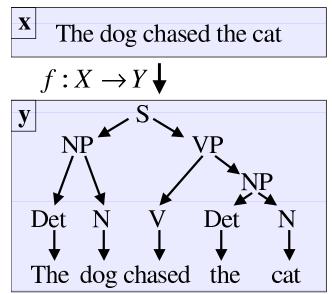
Search-Based Structured Prediction

by Harold C. Daumé III (Utah), John Langford (Yahoo), and Daniel Marcu (USC) Submitted to Machine Learning, 2007

> Presented by: Eugene Weinstein, NYU/Courant Institute October 2nd, 2007

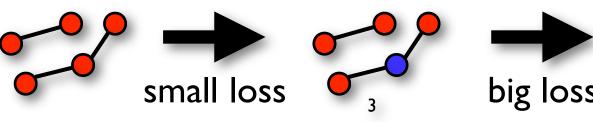
Structured Prediction Intro

- Given: labeled training data $(x_1, y_1), \ldots, (x_m, y_m) \in \mathcal{X} \times \mathcal{Y}$
- Task: learn mapping from inputs $x \in \mathcal{X}$ to outputs $y \in \mathcal{Y}$
- Special cases
 - Binary classification: $\mathcal{Y} = \{-1, 1\}$
 - Multiclass classification: $\mathcal{Y} = \{1, ..., k\}^{\top}$
- Natural language parsing example:



Exploiting Structure

- Naive approach: treat each possible output in $\mathcal Y$ as discrete label, apply multiclass classification. But:
 - Enumerating all members of $\mathcal Y$ often intractable
 - Cannot model closeness of examples (changing one node of tree vs. changing the entire tree)
- Approach: try to exploit structure and dependencies within the output space
 - Represent closeness of outputs using loss function



SP Overview

- Discriminative structured prediction papers typically extend multiclass classification or regression techniques
- Most classification schemes use SVM-like max-margin linear classifications incorporating loss functions
 - [Taskar, Guestrin, Koller '03], [Tsochantaridis, Hofmann, Joachims, Altun '04] [Sha, Saul '07]
- Regression formulation of SP: [Cortes, Mohri, Weston '06]
- Searn is a meta-algorithm. Claim: given multiclass classifier achieving good generalization, Searn does the same for SP

Search-based SP [Daumé '06] [Daumé, Langford, Marcu '07]

- Searn: view structured prediction as search problem
- SP: distribution \mathcal{D} over inputs, output costs (x, c) $|c| = |\mathcal{Y}|$
 - e.g.: x_i is input, c_y is the loss for any y to the true label y_i
- Define loss of cost-sensitive classifier $h : \mathcal{X} \to \mathcal{Y}$ as

$$L(\mathcal{D},h) = \mathbb{E}_{(x,c)\sim\mathcal{D}}\left\{c_{h(x)}\right\}$$

- View outputs as vectors $y = [y^{(1)}, \dots, y^{(l)}]$, but classification problems not limited to sequences
- A classifier defines a path through space of input/output pairs, and training process iteratively refines the classifier

Searn Specifics

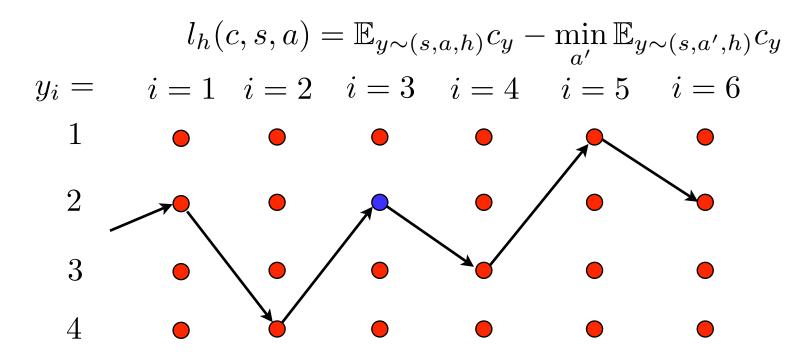
- We need to provide:
 - Cost-sensitive multiclass learning algorithm
 - Initial classifier
 - Loss function
- Initial classifier should have low training error, but need not generalize well
 - Could be best path from any standard search algorithm
 - Each Searn iteration finds a classifier that is not as good on the training set, but generalizes a little better

