Sample Selection Bias Correction

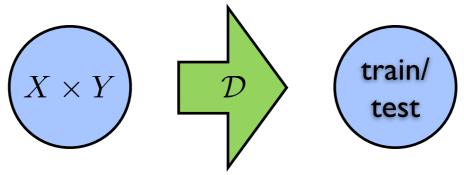
Afshin Rostamizadeh

Joint work with: Corinna Cortes, Mehryar Mohri & Michael Riley

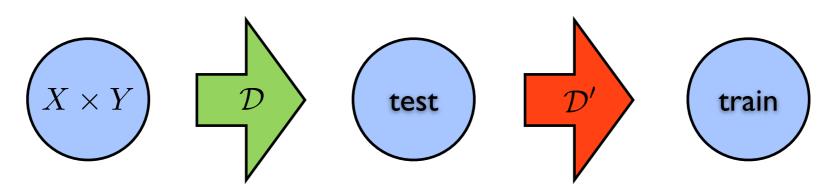
Courant Institute & Google Research

Motivation

• Critical Assumption: Samples for training are drawn according to the target distribution.



• Does not necessarily hold in practice!



Sample Selection Bias: Only a biased sub-sample is available for training. (Heckman '79)

Example

- Building a classifier to detect disease.
- Features: age, weight, height, family history, etc...
- Labels: presence/absence of disease
- Training Set: People who are voluntarily tested.
- Bias: Volunteers are probably at risk for the disease! NOT representative of general population.

Motivation

- Approach: Re-weight sample points to account for bias.
- Important question we address:
 - How do imperfections in re-weighting effect algorithm accuracy?
- Related questions:
 - How well does the re-weighting reconstitute the target distribution?
 - How does one compare different re-weighting algorithms?

Sample Bias Correction

Model bias with additional random variable s (as in Zadrozny et al., 2003).

$$\forall z \in X \times Y \qquad \Pr_{\mathcal{D}'}[z] = \Pr_{\mathcal{D}}[z|s=1]$$

• Using Bayes' rule, we find re-weighting factors.

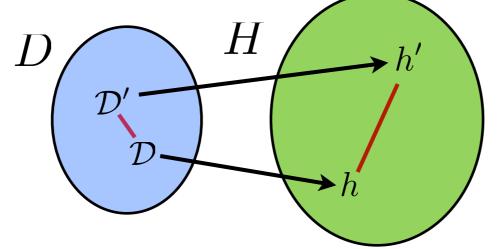
$$\Pr_{\mathcal{D}}[z] = \frac{\Pr[z|s=1]\Pr[s=1]}{\Pr[s=1|z]} = \frac{\Pr[s=1]}{\Pr[s=1|z]} \Pr[z]$$

• We will assume bias is independent of label.

$$\Pr_{\mathcal{D}}[z] = \frac{\Pr[s=1]}{\Pr[s=1|x]} \Pr_{\mathcal{D}'}[z]$$

Estimate Performance

• How does our empirical estimate effect performance?



Small error in distribution weighting = large deviation in hypothesis selection?

- Analysis follows two main steps:
 - Introduction of distributional stability.
 - Analysis of distributional stable algorithms, under imperfect re-weighting.

Distributional Stability

- This definition is an extension of point-based stability (Bousquet & Elisseeff, 2002).
- Given divergence measure d and cost function c, an algorithm is β -distributionally stable if for two hypotheses $h_{\mathcal{W}}$ and $h_{\mathcal{W}'}$ produced by weighted samples $S_{\mathcal{W}}$ and $S_{\mathcal{W}'}$ the following bound holds,

$$\forall z \in X \times Y, \ |c(h_{\mathcal{W}}, z) - c(h_{\mathcal{W}'}, z)| \le \beta d(\mathcal{W}, \mathcal{W}')$$

• Implies,

$$|R(h_{\mathcal{W}}) - R(h_{\mathcal{W}'})| \le \beta d(\mathcal{W}, \mathcal{W}')$$

