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Introduction

• In a learning task, there is a relationship between

• complexity of the class of functions

• learning algorithm’s generalizability

• Measures of complexity of a class of functions:

• VC dimension, VC entropy

• Covering numbers, Fat-shattering dimensions

• Rademacher complexity

• Typical form of a generalization bound:

R(h) ≤ R̂(h) + f(complexity of class of functions, m)
(Risk) (Training error) (a function that approaches 0 as m approaches infinity)
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This Lecture

• Definition of Rademacher complexity.

• Technical tool: McDiarmid’s inequality.

• Generalization bounds.
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Rademacher Complexity

• Empirical Rademacher complexity: Given a training sample
                           , and a hypotheses set    , the “empirical 
Rademacher complexity” of    , is defined as:

where 

• Notes:

• sample dependent complexity measure.

• can be computed.

• measures how well correlated the most-correlated 
hypothesis is to a random labeling of points in   .
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S = {x1, . . . , xm} H

H

Rm(H) = Eσ

[

max
h∈H

2

m

m
∑

i=1

σih(xi)

]

σ = (σ1, . . . , σm), σi ∈ {−1, +1}.

S

h : X !→ [0, 1]
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Rademacher Complexity

• Rademacher complexity (of     ): 
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H

R(H) = ES

[

Rm(H)
]

.
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McDiarmid’s Inequality

• Theorem: Let                     be independent random variables 
all taking values in the set    . Further, let                     be a 
function of                     that satisfies 

Then for all         , 

• Corollary: For                   ,                           ,                 .

6

X1, . . . , Xm

X f : X
m

!→ R

X1, . . . , Xm ∀i,∀x1, . . . , xm, x′

i ∈ X ,

|f(x1, . . . , xi, . . . , xm) − f(x1, . . . , x
′

i, . . . , xm)| ≤ ci.

Pr [f − E[f ] ≥ ε] ≤ exp

(

−2ε2
∑m

i=1
c2
i

)

.

ε > 0

Xi ∈ [ai, bi] f =
1

m

∑m

i=1
Xi ci =

bi−ai

m

Pr [f − E[f ] ≥ ε] ≤ exp
(

−2ε
2
m

2

P

m

i=1
(bi−ai)2

)

.

Hoeffding’s Inequality

McDiarmid’89.
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Generalization Bound

• Consider the random variable:

• Let          be two training samples that differ in one point.

• To apply McDiarmid’s inequality, need to bound:

•                       :
easy to show that:

•               : we use a “symmetrization” type step to show 
(next slide):

•  
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φ(S) = sup
h∈H

{R(h) − R̂S(h)}.

S, S′

|φ(S) − φ(S′)|

ES [φ(S)]

|φ(S) − φ(S′)| ≤
1

m
.

E[φ(S)] ≤ R(H).
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Bound on the Expectation
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ES [φ(S)] = ES [ sup
h∈H

{R(h) − R̂S(h)}]

= ES [ sup
h∈H

{ES′ [R̂S′(h)] − R̂S(h)}]

= ES [ sup
h∈H

{ES′ [R̂S′(h) − R̂S(h)]}]

≤ ES,S′ [ sup
h∈H

{R̂S′(h) − R̂S(h)}]

= ES,S′,σ

[

sup
h∈H

{
1

m

m∑

i=1

σi(h(x′

i) − h(xi))

}]

≤ 2Eσ,S

[
1

m
sup
h∈H

m∑

i=1

σih(xi)

]

= R(H).

(by definition)

(writing R(h) as an 
expectation)

(concavity of sup)

(introducing      )σi

8



Generalization Bound

• For all            with probability at least

• Proof: From McDiarmid’s inequality, we know:

Setting                             and solving, we get the result.

• Question: How to bound          ?

• Use McDiarmid’s inequality again!

• For a sample                             , define
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δ > 0, 1 − δ,∀h ∈ H,

R(h) ≤ R̂S(h) + R(H) +

√
1

2m
log(1/δ).

Pr[φ(S) − R(H) ≥ ε] ≤ exp
(

−2ε2m
)

δ = exp(−2ε2m),

R(H)

S = {x1, . . . , xm}

ψ(S) = R(H) − Rm(H).
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Generalization Bound

• To use McDiarmid’s inequality, once again, use:

•  

•  

• Let

• Applying McDiarmid’s inequality with these bounds yields
            with probability at least 
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E[ψ(S)] = 0. (by definition)

|ψ(S) − ψ(S′)|

S
′
= S \ {xj} ∪{ x

′

j}.

ψ(S) − ψ(S′) ≤ Eσ

[

2

m
max
h∈H

{σj(h(xj) − h′(xj))}

]

≤
2

m
.

R(H) ≤ Rm(H) +

√

2

m
ln(1/δ)

∀δ > 0, 1 − δ,
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Generalization Bound

• Theorem: For all            with probability at least

where 
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δ > 0, 1 − δ,∀h ∈ H,

R(h) ≤ R̂S(h) + Rm(H) + C

√
1

m
ln(2/δ),

C =
√

2 + 1/
√

2.
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Handling Classification

• Let     be a class of functions s.t.                                          . 

• Consider                                 Clear that 

• Observe                        error and                        no error.