Searn Training

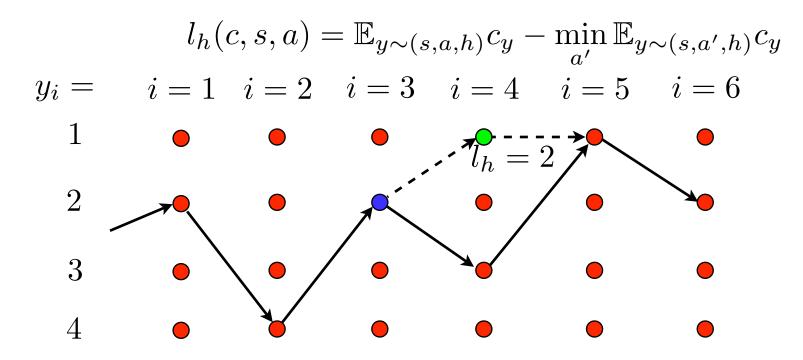
- Search state space: (input, partial output): $s = (x, y^{(1)}, \dots, y^{(l)})$
- Initial classifier: pick next label that minimizes cost, assuming that all future decisions are also optimal:

 $h_0(s,c) = \arg\min_{y^{(l+1)}} \min_{y^{(l+2)},\dots,y^{(L)}} c_{[(y^{(1)},\dots,y^{(L)})]}$

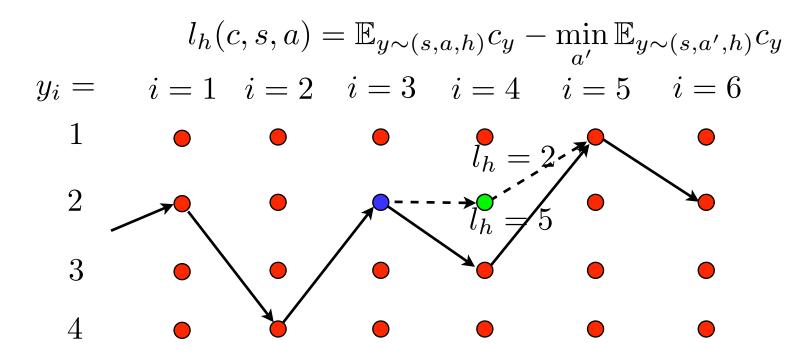
- Iterative step: use current classifier h to construct a set of examples to train the next classifier; then interpolate
 - For each state, try every possible next output
 - Cost assigned to each output tried is loss difference $l_h(c,s,a) = \mathbb{E}_{y \sim (s,a,h)} c_y - \min_{a'} \mathbb{E}_{y \sim (s,a',h)} c_y$



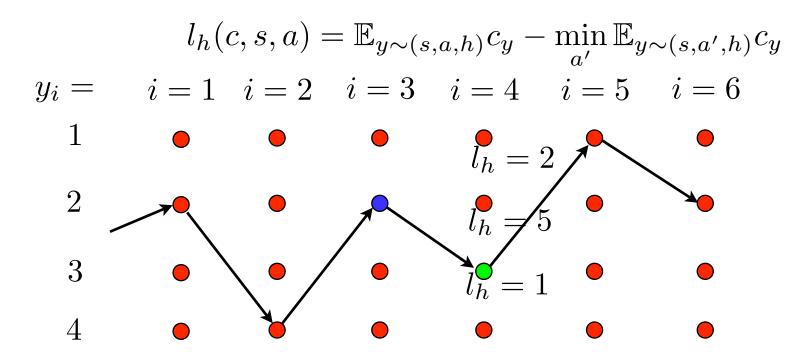
- \longrightarrow Prediction of current classifier h
- ---> Other path being considered (s, a, h)
 - Current state *s*
 - Potential next state a



