
Search-Based Structured
Prediction

by Harold C. Daumé III (Utah), John Langford (Yahoo),
and Daniel Marcu (USC)

Submitted to Machine Learning, 2007

Presented by:
Eugene Weinstein, NYU/Courant Institute

October 2nd, 2007

Structured Prediction Intro

• Given: labeled training data

• Task: learn mapping from inputs to outputs

• Special cases

• Binary classification:

• Multiclass classification:

• Natural language parsing example:

Support Vector Machine Learning for
Interdependent and Structured Output Spaces

Ioannis Tsochantaridis it@cs.brown.edu
Thomas Hofmann th@cs.brown.edu

Department of Computer Science, Brown University, Providence, RI 02912

Thorsten Joachims tj@cs.cornell.edu

Department of Computer Science, Cornell University, Ithaca, NY 14853

Yasemin Altun altun@cs.brown.edu

Department of Computer Science, Brown University, Providence, RI 02912

Abstract
Learning general functional dependencies is
one of the main goals in machine learning.
Recent progress in kernel-based methods has
focused on designing flexible and powerful in-
put representations. This paper addresses
the complementary issue of problems involv-
ing complex outputs such as multiple depen-
dent output variables and structured output
spaces. We propose to generalize multiclass
Support Vector Machine learning in a formu-
lation that involves features extracted jointly
from inputs and outputs. The resulting op-
timization problem is solved efficiently by
a cutting plane algorithm that exploits the
sparseness and structural decomposition of
the problem. We demonstrate the versatility
and effectiveness of our method on problems
ranging from supervised grammar learning
and named-entity recognition, to taxonomic
text classification and sequence alignment.

1. Introduction

This paper deals with the general problem of learn-
ing a mapping from inputs x ∈ X to discrete outputs
y ∈ Y based on a training sample of input-output pairs
(x1,y1), . . . , (xn,yn) ∈ X × Y drawn from some fixed
but unknown probability distribution. Unlike the case
of multiclass classification where Y = {1, ..., k} with
interchangeable, arbitrarily numbered labels, we con-
sider structured output spaces Y. Elements y ∈ Y
may be, for instance, sequences, strings, labeled trees,

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
by the authors.

lattices, or graphs. Such problems arise in a variety of
applications, ranging from multilabel classification and
classification with class taxonomies, to label sequence
learning, sequence alignment learning, and supervised
grammar learning, to name just a few.

We approach these problems by generalizing large
margin methods, more specifically multi-class Support
Vector Machines (SVMs) (Weston & Watkins, 1998;
Crammer & Singer, 2001), to the broader problem of
learning structured responses. The naive approach of
treating each structure as a separate class is often in-
tractable, since it leads to a multiclass problem with a
very large number of classes. We overcome this prob-
lem by specifying discriminant functions that exploit
the structure and dependencies within Y. In that re-
spect, our approach follows the work of Collins (2002;
2004) on perceptron learning with a similar class of
discriminant functions. However, the maximum mar-
gin algorithm we propose has advantages in terms of
accuracy and tunability to specific loss functions. A
similar philosophy of using kernel methods for learning
general dependencies was pursued in Kernel Depen-
dency Estimation (KDE) (Weston et al., 2003). Yet,
the use of separate kernels for inputs and outputs and
the use of kernel PCA with standard regression tech-
niques significantly differs from our formulation, which
is a more straightforward and natural generalization of
multiclass SVMs.

2. Discriminants and Loss Functions

We are interested in the general problem of learning
functions f : X → Y based on a training sample of
input-output pairs. As an illustrating example, con-
sider the case of natural language parsing, where the
function f maps a given sentence x to a parse tree

Y = {−1, 1}

Figure 1. Illustration of natural language parsing model.

y. This is depicted graphically in Figure 1. The ap-
proach we pursue is to learn a discriminant function
F : X × Y → # over input/output pairs from which
we can derive a prediction by maximizing F over the
response variable for a specific given input x. Hence,
the general form of our hypotheses f is

f(x;w) = argmax
y∈Y

F (x,y;w) , (1)

where w denotes a parameter vector. It might be use-
ful to think of −F as a w-parameterized family of cost
functions, which we try to design in such a way that
the minimum of F (x, ·;w) is at the desired output y
for inputs x of interest. Throughout this paper, we
assume F to be linear in some combined feature repre-
sentation of inputs and outputs Ψ(x,y),

F (x,y;w) = 〈w,Ψ(x,y)〉 . (2)

The specific form of Ψ depends on the nature of the
problem and special cases will be discussed subse-
quently.

