algorithms?



Sample Bias Correction
• Model bias with additional random variable s (as in 

Zadrozny et al., 2003).

• Using Bayes’ rule, we find re-weighting factors.

• We will assume bias is independent of label.
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Estimate Performance

• How does our empirical estimate effect 
performance?

• Analysis follows two main steps:

• Introduction of distributional stability.

• Analysis of distributional stable algorithms, 
under imperfect re-weighting.
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weighting = large deviation in 
hypothesis selection?



Distributional Stability
• This definition is an extension of point-based 

stability (Bousquet & Elisseeff,  2002).

• Given divergence measure d and cost function c, an 
algorithm is β-distributionally stable if for two 
hypotheses       and       produced by weighted 
samples       and       the following bound holds,

• Implies, 

hW hW′

SW′SW

|R(hW)−R(hW′)| ≤ βd(W,W ′)

∀z ∈ X × Y, |c(hW , z)− c(hW′ , z)| ≤ βd(W,W ′)



Distributional Stability
• What type of algorithms are distributional stable?

• First some definitions,

• sigma-admissible cost function:

• bounded kernel function:

• define the maximum eigenvalue of the kernel 
matrix as: 

|c(h, z)− c(h′, z)| ≤ σ|h(x)− h′(x)|

∞ > κ ≥ K(x, x), ∀x ∈ X

λmax(K)



Distributional Stability
• We show that regularized kernel algorithms of the 

type:

are stable, with the following coefficients:

• The    bound coincides with point-based stability.
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Empirical Estimates
• How do we estimate re-weighting factors?

• Make use of unlabeled data.

• One simple method, use counts (histogram).

Pr[s = 1|x] ≈ mx

nx
=

|{xi : xi = x, xi ∈ S}|
|{xi : xi = x, xi ∈ U}|

Given sample, U = (x1, . . . , xn)

U S
For example, partially 

labeled sample:
U = (x1, . . . , xn)



Empirical Estimates
• Other methods:

• Kernel Mean Matching (Huang et al., 2006)

• Discriminative Methods (Bickel et al., 2007)

• Density Estimation Methods

• Kernel Density Estimation

• Logistic Regression

• However Note:  No need to generalize, need to 
reweight only training points.



Weight Estimation Error
• For distinct point    equal to sampled point     

define                                and

• Thus, perfectly and estimated re-weightings are 
written (modulo constant).

• Define                                    ,      as # of distinct 
labeled points and 
then w.h.p. we show,
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Final Bound
• For any regularization algorithm based on L2 norm 

and count-based weights, the following bounds 
hold with probability (1 - δ).

• For kernel matrix with bounded eigenvalue, L2 
based bound converges at least as fast.
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Empirical Results
• We use several public regression data sets, and 

artificially introduce bias into training sample.

• Since we know exact cause of the (artificial) bias, 
we can compare to ideal re-weighting.



Summary

• Problem of sample selection bias occurs 
often in practice in important applications.

• We give general methods to measure 
effectiveness of re-weighting methods.

• Theory inspires new algorithms that work 
well in practice.

• Future work - Can we combine learning 
and 



Thank You!



Proofs
• L1-convergence of count-based estimate:

• Claim: with probability as least (1 - δ) 
simultaneously for all x,

• Proof: By Hoeffding’s inequality for fixed   ,
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Proofs
• Note that     is a binomial r.v. with parameters

                   and   .

• Using the fact                        for               shows,
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Proofs
• Taking a union bound over the     distinct points in 

the training set completes the claim.

• Now to bound the L2 distance,

• Using the previous claim completes the proof.
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