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Goal of Remnforcement Learning

Goal oriented learning through interaction

Control of large scale stochastic environments with
partial knowledge.

Supervised / Unsupervised Learning
Learn from labeled / unlabeled examples



Reinforcement Learning - origins

Artificial Intelligence
Control Theory
Operation Research

Cognitive Science & Psychology

Solid foundations; well established research.



Typical Applications

* Robotics
— Elevator control [CB].
— Robo-soccer [SV].

* Board games
— backgammon [T],
— checkers [S].
— Chess [B]
* Scheduling
— Dynamic channel allocation [SB].
— Inventory problems.



Contrast with Supervised Learning

The system has a “state”.

The algorithm influences the state distribution.

Inherent Tradeoff: Exploration versus Exploitation.



Mathematical Model - Motivation

Model of uncertainty:

Environment, actions, our knowledge.

Focus on decision making.

Maximize long term reward.

Markov Decision Process (MDP)



Mathematical Model

Markov decision processes
S- set of states

A- set of actions

0 - Transition probability

R - Reward function

- MDP

Similar to DFA!
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MDP model - states and actions

Environment = states

O ‘\ /0'7

s T actiona

Actions = transitions  §(s,a,s")



MDP model - rewards

R(s,a) = reward at state S

for doing action a

o @ ®
\ / (a random variable).
/O\
@

Example:

R(s,a) = -1 with probability 0.5
+10 with probability 0.35
+20 with probability 0.15
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MDP model - trajectories

—

trajectory:

a0>r0>®al>rl> S22 6 6 o
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MDP - Return function.

Combining all the immediate rewards to a single value.
Modeling Issues:
Are early rewards more valuable than later rewards?

Is the system “terminating” or continuous?

Usually the return is linear in the immediate rewards.
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MDP model - return functions

Finite Horizon - parameter H return = Z R(s;,a,)
I<i<H

Infinite Horizon

discounted - parameter y<l. return = Z y'R(s,,a,)
i=0
1 N-1 N
undiscounted ﬁZ R(s, a,)———=—> return
=0

Terminating MDP
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MDP model - action selection

AlIM: Maximize the expected return.

Fully Observable - can “see” the “entire” state.

Policy - mapping from states to actions

Optimal policy: optimal from any start state.

THEOREM: There exists a deterministic optimal policy
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Contrast with Supervised Learning

Supervised Learning:
Fixed distribution on examples.

Reinforcement Learning:
The state distribution 1s policy dependent!!!

A small local change in the policy can make a huge
global change in the return.
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MDP model - summary

seS - setof states, |S|=n.
aeA -setof kactions, |[4|=k.
0(s,,a,s,) - transition function.
R(s,a) - immediate reward function.

7:S—> A -policy.

> y'r, - discounted cumulative return.
i=0
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Simple example: N- armed bandit

Single state. Goal: Maximize sum of
immediate rewards.

(Given the model:

a, > Greedy action.

} Difficulty:
unknown model.
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N-Armed Bandit: Highlights

* Algorithms (near greedy):

— Exponential weights

* G, sum of rewards of action a,
° Wi — ﬁ;i
— Follow the (perturbed) leader
* Results:

— For any sequence of 7' rewards:
— Efonline] > max; {G,} - sqrt{T log N/}
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Planning - Basic Problems.

Given a complete P model.

Policy evaluation - Given a policy 7, estimate its return.

Optimal control - Find an optimal policy * (maximizes
the return from any start state).
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Planning - Value Functions

V7(s) The expected return starting at state s following 7.

Q7(s,a) The expected return starting at state s with
action a and then following 7.

V*(s) and Q*(s,a) are define using an optimal policy 7*.

V*(s) = max_V*(s)
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Planning - Policy Evaluation

Discounted infinite horizon (Bellman Eq.)

VAS) =By 29 LR(S,7(8)) + 7 VAS)]
Rewrite the expectation
V7 (s) = E[R(s, 2(s)]+7 D .5(s,72(5),s" W7 (s")

Linear system of equations.
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Algorithms - Policy Evaluation

Example
y=1/2 =0 1
O(S, @)= ;.
n random

Va: R(s,a) =i = 2~

V7(sy) = 0 +y [1(sp, T 1)V™(s;) + 1t(8g,-1) V7(s3) ]
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Algorithms -Policy Evaluation

Example
A={+1,-1} , : V7(sg) =5/3
y=172 a (; '1 d V(s =7/3
o(s;,a)=s:,, V7(s,)=11/3
n random V7(s;) = 13/3