Distributional Stability

- What type of algorithms are distributional stable?
- First some definitions,
 - sigma-admissible cost function:

$$|c(h,z) - c(h',z)| \le \sigma |h(x) - h'(x)|$$

• **bounded** kernel function:

$$\infty > \kappa \ge K(x, x), \ \forall x \in X$$

• define the maximum eigenvalue of the kernel matrix as: $\lambda_{\max}(\mathbf{K})$

Distributional Stability

We show that regularized kernel algorithms of the type:

 $\min_{h \in H} \widehat{R}_{\mathcal{W}}(h) + \lambda \|h\|_{K}^{2}, \text{ where } \widehat{R}_{\mathcal{W}}(h) = \frac{1}{m} \sum_{i=1}^{m} \frac{w_{i}c(h, x_{i})}{\sqrt{1-1}}$

sensitive

empirical error.

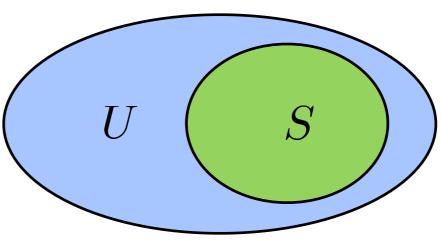
are stable, with the following coefficients:

• The ℓ_1 bound coincides with point-based stability.

Empirical Estimates

- How do we estimate re-weighting factors?
- Make use of unlabeled data.

For example, partially labeled sample: $U = (x_1, \dots, x_n)$



• One simple method, use counts (histogram).

Given sample, $U = (x_1, \ldots, x_n)$

$$\Pr[s=1|x] \approx \frac{m_x}{n_x} = \frac{|\{x_i : x_i = x, x_i \in S\}|}{|\{x_i : x_i = x, x_i \in U\}|}$$

Empirical Estimates

- Other methods:
 - Kernel Mean Matching (Huang et al., 2006)
 - Discriminative Methods (Bickel et al., 2007)
- Density Estimation Methods
 - Kernel Density Estimation
 - Logistic Regression
- However Note: No need to generalize, need to reweight only training points.

Weight Estimation Error

- For distinct point x equal to sampled point x_i define $p(x_i) = \Pr[s = 1|x]$ and $\hat{p}(x_i) = m_x/n_x$.
- Thus, perfectly and estimated re-weightings are written (modulo constant).

$$\mathcal{W}(x_i) = \frac{1}{m} \frac{1}{p(x_i)}$$
 $\widehat{\mathcal{W}}(x_i) = \frac{1}{m} \frac{1}{\hat{p}(x_i)}$

• Define $p_0 = \min_{x \in U} \Pr[x] \neq 0$, m' as # of distinct labeled points and $B = \max_{i=1,...,m} \max(1/p(x_i), 1/\hat{p}(x_i))$ then w.h.p. we show,

$$l_1 \le B^2 \sqrt{\frac{\log 2m' + \log \frac{1}{\delta}}{p_0 n}}, \ l_2 \le B^2 \sqrt{\frac{\log 2m' + \log \frac{1}{\delta}}{p_0 nm}}$$

Final Bound

 For any regularization algorithm based on L2 norm and count-based weights, the following bounds hold with probability (1 - δ).

$$|R(h_{\mathcal{W}}) - R(h_{\widehat{\mathcal{W}}})| \leq \frac{\sigma^2 \kappa^2 B^2}{2\lambda} \sqrt{\frac{\log 2m' + \log \frac{1}{\delta}}{p_0 n}}$$
$$|R(h_{\mathcal{W}}) - R(h_{\widehat{\mathcal{W}}})| \leq \frac{\sigma^2 \kappa \lambda_{\max}^{\frac{1}{2}}(\mathbf{K}) B^2}{2\lambda} \sqrt{\frac{\log 2m' + \log \frac{1}{\delta}}{p_0 n m}}.$$

• For kernel matrix with bounded eigenvalue, L2 based bound converges at least as fast.

Empirical Results

• We use several public regression data sets, and artificially introduce bias into training sample.

