Reinforcement Learning

Yishay Mansour Google Inc. & Tel-Aviv University

Outline

- Goal of Reinforcement Learning
- Mathematical Model (MDP)
- Planning
- Learning
- Current Research issues

Goal of Reinforcement Learning

Goal oriented learning through interaction

Control of large scale stochastic environments with partial knowledge.

Supervised / Unsupervised Learning Learn from labeled / unlabeled examples

Reinforcement Learning - origins

Artificial Intelligence

Control Theory

Operation Research

Cognitive Science & Psychology

Solid foundations; well established research.

Typical Applications

- Robotics
 - Elevator control [CB].
 - Robo-soccer [SV].
- Board games
 - backgammon [T],
 - checkers [S].
 - Chess [B]
- Scheduling
 - Dynamic channel allocation [SB].
 - Inventory problems.

Contrast with Supervised Learning

The system has a "state".

The algorithm influences the state distribution.

Inherent Tradeoff: Exploration versus Exploitation.

Mathematical Model - Motivation

Model of uncertainty:

Environment, actions, our knowledge.

Focus on decision making.

Maximize long term reward.

Markov Decision Process (MDP)

Mathematical Model - MDP

Markov decision processes

S- set of states

A- set of actions

 δ - Transition probability

R - Reward function

Similar to DFA!

MDP model - states and actions

Environment = states

Actions = transitions $\delta(s, a, s')$

MDP model - rewards

R(s,a) = reward at state s

for doing action *a*

(a random variable).

Example: R(s,a) = -1 with probability 0.5 +10 with probability 0.35 +20 with probability 0.15

MDP model - trajectories

trajectory:

11

MDP - Return function.

Combining all the immediate rewards to a single value. Modeling Issues:

Are early rewards more valuable than later rewards?

Is the system "terminating" or continuous?

Usually the return is linear in the immediate rewards.

MDP model - return functions

Finite Horizon - parameter H

 $return = \sum_{1 \le i \le H} R(s_i, a_i)$

Infinite Horizon

discounted - parameter $\gamma < 1$.

$$return = \sum_{i=0}^{\infty} \gamma^{i} R(s_{i}, a_{i})$$

undiscounted
$$\frac{1}{N} \sum_{i=0}^{N-1} R(s_i, a_i) \xrightarrow{N \to \infty} return$$

Terminating MDP

MDP model - action selection

<u>AIM:</u> Maximize the expected return.

Fully Observable - can "see" the "entire" state. Policy - mapping from states to actions

Optimal policy: optimal from any start state.

THEOREM: There exists a deterministic optimal policy

Contrast with Supervised Learning

<u>Supervised Learning:</u> Fixed distribution on examples.

<u>Reinforcement Learning:</u> The state distribution is policy dependent!!!

A <u>small</u> local change in the policy can make a <u>huge</u> global change in the return.

MDP model - summary

 $s \in S$ - set of states, |S| = n.

 $a \in A$ - set of k actions, |A| = k.

 $\delta(s_1, a, s_2)$ - transition function.

- R(s,a) immediate reward function.
- $\pi: S \to A \quad \text{-policy.}$ $\sum_{i=0}^{\infty} \gamma^{i} r_{i} \quad \text{-discounted cumulative return.}$

Simple example: N- armed bandit

<u>Goal</u>: Maximize sum of immediate rewards.

Given the model: Greedy action.

Difficulty: unknown model.

N-Armed Bandit: Highlights

- Algorithms (near greedy):
 - Exponential weights
 - G_i sum of rewards of action a_i

•
$$W_i = \beta^{G_i}$$

- Follow the (perturbed) leader
- Results:
 - For any sequence of *T* rewards:
 - $E[online] > max_i \{G_i\} sqrt\{T \log N\}$

Planning - Basic Problems.

Given a complete MDP model.

Policy evaluation - Given a policy π , estimate its return.

Optimal control - Find an optimal policy π^* (maximizes the return from any start state).

Planning - Value Functions

 $V^{\pi}(s)$ The expected return starting at state s following π .

 $Q^{\pi}(s,a)$ The expected return starting at state *s* with action *a* and then following π .

 $V^*(s)$ and $Q^*(s,a)$ are define using an optimal policy π^* .

 $V^*(s) = max_{\pi} V^{\pi}(s)$

Planning - Policy Evaluation

Discounted infinite horizon (Bellman Eq.) $V^{\pi}(s) = E_{s' \sim \pi(s)} [R(s, \pi(s)) + \gamma V^{\pi}(s')]$

Rewrite the expectation

 $V^{\pi}(s) = E[R(s, \pi(s))] + \gamma \sum_{s'} \delta(s, \pi(s), s') V^{\pi}(s')$

Linear system of equations.

