Risi Kon

Gatsby Un

with

ity of C

Univers

moooo,l_w
SO O-H — O
SO OO o —HAO

O O — O
S — O O OO
OO 4 A O OO
moo‘loow

~ N
o O OO O —-H O
OO O - O
o O OO O —-HO
T O O — O
O - O O OO
OO — - O OO
OO O - O OO
N e
|
<

q(A) is a graph invariant if it is invariant to relabeling.

poly(n) time computable ethciently computable set of
complete set of iInvariants invariant features

f(o-)j5 S%J’(ﬁ), n—1)

 O@DDDD®)=

f@PODDP®)=
f(‘@@‘@@)@)

f(®00®®®®)
[(202022®)=

i% D% =

i% D%

11,2
31,3

1,4

2.3

2.4

Now if we permute the vertices by i — 7(7)

[A/]W(z’),w(j) — [A]z',j

Now if we permute the vertices by i — 7(7)

[A/]W(i),w(j) — [A]z',j

1P0202@®)-=
G a0 [(2000020)

l J

...in other words f'(mo) = f(0) .

..or "= {7, where

f™(0) = f(x o)

is the translate of f by Tr.

2. Non-commutative harmonic
analysis and invariants

G isagroup if forany z,y,z2 € G

. 2y € @,

2. z(yz) = (vy)z,
3. thereis an e € G such that ex = ze = z,

4. thereisan z7' € G suchthat 22~ ' =271+ = e¢.

Permutations o: {1,2,...,n} —{1,2,...,n} forma
group called the symmetric group, denoted S,,.

p(z) p(y) = p(xy)

p: G — C%? js called a representation of G

Equivalence:

Reducibility:
T
L
0 pa(z)
p: G — C%? js called a representation of G

A complete set of inequivalent irreducible unitary
representations we denote R .

The Fourier transform on a group is

* Diaconis: Grou presentatlons in probability
and statistics’ 4)985}5 p ek

* Clausen, Maslen, Tliockmore Healy, ...: FFTs

e Kondor, Howard and Jebara: Multi-object
tracking with representations of the symmetric
group (AISTATS, 2007)

* Huang, Guestrin and Guibas: Efficient inference
for distributions on permutations (NIPS, 2007)

The power spectrum of f is the set of
Invariant matrices

Kakarala’s non-commutative bispectrum is

AN N AN

b(p1,p2) = Ct (Flpr) @ f(p2))' C ED flp)

P

where

p1(2) @ pa(2) = C [P olz)| €1

I

is the Clebsch-Gordan decomposition.

The skew spectrum is the unitarily equivalent, but
easier to compute set of matrices

A

7-(p) =7.(p)" - fp)

where

ro(x) = f(zz)f(z)

3. Back to graphs...

What we have so far:

. J(0) = Alom)om-1)
2. Under permuting the vertices [= f"

3. Our favorite invariant is the skew spectrum

AN

0 (p) =71, flp) ru(o)= flov) f(o)

where

flp) =" plo) f(o)

oES,,

 O@DDDD®)=

f@PODDP®)=
f(‘@@‘@@)@)

f(®00®®®®)
[(202022®)=

i% D% =

i% D%

11,2
31,3

1,4

2.3

2.4

|. The v index only has to extend over one
representative fromeach S, -,0S, - coset.

Pa)

2. The f and 7, Fourier transforms are very
sparse.

S

f(||||||||):
]?(_um)
e)
]/e\(:||||)
G

d=n(n—-1)(n—>5)/6

The answer is 4 9 o

(and it’s computable in O(n’) time)

Il EEEEEEEE NN N e EE ..

[L T I T

[TIT T 1] [T [T I

(LTI T THT T T TTTTITITITTTIT]

_\; / Bratelli diagram

SnOB, FFT for the symmetric group
& || + | Bntp://wwwl.cs.columbia.edu/~risi/SnOB/

,0b

A C++ library for fast Fourier transforms on the symmetric group.

author: Risi Kondor, Columbia University (1sI@cs.columbia.edu)

Development version as of August 23, 2006 (unstable!):

Documentation: [ps][pdf
C++ source code: [directory]
BiBTeX entry: [bib]

Entire package: [tar.gz

ALL SOFTWARE ON THIS PAGE IS DISTRIBUTED UNDER THE TERMS OF THE GNU
GENERAL PUBLIC LICENSE [site]

References:

1. Michael Clausen: Fast generalized Fourier transforms. Theoretical Computer Science 67(1): 55-
63, 1989.

2. David K. Maslen and Daniel N. Rockmore: Generalized FFTs --- a survey of some recent
results. Proceedings of the DIMACS Workshop on Groups and Computation, 1997. [ps]

A . e 2 2
N~ (lean 1) PRoackmore and K an nnhine nneo) nn thearv an nite

http://www.cs.columbia.edu/~risi/SnOB

http://www.cs.columbia.edu
http://www.cs.columbia.edu

SnFourierTransform.hpp

-

) SnFourierTransform.hpp:1 <No selected symbol> .
#include «vector:

#1nclude "base.h"

#include "Matrix.hpp"
#nclude <=stream=

#include "Sn.hpp"

#include "SnFunction.hpp”
#include "StandardTableau.hpp

using namespace std;
class Sn:iiFourierTransform: FiniteGroup::FourierTransform{
public:

friend class Sn::Function;
friend class Sn::Ftree;

FourierTransform{const Sn& _group);
FourierTransform{const Sn& _group, int dummy):group(&_group),n{_group.n){t;
FourierTransform{const Sn& _group, const vector<Matrix<FIELD =*= matrices);

FourierTransform{const Functiong f);
~FourierTransform();

Function* iFFT() const;

FIELD operator{){const StandardTableaud tl, const StondardTableaud t2) const;

double norm2() const {double result; for{int i=0; iwmatrix.size(); i++) result+=1l; return result;}
string str() const;

vector-Matrix-FIELD =*= matrix;

private:

vold fft{const Sn::Function& f, const int offset);
voild ifft{Sn::Function* target, const int _offset) const;

const int n;
const Sn¥ group s

b

> Snob.pdf

=] | Find

S, 0b manual Reference

Sn: :Irreducible

Represents an rreducible representation py of Sy.

Parent class: FiniteGroup::Irreducible

CONSTRUCTORS

Irreducible(Sn# ¢, Partition£k lambda)
Construct the irreducible representation of the symmetric group G corresponding to the partition
lanbda.

MEMBER FUNCTIONS

Matrix<FIELD >=* rho(const Sn::Elenentf 2igna)
Returns p(s), the representation matrix of permutation sigma in Young's orthogonal representation.

FIELD character(const Partitionk nu)
Returns x (i), the character of this representation at permutations of cycle type u.

void computeTableaux()
Compute the standard tableaux of this irreducible if they have not already been computed. Because
this is an expensive operation, it is postponed until some function is called (such as rho or character)
which requires the tablesux of this particular rreducible. computeTableaux() is called automatically
by these functions, and once the tableaux have been computed they are stored for the lifetime of the
Irreducible.

StandardTableau* tableau(const int t)
Return & new standard tableaux of index t. This works even if tableauV has not been computed.

void compute¥OR()
Compute and store the coefficients (2.5) and (2.6) in Young’s orthogonal representation for all adjacent
transpositions 7, and all tableau £ of shape A\, Because this is an expensive operation, these coeffi-
clents are not normally computed until they are demanded by functions such &s rho or character.
conpute¥YOR() is called automatically by these functions, and once the tableaux have been computed
they are stored for the lifetime of the Irreducible. computeYOR() also requires the tableaux, so it
calls conputeTableaux() if thase have not been computed yet,

void applyCycle(const int j, Matrix<FIELD>& M[, int m])
void applyCycle(const int j, Matrix<FIELD>& M[, int m])

4. Experiments

* For n up to about 300, the skew spectrum can
be computed in fractions of a second.

* For small graphs (n~5) it's complete!

* For n~100 good for learning tasks.

MUTAG ENZYME NCI1 NCI109
Number of instances/classes 600/6 188/2 4110/2 4127/2
Max. number of nodes 28 126 111 111
Reduced skew spectrum 88.61 (0.21) 25.83 (0.34) 62.72 (0.05) 62.62 (0.03)
Random walk kernel 71.89 (0.66) 14.97 (0.28) 51.30 (0.23) 53.11 (0.11)
Shortest path kernel 81.28 (0.45) 27.53 (0.29) 61.66 (0.10) 62.35 (0.13)

Conclusions

* Reduced the problem of representing graphs
to an abstract algebraic problem.

* Being restricted to a homogeneous space
makes it easy to compute the skew spectrum
but also collapses its size.

* Surprisingly, just 49 scalar invariants seem to
be able enough to do the job (compressed
sensing).

 Natural question: what about labeled graphs!?