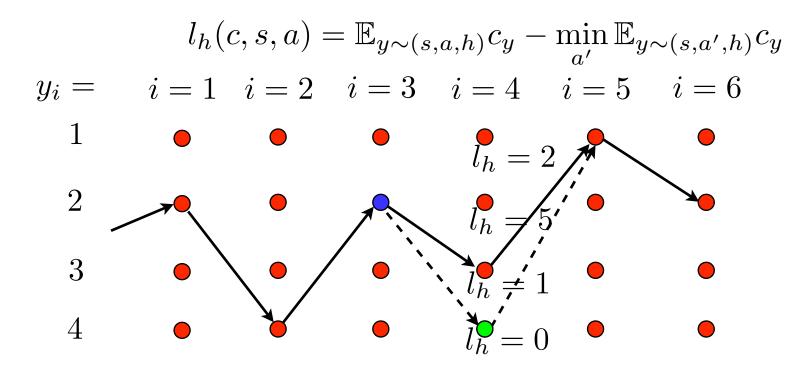
- \longrightarrow Prediction of current classifier h
- ---> Other path being considered (s, a, h)
 - Current state *s*
 - Potential next state a



- \longrightarrow Prediction of current classifier h
- ---> Other path being considered (s, a, h)
 - Current state *s*
 - Potential next state a



- \longrightarrow Prediction of current classifier h
- ---> Other path being considered (s, a, h)
 - Current state *s*
 - Potential next state a



- \longrightarrow Prediction of current classifier h
- ---> Other path being considered (s, a, h)
 - Current state *s*
 - Potential next state a

Searn Meta-Algorithm

• Input: $(x_1, y_1), \ldots, (x_m, y_m), h_0, A$

• $s_l \leftarrow (x_i, y^{(1)}, \dots, y^{(l)})$

- while h has a significant dependence on h_0 :
 - Initialize set of cost-sensitive examples: $S \leftarrow \emptyset$

• for
$$i \leftarrow 1, \dots, m$$

• Compute prediction: $(y^{(1)}, \ldots, y^{(L)}) \leftarrow h(x_i)$

• for
$$l \leftarrow 1, \ldots, L$$

Use losses to build up training examples for next iteration

State consists of input and

- for each next output a after s_l : $c'_{s_l,a} \leftarrow l_h(c, s_l, a)$
- Compute features and add example: $S \leftarrow f(s_l, c')$
- Learn and interpolate: $h' \leftarrow A(S); h \leftarrow \beta h' + (1 \beta)h$
- Return h with h_0 removed

Algorithm Analysis

- h_i is the classifier trained up to the *i*th iteration and $l_{h_i}(h'_i)$ is the loss of h'_i on this iteration's training examples
- T is the maximum length of any output sequence
- Theorem: If $c_{max} = \mathbb{E}_{(x,c)\sim \mathcal{D}} \max_{y} c_{y}$ and $l_{avg} = \frac{1}{I} \sum_{i=1}^{I} l_{h_{i}}(h'_{i})$ (average loss over *I* iterations) then total loss with $\beta = 1/T^{3}$ and $2T^{3} \ln T$ iterations is bounded as

 $L(\mathcal{D}, h_{last}) \le L(\mathcal{D}, h_0) + 2T l_{avg} \log T + (1 + \log T) c_{max}/T$

- Proof analyses the mixture of old and new classifiers
- In practice, β can be larger (more aggressive learning)

Proof

- Lemma I: For classifier h^{new} learned by interpolating h and h'as $h^{new} \leftarrow \beta h' + (1 - \beta)h$, if $c_{max} = \mathbb{E}_{(x,c)\sim \mathcal{D}} \max_{y} c_{y}$, we have $L(\mathcal{D}, h^{new}) \leq L(\mathcal{D}, h) + T\beta l_{h}^{CS}(h') + \frac{1}{2}\beta^{2}T^{2}c_{max}$
- Proof: Consider 3 cases: h' is never called (c = 0), is called exactly once (c = 1), and is called more than once $(c \ge 2)$

