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êrr(h, S)
?≈ ES [êrr(h, S)] = err(h, S)

∀h ∈ H,∀S ∈ (X × Y )m

err(h, S) ≤ êrr(h, S) + complexity(H)
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• One natural measure, Rademacher Complexity.

• Define Rademacher r.v. as: 

• Empirical:

• Actual: 

• Intuitively, this measures the ability of a 
hypothesis class to fit uniform random noise.

• Can be measured from data, tighter bounds.
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Pr(σi = ±1) = 1/2
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Background

• Rademacher Generalization Bounds (0/1 loss) 
[Bartlett, Mendelson ’01, Koltchinskii, Panchenko ‘00]:

• CRITICAL Assumption:  The sample must be 
identically and independently distributed (i.i.d.).

err(h, S) ≤ êrr(h, S) +
R̂S(H)

2
+

√
log(1/δ)

2m

∀h ∈ H,∀S ∈ (X × Y )m
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Motivation
• In practice data often contains dependencies. Here 

we consider temporal dependancies:

• We assume the distribution to be mixing; implies 
a dependence which weakens over time.

• Natural in the context of time-series analysis  
(i.e. stock market quotes).
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Motivation

• We MUST deal with non-i.i.d. data!

• Often in practice, simply use algorithm designed for the 
i.i.d. case.  Many times, such algorithms still perform well

• How can we justify/guarantee this performance?

• Give generalization bounds that do NOT assume i.i.d. data!

• Here we present general proof techniques useful for 
mixing processes.

• We extend useful properties of Rademacher complexity to 
this non-i.i.d. setting.
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Definitions

• We make the standard assumption of Stationarity. 

[Stationarity] A sequence of random variables = Zt
∞
t=−∞ is

said to be stationary if for any t and non-negative integers m
and k, the random vectors (Zt, . . . , Zt+m) and (Zt+k, . . . , Zt+m+k)
have the same distribution.

A B A B=
P(xt = B|xt−s = A) P(xt+k = B|xt−s+k = A)

A B

P(xt+k = B|xt−s+l = A)

!= (relative distance matters)



Definitions



Definitions
• We quantify dependence with natural β-mixing 

coefficient:

[β-mixing] Let = Zt
∞
t=−∞ be a stationary sequence of ran-

dom variables. Let σj
i denote the σ-algebra generated by the

random variables Zk, i ≤ k ≤ j. The β-mixing coefficient of
the stochastic process is defined as

β(k) = sup
n

B∈σn
−∞

[
sup

A∈σ∞n+k

∣∣∣Pr[A | B]− Pr[A]
∣∣∣
]
.



Definitions
• We quantify dependence with natural β-mixing 

coefficient:

[β-mixing] Let = Zt
∞
t=−∞ be a stationary sequence of ran-

dom variables. Let σj
i denote the σ-algebra generated by the

random variables Zk, i ≤ k ≤ j. The β-mixing coefficient of
the stochastic process is defined as

β(k) = sup
n

B∈σn
−∞

[
sup

A∈σ∞n+k

∣∣∣Pr[A | B]− Pr[A]
∣∣∣
]
.

A B A B
∣∣∣ Pr[B|A]− Pr[B]

∣∣∣
∣∣∣ Pr[B|A]− Pr[B]

∣∣∣≥

Mixing implies:
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Proof Strategy
• Reduce dependent scenario to the independent case.

• If we introduce gaps in the sequence, can we treat the 
blocks as independent?

• β-mixing assumption allows us to exactly bound this 
approximation.

S S0

a

1 2 3 μ...

2aμ = m

Lemma [Yu, ‘94] Let S0 be defined as above and let h be a
function of S0 that is bounded by M and then,

|ES0 [h]− ES̃0
[h]| ≤ (µ− 1)Mβ(a) ,

where ES0 (resp. ES̃0
) denotes the expectation with respect to

the dependent (resp. independent) block sequence.
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Proof Strategy

• In i.i.d. case, apply McDiarmid’s inequality to:

where,

• We apply it to i.i.d. blocks, extending H in a natural 
way.