Algorithms - Policy Evaluation Example

 $V^{\pi}(s_0) = 0 + \gamma \left[\pi(s_0, +1) V^{\pi}(s_1) + \pi(s_0, -1) V^{\pi}(s_3) \right]$

Algorithms -Policy Evaluation Example

 $V^{\pi}(s_0) = 0 + (V^{\pi}(s_1) + V^{\pi}(s_3))/4$

23

Algorithms - optimal control

State-Action Value function:

$$Q^{\pi}(s,a) = E [R(s,a)] + \gamma E_{s' \sim (s,a)} [V^{\pi}(s')]$$

Note
$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

For a deterministic policy π .

Algorithms -Optimal control Example

 $Q^{\pi}(s_0,+1) = 0 + \gamma V^{\pi}(s_1)$

Algorithms - optimal control

CLAIM: A policy π is optimal if and only if at each state s: $V^{\pi}(s) = MAX_a \{Q^{\pi}(s,a)\}$ (Bellman Eq.)

PROOF: Assume there is a state *s* and action *a* s.t.,

 $V^{\pi}(s) < Q^{\pi}(s,a).$

Then the strategy of performing *a* at state *s* (the first time) is better than π .

This is true each time we visit *s*, so the policy that performs action *a* at state *s* is better than π .

Algorithms -optimal control Example

Changing the policy using the state-action value function.

MDP - computing optimal policy

- 1. Linear Programming
- 2. Value Iteration method.

$$V^{i+1}(s) \leftarrow \max_{a} \left\{ R(s,a) + \gamma \sum_{s'} \delta(s,a,s') V^{i}(s') \right\}$$

3. Policy Iteration method.

$$\pi_i(s) = \arg\max_a \{Q^{\pi_{i-1}}(s,a)\}$$

Convergence: Value Iteration

• Distance of V^i from the optimal V^* (in L_{∞}) $Q^i(s,a) = R(s,a) + \gamma \sum_{s'} \delta(s,a,s') V^i(s')$ $V^*(s) - Q^i(s,a^*) = \gamma \sum_{s'} \delta(s,a^*,s') [V^*(s') - V^i(s')]$ $\leq \gamma ||V^* - V^i||_{\infty}$ $V^*(s) - V^{i+1}(s) \leq V^*(s) - Q^i(s,a^*)$ $||V^* - V^{i+1}||_{\infty} \leq \gamma ||V^* - V^i||_{\infty}$

Convergence Rate: $1/(1-\gamma)$ ONLY Pseudo Polynomial

Convergence: Policy Iteration

- Policy Iteration Algorithm:
 - Compute $Q^{\pi}(s,a)$
 - Set $\pi(s) = \arg \max_a Q^{\pi}(s,a)$
 - Reiterate
- Convergence:
 - Policy can only improve
 - $\forall s \ V^{t+1}(s) \geq V^t(s)$
 - Less iterations then Value Iteration, but
 - more expensive iterations.
- OPEN: How many iteration does it require ?!
 - LB: linear UB: 2ⁿ/n (2-action MDP) [MS]

Outline

- Done
 - Goal of Reinforcement Learning
 - Mathematical Model (MDP)
 - Planning
 - Value iteration
 - Policy iteration
- Now: Learning Algorithms
 - Model based
 - Model Free

Planning versus Learning

Tightly coupled in Reinforcement Learning

Goal: maximize return while learning.

Example - Elevator Control

Learning (alone): Model the arrival model well.

Planning (alone) : Given arrival model build schedule

<u>Real objective</u>: Construct a schedule while updating model

Learning Algorithms

Given access only to actions perform:

- 1. policy evaluation.
- 2. control find optimal policy.

Two approaches:

1. Model based (Dynamic Programming).

2. Model free (Q-Learning).

Learning - Model Based

Estimate the model from the observation. (Both transition probability and rewards.)

Use the estimated model as the true model, and find optimal policy.

If we have a "good" estimated model, we should have a "good" estimation.

Learning - Model Based: off policy

- Let the policy run for a "long" time.
 - what is "long" ?!
 - Assuming some "exploration"
- Build an "observed model":
 - Transition probabilities
 - Rewards
- Use the "observed model" to estimate value of the policy.

Learning - Model Based sample size

Sample size (optimal policy):

Naive: $O(|S|^2 |A| \log (|S| |A|))$ samples. (approximates each transition $\delta(s,a,s')$ well.)

Better: O(|S| |A| log (|S| |A|)) samples. (Sufficient to approximate optimal policy.) [KS, NIPS'98]

Learning - Model Based: on policy

- The learner has control over the action.
 - The immediate goal is to lean a model
- As before:
 - Build an "observed model":
 - Transition probabilities and Rewards
 - Use the "observed model" to estimate value of the policy.
- Accelerating the learning:
 - How to reach "new" places ?!

Learning - Model Based: on policy

Well sampled nodes

Relatively unknown nodes

Exploration \rightarrow Planning in new MDP

Learning: Policy improvement

- Assume that we can perform:
 - Given a policy π ,
 - Estimate V and Q functions of π
- Can run policy improvement:

 $-\pi = \text{Greedy}(Q)$

• Process converges if estimations are accurate.