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Vhe HNVS € (X x V)™

err(h,S) < err(h, S) 4+ complexity(H )

~

Explicit trade-off in choice of H.
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° Empirical
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o Actual: R, (H) = Eg [9?{5]

® |[ntuitively, this measures the ability of a
hypothesis class to fit uniform random noise.

® (Can be measured from data, tighter bounds.
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® Rademacher Generalization Bounds (0/1 loss)

[Bartlett, Mendelson '01, Koltchinskii, Panchenko ‘00].
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® Rademacher Generalization Bounds (0/1 loss)

[Bartlett, Mendelson "0, Koltchinskii, Panchenko ‘00].

Vhe HVS € (X xY)™

err(h, S) <err(h,S) R (H) | \/log(l/é)

2

o CRITICAL Assumption: The sample must be
identically and independently distributed (i.i.d.).

2m
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Motivation

® |n practice data often contains dependencies. Here
we consider temporal dependancies:

® We assume the distribution to be mixing; implies
a dependence which weakens over time.

® Natural in the context of time-series analysis
(i.e. stock market quotes).

Nov 12, 2008: mmYHOO 10.34 EATT 23.93 = GOO0G 291
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Motivation

We MUST deal with non-i.i.d. data!

Often in practice, simply use algorithm designed for the
i.i.d. case. Many times, such algorithms still perform well

How can we justify/guarantee this performance!
Give generalization bounds that do NOT assume i.i.d. data!

Here we present general proof techniques useful for
mMIXing processes.

We extend useful properties of Rademacher complexity to
this non-i.i.d. setting.
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Definitions

® We quantify dependence with natural B-mixing
coefficient:

|[B-mixing| Let = Z;,- ___ be a stationary sequence of ran-

dom variables. Let o/ denote the o-algebra generated by the
random variables Z;, 1 < k < 3. The (-mixing coeflicient of
the stochastic process is defined as

B(k) = sup peon_ { sup |Pr|A | B] — Pr[A]H.

n AEUfﬁ_k

Mixing implies:

|Pr[B\A] _Pr[B] > |Pr[B\A] — Pr[B]
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Proof Strategy

® Reduce dependent scenario to the independent case.

® |f we introduce gaps in the sequence, can we treat the

blocks as independent!? q 2aU = m

> St

| 3 .. H

® [-mixing assumption allows us to exactly bound this
approximation.

Lemma [Yu, ‘94| Let Sy be defined as above and let h be a
function of Sy that is bounded by M and then,

Esylh] = Eg, [hl] < (0w —=1)M5(a)

where Eg, (resp. Eg ) denotes the expectation with respect to
the dependent (resp. independent) block sequence.
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® |ni.i.d. case,apply McDiarmid’s inequality to:

®(S) = sup R(h) — Rs(h)
hec H
where,

7/

S

R(h) = Es[Rs(h)]

® We apply it to i.i.d. blocks, extending H in a natural
way.

Define h,(B) = = Y7, h(z;) for any block B = (21,...,24) €
1=1

a

7%, and define H, as the set of all block-based hypotheses h,
generated from h € H.
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Preparation Step

® Re-write in terms of blocks: e =e—Eg [P(S0)

Pr(@(S) > ¢ = P;r[s%p(R(h) — Rg(h)) > €

P A= W) €| (def. of Rs(h))

(R(h)—fiso (h)

= Pr|sup 5

h
D(Sy) + D(51) > 2¢€] (def. of ®)

D(Sy) > €| + EI[CI)(Sl) > € (union bound)

D(Sy) > € (stationarity)

D(So) — Eg [®(S0)] > €]. (def. of €)
® Obtain independent blocks, using Yu’s Lemma:

[@(Sy) — Eg, [®(Sh)] > €] < QET[(I’(go) — Eg, [®(S0)] > €]+ 2(n — 1)B(a)
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Concentration Bound

® Now, apply McDiarmid’s inequality to i.i.d. blocks:

Changing a block 7y, of the sample S can change ®(S) by
at most %\h(Zk) < M/u and by McDiarmid’s inequality, the
following holds for any € > 2(u — 1) M B(a):

~

B, [®(50)] > ¢’

o (s
1=1

® So far, we have:

—9 /2
I;I[CI)(S) > ¢] < 2exp ( He
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® TJo make the bound useful, we must bound the
expectation (over i.i.d. blocks):

B3, [#(50)] <Eg, 5 [sup Ry, (h) - R, (h)

1 — ~
=Ez & | sup — h,(Z;) — hg, Z;] det. of R
T ) SLRCARNCA (et of B

] M
=FE:s & sup — oi(ho(Z;) — ho(Z] } Rad. var.’s
S0,5q,0 b cH. ; ( ( ) ( )) ( )

— 1 //L
<E3,.5.0 hjlelga I ; Uiha(Zi)}

1 H
+ Ez & J{ sup — oihe(Z. } prop. of sup
So.8pr |, 5D 2 ha(Z) ( |

|
=2Eg_, { sup — Z aiha(Zz-)} .

ha€Ha F 5
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® Would like complexity of H not H:

a

2 2 e 1 Z-
E§0,0'|: sup — E Jiha(Zi)} =Eg, , {Sup — E oi E h(z§ >)}
—

ha€Ha H 5 heH I
® Almost, looks like Rad. comp. but G’s are shared.

(reversing order of sums)
(convexity of sup)

(marginalization)

D Denotes
i.i.d. distribution
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Bound So Far

® We have a bound in terms of the Rad. complexity.

With probability at least 1 — 6 and ¢’ =6 — 2(u — 1)58(a), the
following inequality holds for all hypotheses h € H:

® Would like bounds in terms of empirical
Rademacher complexity. It has many benefits:

® (Can be measured from data (tighter bounds).

® Can be related to other complexity measures
(e.g.VC-dimension).

® Can be bounded for specific hypotheses.
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Bound So Far

® Using similar techniques, we can show 9%/13 is close
toRg,:

With probability at least 1 —9 and ¢’ =9§/2—2(u—1)B(a), the
following inequality holds for all hypotheses h € H:

log 2 =

R(h) < Rg(h) +9%S (H) +3M\/ ,

® Kernel hypotheses bounds [Bartlett, Mendelson 011:

In the case of classification with hypotheses based on a ker-
nel K and a weight vector w bounded by B, |[w| < B, the
empirical Rademacher complexity can be bounded as follows

%S <2B /
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Classification Bound

With probability at least 1 — 0, the following inequality holds
for all hypotheses h € H:

Prlyh(x) < 0]

where ¢’ = 6/2 — 2(u — 1)8(a), and K is the Gram matrix of
the kernel K for the sample S.

® Now, we need to appropriately choose the
parameters a and [.

. o o . —Tr
e If we assume algebraic mixing, 5(a) := Boa™",
one suitable choice:
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A Complete Bound

Assuming that the sample is drawn from a stationary alge-
braically (-mixing distribution, 8(a) = (pa™", the following
bound holds,

8Rm™ 2
T | Sm”\/ log —

P 0’

1) and 6’ = 6/2— Bom .

® Asr — ocand By — 0 (i.e.the i.i.d. scenario is
approached), this bound has the same asymptotic
behavior as the i.i.d. bound.
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Summary

Have given the first data-dependent bounds for a
non-i.i.d. scenario.

First known margin-based classification bounds
(can be extended to regression as well).

Can easily extend bounds to other complexity
measures via Rademacher complexity.

Future work:

® Can we make use of the entire sample to
computer empirical Rademacher complexity?

® Can we strictly generalize the i.i.d. bound!?