• Then loss of
$$h_{new}$$
 is bounded as

$$L(\mathcal{D}, h^{\text{new}}) = Pr(c = 0)L(\mathcal{D}, h^{\text{new}} \mid c = 0)$$

$$+ Pr(c = 1)L(\mathcal{D}, h^{\text{new}} \mid c = 1)$$

$$+ Pr(c \ge 2)L(\mathcal{D}, h^{\text{new}} \mid c \ge 2)$$

$$\le (1 - \beta)^T L(\mathcal{D}, h) + T\beta(1 - \beta)^{T-1} \left[L(\mathcal{D}, h) + \ell_h^{\text{CS}}(h')\right]$$

$$+ \left[1 - (1 - \beta)^T - T\beta(1 - \beta)^{T-1}\right]c_{\text{max}}$$

Proof Cont'd

$$L(\mathcal{D}, h^{\text{new}}) \leq (1 - \beta)^{T} L(\mathcal{D}, h) + T\beta(1 - \beta)^{T-1} \left[L(\mathcal{D}, h) + \ell_{h}^{\text{CS}}(h') \right] \\ + \left[1 - (1 - \beta)^{T} - T\beta(1 - \beta)^{T-1} \right] c_{\max} \\ = L(\mathcal{D}, h) + T\beta(1 - \beta)^{T-1} \ell_{h}^{\text{CS}}(h') + \left(\sum_{i=2}^{T} (-1)^{i} \beta^{i} {T \choose i} \right) L(\mathcal{D}, h) \\ + \left[1 - (1 - \beta)^{T} - T\beta(1 - \beta)^{T-1} \right] c_{\max} \\ \leq L(\mathcal{D}, h) + T\beta \ell_{h}^{\text{CS}}(h') \\ + \left[1 - (1 - \beta)^{T} - T\beta(1 - \beta)^{T-1} \right] (c_{\max} - L(\mathcal{D}, h)) \\ \leq L(\mathcal{D}, h) + T\beta \ell_{h}^{\text{CS}}(h') \\ + \left[1 - (1 - \beta)^{T} - T\beta(1 - \beta)^{T-1} \right] c_{\max} \\ = L(\mathcal{D}, h) + T\beta \ell_{h}^{\text{CS}}(h') + \left(\sum_{i=2}^{T} (-1)^{i} \beta^{i} {T \choose i} \right) c_{\max} \\ \leq L(\mathcal{D}, h) + T\beta \ell_{h}^{\text{CS}}(h') + \frac{1}{2} T^{2} \beta^{2} c_{\max} \\ \leq L(\mathcal{D}, h) + T\beta \ell_{h}^{\text{CS}}(h') + \frac{1}{2} T^{2} \beta^{2} c_{\max} \\ \end{bmatrix}$$

Proof Cont'd

- Lemma 2: After C/β iterations of Searn, the loss of the final classifier learned is bounded as $L(\mathcal{D}, h^{last}) \leq L(\mathcal{D}, h_0) + CTl_{avg} + c_{max} \left(\frac{1}{2}CT^2\beta + T\exp(-C)\right)$
- Proof: Invoking Lemma I repeatedly, we get $L(\mathcal{D}, h) \leq L(\mathcal{D}, h_0) + CTl_{avg} + \left(\frac{1}{2}CT^2\beta\right)$
- If we remove the initial (optimal) classifier, might incur a loss of c_{\max} ; probability of failing after C/β iterations $T(1-\beta)^{C/\beta} \leq T \exp[-C]$

Experiments

• Handwriting recognition [Kassel '95]

• Named entity recognition

El presidente de la [Junta de Extremadura]_{ORG}, [Juan Carlos Rodríguez Ibarra]_{PER}, recibirá en la sede de la [Presidencia del Gobierno]_{ORG} extremeño a familiares de varios de los condenados por el proceso " [Lasa-Zabala]_{MISC} ", entre ellos a [Lourdes Díez Urraca]_{PER}, esposa del ex gobernador civil de [Guipúzcoa]_{LOC} [Julen Elgorriaga]_{PER}; y a [Antonio Rodríguez Galindo]_{PER}, hermano del general [Enrique Rodríguez Galindo]_{PER}.