• Let

• Plug into previous bound.
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G ∀g ∈ G, g : X #→ {−1, +1}

lg(x) =
1 − yxg(x)

2
. ∀x ∈ X, lg(x) ∈ [0, 1].

lg(x) = 1 (⇒) lg(x) = 0 (⇒)

lG = {lg | g ∈ G}.

R(lG) = Eσ

[

sup
g∈G

2

m

m
∑

i=1

σi

1 − yig(xi)

2

]

= Eσ

[

sup
g∈G

2

m

m
∑

i=1

σig(xi)

2

]

=
R(G)

2
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Margin-based Bound

• Recall that the generalization bound for SVMs depends on 
margin (which has a geometric interpretation for SVMs).

• Another, non-geometric notion of margin:

• Say the learning algorithm produces

• Consider the hypothesis

• Define “margin”

• Truncated Hinge Loss:
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f : X !→ R.

g
!
= sign(f).

ρ
!
= min

x∈S
yxf(x).

yxf(x)ρ0

1

lT : X !→ R

lT (·) 1/ρis        Lipschitz.
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Margin-based Bound

• Let     be a family of functions, 

• Define training and test errors:

• We showed that: 

• Claim:

• Proof:

• Talagrand’s Contraction Lemma: Let                   such that
               and    is   -Lipschitz. Then, 
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F F = {yxf(x)}.

R(lT ) = Ex∼D [lT (yxf(x))] , R̂(lT ) =
1

m

m∑

i=1

lT (yif(xi)).

R(lT ) ≤ R̂(lT ) + Rm(lT (F)) +

√
2

m
ln(2/δ).

Rm(lT (F)) ≤
2Rm(F)

ρ
.

φ : R !→ R,
φ(0) = 0 φ λ

∣

∣

∣

∣

∣

Eσ

[

2

m

m
∑

i=1

σi(φ ◦ h)(xi)

]
∣

∣

∣

∣

∣

≤ 2λRm(F).
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Rademacher Bound for Kernels

• Let      be a set of linear hypothesis in an RHKS.

• How do we bound             ?

• Thus, 
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H

∀h ∈ H, h : x #→ w · φ(x), ‖w‖ ≤ Ω, φ : X #→ R
N .

Rm(H)

R(H) = Eσ

[

sup
‖w‖≤Ω

2

m

m
∑

i=1

σiw · φ(xi)

]

≤ Eσ

[

2Ω

m

m
∑

i=1

‖σi · φ(xi)‖

]

=
2Ω

m
Eσ











m
∑

i=1

m
∑

j=1

σiσjK(xi, xj)





1/2






=
2Ω

m

(

m
∑

i=1

K(xi, xi)

)1/2

Rm(H) ≤
2Ω(Tr[K])1/2

m
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Rademacher Bound for Kernels

• If we assume                     then

• Thus, 
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‖φ(x)‖ ≤ R, Tr[K] ≤ mR
2
.

Rm(H) ≤
2ΩR
√

m
.
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Rademacher Bound with VC-dim.

• For simplicity, consider the finite hypothesis set case.

• Let

• Let

• Claim: 

• Then,

• Choose best    to get 
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f : X !→ [−M, M ],F = {f}, |F| < ∞.

Rm(F) = Eσ

[

max
f∈F

2

m

m
∑

i=1

σif(xi)

]

.

A = Eσ

[

max
f∈F

m
∑

i=1

σif(xi)

]

.

(proof on next slide)

t

exp(tA) ≤ |F| exp(t2M2m/2).

mRm(F) ≤
2 log |F|

t
+ tM

2
m.

Rm(F) ≤ 2M

√

2 log |F|

m
.
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Proof of Claim

• Claim:

• Proof: 
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A = Eσ

[

max
f∈F

m
∑

i=1

σif(xi)

]

.

exp(tA) = exp

(

tEσ

[

max
f∈F

∑

i

σif(xi)

])

≤ Eσ

[

exp

(

t max
f∈F

∑

i

σif(xi)

)]

= Eσ

[

max
f∈F

exp

(

t
∑

i

σif(xi)

)]

≤ Eσ





∑

f∈F

exp

(

t
∑

i

σif(xi)

)





≤
∑

f∈F

∏

i

Eσi
[exp (tσif(xi))]

exp(tA) ≤ |F| exp(t2M2m/2).

18



Proof of Claim

• Thus, 

• Plugging in the best value of   , we obtain:
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exp(tA) ≤
∑

f∈F

∏

i

Eσi
[exp (tσif(xi))]

≤
∑

f∈F

∏

i

exp(t2M2/2)

=
∑

f∈F

exp(t2M2m/2)

≤ |F| exp(t2M2m/2)

A ≤
log |F|

t
+

tM2m

2
.

t

Rm(F) ≤ 2M

√

2 log |F|

m
.
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Rademacher Bound with VC-dim.

• If      has VC-dimension   , then distinct functions at most

• Thus, 

• And so, we obtain the following bound:
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F d

(

2em

d

)d

.

log |F| ≤ d log

(

2em

d

)

.

Rm(F) ≤ 2M

√

2d

m
log

(

2em

d

)

.
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