Using again natural language parsing as an illustrative
example, we can chose F such that we get a model that
is isomorphic to a Probabilistic Context Free Grammar
(PCFG). Each node in a parse tree y for a sentence
x corresponds to grammar rule gj , which in turn has
a score wj . All valid parse trees y (i.e. trees with a
designated start symbol S as the root and the words in
the sentence x as the leaves) for a sentence x are scored
by the sum of the wj of their nodes. This score can
thus be written as F (x,y;w) = 〈w,Ψ(x,y)〉, where
Ψ(x,y) is a histogram vector counting how often each
grammar rule gj occurs in the tree y. f(x;w) can
be efficiently computed by finding the structure y ∈ Y
that maximizes F (x,y;w) via the CKY algorithm (see
Manning and Schuetze (1999)).

Learning over structured output spaces Y inevitably
involves loss functions other than the standard zero-
one classification loss (cf. Weston et al. (2003)). For
example, in natural language parsing, a parse tree
that differs from the correct parse in a few nodes only

should be treated differently from a parse tree that
is radically different. Typically, the correctness of a
predicted parse tree is measured by its F1 score (see
e.g. Johnson (1999)), the harmonic mean of precision
of recall as calculated based on the overlap of nodes
between the trees. We thus assume the availability of
a bounded loss function (: Y×Y → # where ((y, ŷ)
quantifies the loss associated with a prediction ŷ, if the
true output value is y. If P (x,y) denotes the data gen-
erating distribution, then the goal is to find a function
f within a given hypothesis class such that the risk

R"
P (f) =

∫

X×Y
((y, f(x)) dP (x,y) . (3)

is minimized. We assume that P is unknown, but that
a finite training set of pairs S = {(xi,yi) ∈ X×Y : i =
1, . . . , n} generated i.i.d. according to P is given. The
performance of a function f on the training sample
S is described by the empirical risk R"

S (f). For w-
parameterized hypothesis classes, we will also write
R"

P (w) ≡ R"
P (f(·;w)) and similarly for the empirical

risk.

3. Margins and Margin Maximization

First, we consider the separable case in which there
exists a function f parameterized by w such that the
empirical risk is zero. If we assume that ((y,y′) > 0
for y *= y′ and ((y,y) = 0, then the condition of zero
training error can then be compactly written as a set
of non-linear constraints

∀i : max
y∈Y\yi

{〈w,Ψ(xi,y)〉} < 〈w,Ψ(xi,yi)〉 . (4)

Each nonlinear inequalities in (4) can be equivalently
replaced by |Y| − 1 linear inequalities, resulting in a
total of n|Y|− n linear constraints,

∀i, ∀y ∈ Y \ yi : 〈w, δΨi(y)〉 > 0 , (5)

where we have defined the shorthand δΨi(y) ≡
Ψ(xi,yi) − Ψ(xi,y).

If the set of inequalities in (5) is feasible, there will
typically be more than one solution w∗. To specify
a unique solution, we propose to select the w with
‖w‖ ≤ 1 for which the score of the correct label yi

is uniformly most different from the closest runner-
up ŷi(w) = argmaxy &=yi

〈w,Ψ(xi,y)〉. This general-
izes the maximum-margin principle employed in SVMs
(Vapnik, 1998) to the more general case considered in
this paper. The resulting hard-margin optimization

(x1, y1), . . . , (xm, ym) ∈ X × Y

x ∈ X y ∈ Y

2

Exploiting Structure

• Naive approach: treat each possible output in as
discrete label, apply multiclass classification. But:

• Enumerating all members of often intractable

• Cannot model closeness of examples (changing one
node of tree vs. changing the entire tree)

• Approach: try to exploit structure and dependencies
within the output space

• Represent closeness of outputs using loss function

Y

Y

small loss big loss3

SP Overview

• Discriminative structured prediction papers typically
extend multiclass classification or regression techniques

• Most classification schemes use SVM-like max-margin
linear classifications incorporating loss functions

• [Taskar, Guestrin, Koller ’03], [Tsochantaridis,
Hofmann, Joachims, Altun ’04] [Sha, Saul ’07]

• Regression formulation of SP: [Cortes, Mohri, Weston ’06]