DATA SET	U	S	n_{test}	UNWEIGHTED	IDEAL	Clustered
ABALONE	2000	724	2177	$.654 {\pm} .019$	$.551 {\pm} .032$	$.623 {\pm} .034$
BANK32NH	4500	2384	3693	$.903 {\pm} .022$	$.610 {\pm} .044$	$.635 {\pm} .046$
BANK8FM	4499	1998	3693	$.085 {\pm} .003$	$.058 {\pm} .001$	$.068 {\pm} .002$
CAL-HOUSING	16512	9511	4128	$.395 {\pm} .010$	$.360 {\pm} .009$	$.375 {\pm} .010$
CPU-ACT	4000	2400	4192	$.673 \pm .014$	$.523 {\pm} .080$	$.568{\pm}.018$
CPU-SMALL	4000	2368	4192	$.682 {\pm} .053$	$.477 {\pm} .097$	$.408 {\pm} .071$
HOUSING	300	116	206	$.509 {\pm} .049$	$.390 {\pm} .053$	$.482 {\pm} .042$
kin8nm	5000	2510	3192	$.594 {\pm} .008$	$.523 {\pm} .045$	$.574 {\pm} .018$
puma8NH	4499	2246	3693	$.685 {\pm} .013$	$.674 {\pm} .019$	$.641 {\pm} .012$

 Since we know exact cause of the (artificial) bias, we can compare to ideal re-weighting.

Summary

- Problem of sample selection bias occurs often in practice in important applications.
- We give general methods to measure effectiveness of re-weighting methods.
- Theory inspires new algorithms that work well in practice.
- Future work Can we combine learning and

Thank You!

Proofs

- LI-convergence of count-based estimate:
 - Claim: with probability as least $(I \delta)$ simultaneously for all *x*,

$$\left|\Pr[s=1|x] - \frac{m_x}{n_x}\right| \le \sqrt{\frac{\log 2m' + \log \frac{1}{\delta}}{p_0 n}}$$

• **Proof:** By Hoeffding's inequality for fixed x,

$$\Pr_{U}\left[\left|\Pr[s=1|x] - \frac{m_{x}}{n_{x}}\right| \ge \epsilon\right]$$
$$= \sum_{i=1}^{n} \Pr_{x}\left[\left|\Pr[s=1|x] - \frac{m_{x}}{i}\right| \ge \epsilon \mid n_{x} = i\right] \Pr[n_{x} = i]$$
$$\leq \sum_{i=1}^{n} 2e^{-2i\epsilon^{2}} \Pr_{U}[n_{x} = i]$$

Proofs

• Note that n_x is a binomial r.v. with parameters $\Pr_U[x] = p_x$ and n.

$$2\sum_{i=1}^{n} e^{-2i\epsilon^{2}} \Pr_{U}[n_{x} = i]$$

$$\leq 2\sum_{i=0}^{n} e^{-2i\epsilon^{2}} {n \choose i} p_{x}^{i} (1 - p_{x})^{n-i} = 2(p_{x}e^{-2\epsilon^{2}} + (1 - p_{x}))^{n}$$

$$= 2(1 - p_{x}(1 - e^{-2\epsilon^{2}}))^{n} \leq 2\exp(-p_{x}n(1 - e^{-2\epsilon^{2}})).$$

• Using the fact $1 - e^{-x} \ge x/2$ for $x \in [0, 1]$ shows,

$$\Pr_{U}\left[\left|\Pr[s=1|x] - \frac{m_x}{n_x}\right| \ge \epsilon\right] \le 2e^{-p_x n\epsilon^2}$$

Proofs

- Taking a union bound over the m' distinct points in the training set completes the claim.
- Now to bound the L2 distance,

$$l_{2}^{2}(\mathcal{W},\widehat{\mathcal{W}}) = \frac{1}{m^{2}} \sum_{i=1}^{m} \left(\frac{1}{p(x_{i})} - \frac{1}{\hat{p}(x_{i})} \right)^{2}$$
$$= \frac{1}{m^{2}} \sum_{i=1}^{m} \left(\frac{p(x_{i}) - \hat{p}(x_{i})}{p(x_{i})\hat{p}(x_{i})} \right)^{2}$$
$$\leq \frac{B^{4}}{m} \max_{i} (p(x_{i}) - \hat{p}(x_{i}))^{2}.$$

• Using the previous claim completes the proof.