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Introduction

® In a learning task, there is a relationship between
® complexity of the class of functions
® |earning algorithm’s generalizability

® Measures of complexity of a class of functions:
® VC dimension,VC entropy
® Covering numbers, Fat-shattering dimensions
® Rademacher complexity

® Typical form of a generalization bound:

R(h) < }/%(h) + f(complexity of class of functions, m)

(Risk) (Training error)  (a function that approaches 0 as m approaches infinity)




This Lecture

® Definition of Rademacher complexity.
® Technical tool: McDiarmid’s inequality.

® Generalization bounds.




Rademacher Complexity

® Empirical Rademacher complexity: Given a training sample
S ={x1,...,%m},and a hypotheses set [, the “empirical
Rademacher complexity” of H, is defined as:

ma:X - E O-’L xz
heH m

where o = (0'1,...,O'm),0'z' c {—1,‘|‘1}- h:X— [07 1]

Ry (H) =

® Notes:
® sample dependent complexity measure.
® can be computed.

® measures how well correlated the most-correlated
hypothesis is to a random labeling of points in 5.




Rademacher Complexity

® Rademacher complexity (of H):
R(H) =Egs |R,,(H)| .




McDiarmid’s Inequality

® Theorem:Let X1,...,X,, beindependent random variables
all taking values in the set X. Furtherlet f : X" +— R bea
function of X1, ..., X}, that satisfies Vi,Vzq,...,2,,,2; € X,
f(z1y. sy m) — [, 2l o )| < 6

Then for all € > 0,

Pr|f — E[f] > €] §exp(

—9¢?

21'11 sz

McDiarmid’89.

e Corollary:For X; € [a;,b;], f==>" X, ¢ = biza;

m

2, 2

Pr(f —E[f] > e <exp (srto™ ).
Hoeffding’s Inequality




Generalization Bound

® Consider the random variable:

#(S) = sup{R(h) — Rs(h)}.

he H

® Let 5.5 be two training samples that differ in one point.

® To apply McDiarmid’s inequality, need to bound:

o 16(S)— 4(S")] 1
easy to show that: |¢(S) — ¢(5")| < —.

® [g[p(5)]: we use a‘“‘symmetrization” type step to show
(next slide):

. E[¢(S)] < R(H).




Bound on the Expectation

Es|o(S)]

Es[sup{R(h) — ﬁs(h)}] (by definition)
heH
- D -~ . (writing R(h) as an
Es | SUp {ES' -RS' (h)] o Rs(h) } expectation
heH g )
Es[sup{Es:[Rs (h) = Rs(h)]}]
he H
ES,S’ [SU.p{RS/ (h) — Rs(h)}] (concavity of sup)
he H
1"
E ' & | SU — azha:; —h:lji
S,5", Leg{mz (h(z;) — h( ))H
(introducing g )
2, su o;h(x;
. hGIE)I Z }




Generalization Bound

® Forall 0 > 0, with probability at least 1 — 0, Vh € H,

R(h) < Bs(h) + ROH) + | — log(1/6).

2m

® Proof: From McDiarmid’s inequality, we know:
Pr[p(S) — R(H) > €] < exp (—2¢°m)
Setting = exp(—2¢°m), and solving, we get the result.
® Question: How to bound R(H )?
® Use McDiarmid’s inequality again!

® Forasample S ={x1,...,2%,,},define

P(S) = R(H) — Ry (H).
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Generalization Bound

® To use McDiarmid’s inequality, once again, use:
o E[)(S5)] = 0. (by definition)
o [¥(5) — (Y

o Let 8" =85\ {z;} U{z}}.

B(S) - (S < EJ[Q max {o; (h(z;) — I(2;))}

™M heH

Y
< =
m

® Applying McDiarmid’s inequality with these bounds yields
Vo > 0, with probability at least 1 — 0,

R(H) < By, (H) + \/ % In(1/6)
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Generalization Bound

® Theorem:For all 0 > 0, with probability at least 1 — 0, Vh € H,

R(h) < Rg(h) + R (H) + C\/% In(2/9),

where C' = V2 +1/V/2.
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Handling Classification

® Let G beaclass of functionss.t. Vg € G, g : X — {—1,+1}.