Φ(S) = sup
h∈H

R(h)− R̂S(h)

R̂S(h) =
1
m

m∑

i=1

h(zi) R(h) = ES [R̂S(h)]

Define ha(B) = 1
a

∑a
i=1 h(zi) for any block B = (z1, . . . , za) ∈

Za, and define Ha as the set of all block-based hypotheses ha

generated from h ∈ H.
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Preparation Step
• Re-write in terms of blocks:

• Obtain independent blocks, using Yu’s Lemma:

Pr
S

[Φ(S) > ε] = Pr
S

[sup
h

(R(h)− R̂S(h)) > ε]

= Pr
S

[
sup

h

(
R(h)− bRS0 (h)
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2

)
> ε

]
(def. of R̂S(h))

≤ Pr
S
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≤ Pr
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[Φ(S1) > ε] (union bound)

= 2Pr
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[Φ(S0) > ε] (stationarity)

= 2Pr
S0

[Φ(S0)− ES̃0
[Φ(S̃0)] > ε′]. (def. of ε′)

2 Pr
S0

[Φ(S0)− ES̃0
[Φ(S̃0)] > ε′] ≤ 2 Pr

S̃0

[Φ(S̃0)− ES̃0
[Φ(S̃0)] > ε′] + 2(µ− 1)β(a)

ε′ = ε− ES̃0
[Φ(S̃0)]



Concentration Bound



Concentration Bound

• Now, apply McDiarmid’s inequality to i.i.d. blocks:



Concentration Bound

• Now, apply McDiarmid’s inequality to i.i.d. blocks:

Changing a block Z̃k of the sample S̃0 can change Φ(S̃0) by
at most 1

µ |h(Z̃k)| ≤ M/µ and by McDiarmid’s inequality, the
following holds for any ε > 2(µ− 1)Mβ(a):

Pr
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Concentration Bound

• Now, apply McDiarmid’s inequality to i.i.d. blocks:

• So far, we have:

Changing a block Z̃k of the sample S̃0 can change Φ(S̃0) by
at most 1

µ |h(Z̃k)| ≤ M/µ and by McDiarmid’s inequality, the
following holds for any ε > 2(µ− 1)Mβ(a):

Pr
S̃0

[Φ(S̃0)− ES̃0
[Φ(S̃0)] > ε′]

≤ exp
(

−2ε′2
∑µ

i=1(M/µ)2

)
= exp

(
−2µε′2

M2

)

Pr
S

[Φ(S) > ε] ≤ 2 exp
(
−2µε′2

M2

)
+ 2(µ− 1)β(a),
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• To make the bound useful, we must bound the 

expectation (over i.i.d. blocks):

ES̃0
[Φ(S̃0)] ≤ES̃0,S̃′

0
[ sup
h∈H

R̂S̃′
0
(h)− R̂S̃0

(h)]

=ES̃0,S̃′
0

[
sup

ha∈Ha

1
µ

µ∑

i=1

ha(Zi)− ha(Z ′
i)

]
(def. of R̂)

=ES̃0,S̃′
0,σ

[
sup

ha∈Ha

1
µ

µ∑

i=1

σi(ha(Zi)− ha(Z ′
i))

]
(Rad. var.’s)

≤ES̃0,S̃′
0,σ

[
sup

ha∈Ha

1
µ

µ∑

i=1

σiha(Zi)
]

+ ES̃0,S̃′
0,σ

[
sup

ha∈Ha

1
µ

µ∑

i=1

σiha(Z ′
i)

]
(prop. of sup)

=2ES̃0,σ

[
sup

ha∈Ha

1
µ

µ∑

i=1

σiha(Zi)
]
.
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• Would like complexity of H not Ha:

• Almost, looks like Rad. comp. but σ’s are shared.
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[
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a
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j=1

2
µ
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(reversing order of sums)

≤1
a
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j=1

ES̃0,σ
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sup
h∈H

2
µ
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(convexity of sup)

=
1
a

a∑

j=1

ES̃j
0 ,σ
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sup
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2
µ
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j )
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(marginalization)
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D̃     Denotes 

i.i.d. distribution
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2
µ
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Bound So Far
• We have a bound in terms of the Rad. complexity.

• Would like bounds in terms of empirical 
Rademacher complexity. It has many benefits:

• Can be measured from data (tighter bounds).