• Searn is a meta-algorithm. Claim: given multiclass classifier
achieving good generalization, Searn does the same for SP

4

Search-based SP

• Searn: view structured prediction as search problem

• SP: distribution over inputs, output costs

• e.g.: is input, is the loss for any to the true label

• Define loss of cost-sensitive classifier as

• View outputs as vectors , but
classification problems not limited to sequences

• A classifier defines a path through space of input/output
pairs, and training process iteratively refines the classifier

5

[Daumé ’06] [Daumé, Langford, Marcu ’07]

D (x, c) |c| = |Y|

xi cy y yi

h : X → Y

Search-based Structured Prediction 3

As a simple example, consider a parsing problem under F1 loss. In this
case, D is a distribution over (x, c) where x is an input sequence and for all
trees y with |x|-many leaves, cy is the F1 loss of y on the “true” output.

The goal of structured prediction is to find a function h : X → Y that
minimizes the loss given in Eq (1).

L(D, h) = E(x,c)∼D

{

ch(x)

}

(1)

The algorithm we present is based on the view that a vector y ∈ Y can
be produced by predicting each component (y1, . . . , yT) in turn, allowing
for dependent predictions. This is important for coping with general loss
functions. For a data set (x1, c1), . . . , (xN , cN) of structured prediction ex-
amples, we write Tn for the length of the longest search path on example
n, and Tmax = maxn Tn.

3 The Searn Algorithm

There are several vital ingredients in any application of Searn: a seach
space for decomposing the prediction problem; a cost sensitive learning al-
gorithm; labeled structured prediction training data; a known loss function
for the structured prediction problem; and a good initial policy. These as-
pects are described in more detail below.

A search space S. The choice of search space plays a role similar to the
choice of structured decomposition in other algorithms. Final elements
of the search space can always be referenced by a sequence of choices ŷ. In
simple applications of Searn the search space is concrete. For example,
it might consist of the parts of speech of each individual word in a
sentence. In general, the search space can be abstract, and we show this
can be beneficial experimentally. An abstract search space comes with
an (unlearned) function f(ŷ) which turns any sequence of predictions
in the abstract search space into an output of the correct form. (For
a concrete search space, f is just the identity function. To minimize
confusion, we will leave off f in future notation unless its presence is
specifically important.)

A cost sensitive learning algorithm A. The learning algorithm returns a mul-
ticlass classifier h(s) given cost sensitive training data. Here s is a de-
scription of the location in the search space. A reduction of cost sen-
sitive classification to binary classification [4] reduces the requirement
to a binary learning algorithm. Searn relies upon this learning algo-
rithm to form good generalizations. Nothing else in the Searn algorithm
attempts to achieve generalization or estimation. The performance of
Searn is strongly dependent upon how capable the learned classifier is.
We call the learned classifier a policy because it is used multiple times
on inputs which it effects, just as in reinforcement learning.

y = [y(1)
, . . . , y

(l)]

Searn Specifics

• We need to provide:

• Cost-sensitive multiclass learning algorithm

• Initial classifier

• Loss function

• Initial classifier should have low training error, but need
not generalize well

• Could be best path from any standard search algorithm

• Each Searn iteration finds a classifier that is not as good
on the training set, but generalizes a little better

6

Searn Training

• Search state space: (input, partial output):

• Initial classifier: pick next label that minimizes cost,
assuming that all future decisions are also optimal:

• Iterative step: use current classifier to construct a set of
examples to train the next classifier; then interpolate

• For each state, try every possible next output

• Cost assigned to each output tried is loss difference

7

s = (x, y
(1)

, . . . , y
(l))

h0(s, c) = arg miny(l+1) miny(l+2),...,y(L) c[(y(1),...,y(L))]

h

lh(c, s, a) = Ey∼(s,a,h)cy − min
a′

Ey∼(s,a′,h)cy

Searn Training Illustration

8

yi =

1

2

3

4

i = 1 i = 2 i = 3 i = 4 i = 5

Prediction of current classifier h

Current state s

i = 6

Other path being considered (s, a, h)

Potential next state a

lh(c, s, a) = Ey∼(s,a,h)cy − min
a′

Ey∼(s,a′,h)cy

Searn Training Illustration

8

yi =

1

2

3

4

i = 1 i = 2 i = 3 i = 4 i = 5

Prediction of current classifier h

Current state s

i = 6

Other path being considered (s, a, h)