1 — x
® Consider [,(z) = yzg(x).CIear that Vo € X, l4(z) € [0,1].
® Observe [,(x) =1 (=)errorand [,(x) =0 (=)no error.

® letig=1{l,|9ecd}.

5 2 & 1 yig(x
R(lg) = E, sup—Zaq; yg(a?)}

9€9 T i 2

_ 2~ oig(x;
= [E, Sungg@)}

geG M= 2

9)

2

® Plug into previous bound.




Margin-based Bound

® Recall that the generalization bound for SVMs depends on
margin (which has a geometric interpretation for SVMs).

® Another, non-geometric notion of margin:

Say the learning algorithm produces | : X — R.

Consider the hypothesis g 2 sign(f).

A
Define “margin” p = miny, f(x).
xEeS

Truncated Hinge Loss: 77 : X — R
I7(-) is 1/p Lipschitz.

—5

0 P Y f ()
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Margin-based Bound

Let  be a family of functions, 7 = {y, f(x)}.

Define training and test errors:

R(lr) = Eznp 7 (Yo f(2))] ZZT yi f(2i))
We showed that:
R(lr) < R(ZT) + R, \/m In(2/6).

Claim: R,,,(I7(F)) <
Proof:

® Talagrand’s Contraction Lemma:Let ¢ : R — IR, such that
¢(0) = 0 and ¢ is \-Lipschitz. Then,

%Zm‘@ o h)(xz)} < R, (F).
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Rademacher Bound for Kernels

® |et H be a set of linear hypothesis in an RHKS.
Vhe H,h:x— w-dx),||lw|| <Q¢: X —RY,

® How do we bound E (H)?
R(H) = E,| sup —Zazw (bxz)]

| wll<@ T

20
Eo _ZHU'L gen ]

I

=1 5=1

m 1/2

QQ(T;[—[l(])l/Q

1/27
— %EU (ZZO‘ZO'J (i, xj)

® Thus, R,,(H) <

I5
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Rademacher Bound for Kernels

® If weassume |[¢(2)] < R, then Tx[K] < mR?.

— 20R
R,, < —
® Thus, (H) N
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Rademacher Bound with VC-dim.

® For simplicity, consider the finite hypothesis set case.

 letf: X — [-M M|, F={f},|F| < oc.

o |let A=L,

® Claim: eXp(tA) < ’f‘ eXp(tzMzm/Q). (proof on next slide)

— 2log | F
® Then, mR,,(F) < O%’ ‘+tM2m.

— 2log | F
® Choose best t to get R,,(F) < 2M\/ o8 |7 .
m
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Proof of Claim
I}lea}c;mf(:vi)] :

® Claim: exp(tA) < |F|exp(t*M?m/2).

)

A=E,

® Proof:
exp(tA) = exp | tE,

|\
=
q

|\
=
q

ZeXp (t | Uz'f(il%:)>

exp <t I}lea;czaif (in))
= E, rflea}(exp <tZZ:sz(37z)>

feF

Z HEUi lexp (o f(xi))]

feF 1

IA

18

18



Proof of Claim

exp(tA) < Y]] Eo [exp(toif(x))]

feEF i

> [ exp(t?M?)2)

fEF i
= Zexp(t2M2m/2)
ferF
| Flexp(t*M*m/2)

IA

VAN

log | F|  tM?*m
=+ 5

® Plugging in the best value of 7, we obtain:

_ 21
Ron(F) < 2M\/ Oim.

® Thus, A<




Rademacher Bound with VC-dim.

d
® |[f F hasVC-dimension d, then distinct functions at most (26m> .

d
2
® Thus, log|F] <d10g( em>.

d
® And so, we obtain the following bound:

2
<2M\/log em
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