• Can be related to other complexity measures 
(e.g. VC-dimension).

• Can be bounded for specific hypotheses.

With probability at least 1− δ and δ′ = δ − 2(µ− 1)β(a), the
following inequality holds for all hypotheses h ∈ H:

R(h) ≤ R̂S(h) + RD̃
µ (H) + M

√
log 2

δ′
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With probability at least 1− δ and δ′ = δ/2−2(µ−1)β(a), the
following inequality holds for all hypotheses h ∈ H:
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Bound So Far
• Using similar techniques, we can show       is close 

to       :

• Kernel hypotheses bounds [Bartlett, Mendelson ‘01]:

RD̃
µ

R̂Sµ

In the case of classification with hypotheses based on a ker-
nel K and a weight vector w bounded by B, ‖w‖ ≤ B, the
empirical Rademacher complexity can be bounded as follows:
R̂Sµ(H) ≤ 2B

µ

√
[K]

With probability at least 1− δ and δ′ = δ/2−2(µ−1)β(a), the
following inequality holds for all hypotheses h ∈ H:

R(h) ≤ R̂S(h) + R̂Sµ(H) + 3M

√
log 2

δ′

2µ
,
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Let H be the set of hypotheses{
(x, y) ∈ Z "→ y

∑m
i=1 αiK(xi, x) :

∑m
i,j=1 αiαjK(xi, xj) ≤ 1

}
.

Let R̂ρ
S(h) denote the average amount by which yih(xi) deviates

from the margin ρ: R̂ρ
S(h) = 1

m

∑m
i=1(ρ− yih(xi))+.

ρ

1

h(x)

(ρ− yh(x))
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With probability at least 1 − δ, the following inequality holds
for all hypotheses h ∈ H:

Pr[yh(x) ≤ 0] ≤ 1
ρ
R̂ρ

S(h) +
4
µρ

√
[K] + 3

√
log 2

δ′

2µ
,

where δ′ = δ/2 − 2(µ − 1)β(a), and K is the Gram matrix of
the kernel K for the sample S.
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Classification Bound

• Now, we need to appropriately choose the 
parameters a and μ.

• If we assume algebraic mixing,                       ,   
one suitable choice: 

µ =
m

2r+1
2r+4

2

β(a) := β0a
−r

With probability at least 1 − δ, the following inequality holds
for all hypotheses h ∈ H:
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ρ
R̂ρ

S(h) +
4
µρ

√
[K] + 3

√
log 2

δ′

2µ
,

where δ′ = δ/2 − 2(µ − 1)β(a), and K is the Gram matrix of
the kernel K for the sample S.
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A Complete Bound
Assuming that the sample is drawn from a stationary alge-
braically β-mixing distribution, β(a) = β0a−r, the following
bound holds,

Pr[yh(x) ≤ 0] ≤ 1
ρ
R̂ρ

S(h) +
8Rmγ1

ρ
+ 3mγ2

√
log

2
δ′

,

where γ1 = 1
2

(
3

r+2−1
)
, γ2 = 1

2

(
3

2r+4−1
)

and δ′ = δ/2−β0mγ1 .



A Complete Bound

• As             and              (i.e. the i.i.d. scenario is 
approached), this bound has the same asymptotic 
behavior as the i.i.d. bound.

β0 → 0r →∞

Assuming that the sample is drawn from a stationary alge-
braically β-mixing distribution, β(a) = β0a−r, the following
bound holds,

Pr[yh(x) ≤ 0] ≤ 1
ρ
R̂ρ

S(h) +
8Rmγ1

ρ
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√
log

2
δ′

,

where γ1 = 1
2

(
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)
, γ2 = 1

2

(
3

2r+4−1
)

and δ′ = δ/2−β0mγ1 .
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Summary
• Have given the first data-dependent bounds for a 

non-i.i.d. scenario.

• First known margin-based classification bounds 
(can be extended to regression as well).

• Can easily extend bounds to other complexity 
measures via Rademacher complexity.

• Future work:

• Can we make use of the entire sample to 
computer empirical Rademacher complexity?

• Can we strictly generalize the i.i.d. bound?