Potential next state a

lh = 2

lh(c, s, a) = Ey∼(s,a,h)cy − min
a′

Ey∼(s,a′,h)cy

Searn Training Illustration

8

yi =

1

2

3

4

i = 1 i = 2 i = 3 i = 4 i = 5

Prediction of current classifier h

Current state s

i = 6

Other path being considered (s, a, h)

Potential next state a

lh = 2

lh = 5

lh(c, s, a) = Ey∼(s,a,h)cy − min
a′

Ey∼(s,a′,h)cy

Searn Training Illustration

8

yi =

1

2

3

4

i = 1 i = 2 i = 3 i = 4 i = 5

Prediction of current classifier h

Current state s

i = 6

Other path being considered (s, a, h)

Potential next state a

lh = 2

lh = 5

lh = 1

lh(c, s, a) = Ey∼(s,a,h)cy − min
a′

Ey∼(s,a′,h)cy

Searn Training Illustration

8

yi =

1

2

3

4

i = 1 i = 2 i = 3 i = 4 i = 5

Prediction of current classifier h

Current state s

i = 6

Other path being considered (s, a, h)

Potential next state a

lh = 2

lh = 5

lh = 1

lh = 0

lh(c, s, a) = Ey∼(s,a,h)cy − min
a′

Ey∼(s,a′,h)cy

Searn Meta-Algorithm
• Input:

• while has a significant dependence on :

• Initialize set of cost-sensitive examples:

• for

• Compute prediction:

• for

•

• for each next output after :

• Compute features and add example:

• Learn and interpolate:

• Return with removed

h h0

a

(x1, y1), . . . , (xm, ym), h0, A

S ← ∅

i ← 1, . . . ,m

(y(1), . . . , y(L)) ← h(xi)

h′
← A(S);h ← βh′ + (1 − β)h

State consists
of input and

partial output

Use losses to
build up
training

examples for
next iterationl ← 1, . . . , L

sl ← (xi, y
(1)

, . . . , y
(l))

c′sl,a
← lh(c, sl, a)sl

S ← f(sl, c
′)

h h0

Algorithm Analysis

• is the classifier trained up to the th iteration and
is the loss of on this iteration’s training examples

• is the maximum length of any output sequence

• Theorem: If and
(average loss over iterations) then total loss with
and iterations is bounded as

• Proof analyses the mixture of old and new classifiers

• In practice, can be larger (more aggressive learning)

10

hi i

I

cmax = E(x,c)∼D max
y

cy

10 Hal Daumé III et al.

It is important in the analysis to refer explicitly to the error of the
classifiers learned during Searn process. Let Searn(D, h) denote the dis-
tribution over classification problems generated by running Searn with
policy h on distribution D. Also let !CS

h (h′) denote the loss of classifier h′

on the distribution Searn(D, h). Let the average cost sensitive loss over I
iterations be:

!avg =
1

I

I
∑

i=1

!cshi
(h′

i) (4)

where hi is the ith policy and h′
i is the classifier learned on the ith iteration.

Theorem 2 For all D with cmax = E(x,c)∼D maxy cy (with (x, c) as in
Def 1), for all learned cost sensitive classifiers h′, Searn with β = 1/T 3

and 2T 3 lnT iterations, outputs a learned policy with loss bounded by:

L(D, hlast) ≤ L(D,π) + 2T !avg lnT + (1 + lnT)cmax/T

The dependence on T in the second term is due to the cost sensitive
loss being an average over T timesteps while the total loss is a sum. The
lnT factor is not essential and can be removed using other approaches [3]
[30]. The advantage of the theorem here is that it applies to an algorithm
that naturally copes with variable length T and yields a smaller amount of
computation in practice.

The choices of β and the number of iterations are pessimistic in practice.
Empirically, we use a development set to perform a line search minimization
to find per-iteration values for β and to decide when to stop iterating. The
analytical choice of β is made to ensure that the probability that the newly
created policy only makes one different choice from the previous policy for
any given example is sufficiently low. The choice of β assumes the worst:
the newly learned classifier always disagrees with the previous policy. In
practice, this rarely happens. After the first iteration, the learned policy
is typically quite good and only rarely differs from the initial policy. So
choosing such a small value for β is unneccesary: even with a higher value,
the current classifier often agrees with the previous policy.