Va: R(s,a) =i ! 3

V(sg) = 0+ (Vi(s)) + V(s;) )/4
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Algorithms - optimal control

State-Action Value function:

Q*(s.a) =E [R(s,@)] + yE¢_ (s /V(S)]

Note V7" (s)=0"(s,7(s))

For a deterministic policy .
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Algorithms -Optimal control

A={+1,-1}
y=1/2
oS, )= S,

7t random

R(s,a) =i

Example
(s (s)
/Y O 1 A

W 3 2~

Q™(sp,T1) =0 +y V(sy)

Q(sy,+1) = 5/6
Q(s,,-1) = 13/6
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Algorithms - optimal control

CLAIM: A policy = 1s optimal 1f and only 1f at each state s:
VAs) =MAX, {Q7*s,a)} (Bellman Eq.)

PROOF': Assume there 1s a state s and action a s.t.,

V7As) <Q#s,a).
Then the strategy of performing a at state s (the first time)
1s better than 7.

This 1s true each time we visit s, so the policy that

performs action a at state s 1s better than 7., |



Algorithms -optimal control

Example
A={+1,1} ; ------------------------------------ @
y=1/2 0 177
S, @)= 5,1, :
7 random
R(Si,a) =1 Vi 3 9) Ev
(e
3 >

Changing the policy using the state-action value function.
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MDP - computing optimal policy

1. Linear Programming

2. Value Iteration method.

V7 (s) <= max{R(s,a)+y ), &(s,a,s")V'(s")}
3. Policy Iteration method.

7,(s) = arg max {0 (s, )}
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Convergence: Value Iteration

« Distance of V' from the optimal V" (in L_)

O'(s,a) = R(s,a)+ yzsﬁ(s, a,s")V'(s")

Vi(s)=0'(s,a) =y 8(s,a’,s) [V (s) =V (s")]
<yIV =V

Vis)-V™(s)<V (s)-0'(s,a)

V=V V=V L

Convergence Rate: 1/(1-y) ONLY Pseudo Polynomial
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Convergence: Policy Iteration

* Policy Iteration Algorithm:
— Compute Q*(s,a)
— Set n(s) = arg max, Q™(s,a)
— Reiterate

e Convergence:

— Policy can only improve
vs Viti(s) > Vi(s)
* Less iterations then Value Iteration, but
* more expensive iterations.

 OPEN: How many iteration does it require ?!
— LB: linear UB: 2"n (2-action MDP) [MS]
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Outline

* Done
— Goal of Reinforcement Learning
— Mathematical Model (MDP)

— Planning
» Value iteration
 Policy iteration
 Now: Learning Algorithms
— Model based
— Model Free
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Planning versus Learning

Tightly coupled in Reinforcement Learning

Goal: maximize return while learning.
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Example - Elevator Control

Learning (alone):
Model the arrival model well.

Planning (alone) :
G1iven arrival model build schedule

Real objective: Construct a
schedule while updating model
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Learning Algorithms

Given access only to actions perform:
1. policy evaluation.
2. control - find optimal policy.

Two approaches:
1. Model based (Dynamic Programming).
2. Model free (Q-Learning).
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Learning - Model Based

Estimate the model from the observation.
(Both transition probability and rewards.)

Use the estimated model as the true model,
and find optimal policy.

If we have a “good” estimated model, we should
have a “good” estimation.
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Learning - Model Based:
off policy
* Let the policy run for a “long” time.
— what 1s “long” ?!
— Assuming some “exploration”
* Build an “observed model”:

— Transition probabilities
— Rewards

 Use the “observed model” to estimate value
of the policy.
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Learning - Model Based

sample size

Sample size (optimal policy):

Naive: O(|S|> |A| log (|S| |A]) ) samples.
(approximates each transition o(s,a,s’) well.)

Better: O(|S| |A| log (S| |A]) ) samples.
(Sufficient to approximate optimal policy.)
[KS, NIPS’98]
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Learning - Model Based:
on policy

 The learner has control over the action.

— The immediate goal 1s to lean a model

 As before:

— Build an “observed model™:

 Transition probabilities and Rewards

— Use the “observed model” to estimate value of
the policy.

* Accelerating the learning:

— How to reach “new” places ?!
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Learning - Model Based:
on policy

Well sampled nodes Relatively unknown nodes
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Learning - Model Based:
on policy

Well sampled nodes Relatively unknown nodes

Exploration = Planning in new MDP
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Learning: Policy improvement

* Assume that we can perform:
— Given a policy .,
— Estimate V and Q functions of ©t
* Can run policy improvement:
— 71 = Greedy (Q)

* Process converges 1f estimations are
accurate.
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