• Syntactic chunking and part-of-speech (POS) tagging

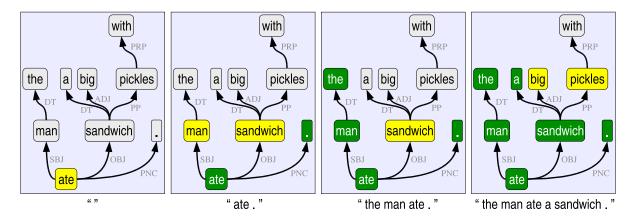
 $[\text{Great American}]_{\mathsf{NP}} [\text{said}]_{\mathsf{VP}} [\text{it}]_{\mathsf{NP}} [\text{increased}]_{\mathsf{VP}} [\text{its loan-loss reserves}]_{\mathsf{NP}} [\text{by}]_{\mathsf{PP}} [\$ 93 \text{ million}]_{\mathsf{NP}} [\text{after}]_{\mathsf{PP}} [\text{reviewing}]_{\mathsf{VP}} [\text{its loan portfolio}]_{\mathsf{NP}}, [\text{raising}]_{\mathsf{VP}} [\text{its total loan and real estate reserves}]_{\mathsf{NP}} [\text{to}]_{\mathsf{PP}} [\$ 217 \text{ million}]_{\mathsf{NP}} .$

Experiments

ALGORITHM	Handy	vriting	NER		Chunk	C+T
	Small	Large	Small	Large		
CLASSIFICATION						
Perceptron	65.56	70.05	91.11	94.37	83.12	87.88
${ m Log} \ { m Reg}$	68.65	72.10	93.62	96.09	85.40	90.39
SVM-Lin	75.75	82.42	93.74	97.31	86.09	93.94
SVM-Quad	82.63	82.52	85.49	85.49	\sim	\sim
STRUCTURED						
Str. Perc.	69.74	74.12	93.18	95.32	92.44	93.12
\mathbf{CRF}	—	—	94.94	\sim	94.77	96.48
$\mathbf{SVM}^{\mathrm{struct}}$	—	—	94.90	\sim	—	—
${f M}^3{f N} ext{-Lin}$	81.00	\sim	—	—	—	—
$\mathbf{M}^{3}\mathbf{N}$ -Quad	87.00	\sim	—	—	—	—
SEARN						
Perceptron	70.17	76.88	95.01	97.67	94.36	96.81
${ m Log} \ { m Reg}$	73.81	79.28	95.90	98.17	94.47	96.95
SVM-Lin	82.12	90.58	95.91	98.11	94.44	96.98
SVM-Quad	87.55	90.91	89.31	90.01	~	\sim

Experiments

- New "vine-growth" model for sentence summarization
- DUC 2005 data set: 50 sets of 25 documents each
- Evaluation: Rouge (*n*-gram overlap) vs. human summaries



	ORACLE		SEARN		BAYESUM			
	Vine	Extr	Vine	Extr	D05	D03	Base	Best
100 w	.0729	.0362	.0415	.0345	.0340	.0316	.0181	-
250 w	.1351	.0809	.0824	.0767	.0762	.0698	.0403	.0725

Bibliography

- Harold C. Daumé III, Practical structured learning for natural language processing, Ph.D. Thesis, University of Southern California, 2006.
- Harold Ć. Daumé III, John Langford, and Daniel Marcu. Search-Based Structured Prediction, Submitted to Machine Learning, 2007
- Robert Kassel. A Comparison of Approaches to On-line Handwritten Character Recognition. PhD thesis, Massachusetts Institute of Technology, Spoken Language Systems Group, 1995.
- Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2(5):265-292, 2001.
- Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks. Neural Information Processing Systems (NIPS) 16, 2003.
- Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support vector machine learning for interdependent and structured output spaces. Proceedings ICML, 2004.
- Fei Sha and Lawrence K. Saul. Large margin hidden Markov models for automatic speech recognition, Neural Information Processing Systems (NIPS) 19, 2007.
- William W. Cohen and Vitor Carvalho. Stacked sequential learning. In Proceedings of the International Joint Conference on Artificial Intelligence (IJ-CAI), 2005.
- Michael Collins and Brian Roark. Incremental parsing with the perceptron algorithm. In Proceedings of the Conference of the Association for Computational Linguistics (ACL), 2004.
- Alina Beygelzimer, Varsha Dani, Tom Hayes, John Langford, and Bianca Zadrozny. Error limiting reductions between classification tasks. In Proceedings of the International Conference on Machine Learning (ICML), 2005.