The proof rests on the following lemmae.

Lemma 1 (Policy Degradation) Given a policy h with loss L(D, h), ap-
ply a single iteration of Searn to learn a classifier h′ with cost-sensitive
loss !CS

h (h′). Create a new policy hnew by interpolation with parameter β ∈
(0, 1/T). Then, for all D, with cmax = E(x,c)∼D maxi ci (with (x, c) as in
Def 1):

L(D, hnew) ≤ L(D, h) + Tβ!CS
h (h′) +

1

2
β2T 2cmax (5)

L(D, hlast) ≤ L(D, h0) + 2T lavg log T + (1 + log T)cmax/T

β

β = 1/T 3

lavg = 1

I

∑I
i=1

lhi
(h′

i)

T

lhi
(h′

i)
h
′

i

Proof
• Lemma 1: For classifier learned by interpolating and

as , if , we have

• Proof: Consider 3 cases: is never called (), is called
exactly once (), and is called more than once ()

• Then loss of is bounded as

h h
′

hnew
← βh′ + (1 − β)h cmax = E(x,c)∼D max

y
cy

h
′

c = 1

hnew

Search-based Structured Prediction 11

Proof The proof largely follows the proofs of Lem 6.1 and Theorem 4.1 for
conservative policy iteration [23]. The three differences are that (1) we must
deal with the finite horizon case; (2) we move away from rather than toward
a good policy; and (3) we expand to higher order.

The proof works by separating three cases depending on whether hCS

or h is called in the process of running hnew. The easiest case is when hCS

is never called. The second case is when it is called exactly once. The final
case is when it is called more than once. Denote these three events by c = 0,
c = 1 and c ≥ 2, respectively.

L(D, hnew) =Pr(c = 0)L(D, hnew | c = 0)
+ Pr(c = 1)L(D, hnew | c = 1)
+ Pr(c ≥ 2)L(D, hnew | c ≥ 2) (6)

≤(1 − β)T L(D, h) + Tβ(1 − β)T−1
[
L(D, h) + "CS

h (h′)
]

(7)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax

=L(D, h) + Tβ(1 − β)T−1"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
L(D, h)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (8)

≤L(D, h) + Tβ"CS
h (h′) (9)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
(cmax − L(D, h))

≤L(D, h) + Tβ"CS
h (h′)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (10)

=L(D, h) + Tβ"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
cmax (11)

≤L(D, h) + Tβ"CS
h (h′) +

1
2
T 2β2cmax (12)

The first inequality is by bounding the probabilities of each event and
the corresponding losses. The second is by the assumption that the cost-
sensitive regret is negative (we are moving away from the optimal policy).
The third uses the assumption that β < 1/T . Others are by algebra.

Search-based Structured Prediction 11

Proof The proof largely follows the proofs of Lem 6.1 and Theorem 4.1 for
conservative policy iteration [23]. The three differences are that (1) we must
deal with the finite horizon case; (2) we move away from rather than toward
a good policy; and (3) we expand to higher order.

The proof works by separating three cases depending on whether hCS

or h is called in the process of running hnew. The easiest case is when hCS

is never called. The second case is when it is called exactly once. The final
case is when it is called more than once. Denote these three events by c = 0,
c = 1 and c ≥ 2, respectively.

L(D, hnew) =Pr(c = 0)L(D, hnew | c = 0)
+ Pr(c = 1)L(D, hnew | c = 1)
+ Pr(c ≥ 2)L(D, hnew | c ≥ 2) (6)

≤(1 − β)T L(D, h) + Tβ(1 − β)T−1
[
L(D, h) + "CS

h (h′)
]

(7)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax

=L(D, h) + Tβ(1 − β)T−1"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
L(D, h)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (8)

≤L(D, h) + Tβ"CS
h (h′) (9)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
(cmax − L(D, h))

≤L(D, h) + Tβ"CS
h (h′)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (10)

=L(D, h) + Tβ"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
cmax (11)

≤L(D, h) + Tβ"CS
h (h′) +

1
2
T 2β2cmax (12)

The first inequality is by bounding the probabilities of each event and
the corresponding losses. The second is by the assumption that the cost-
sensitive regret is negative (we are moving away from the optimal policy).
The third uses the assumption that β < 1/T . Others are by algebra.

h
new

L(D, hnew) ≤ L(D, h) + TβlCS
h (h′) +

1

2
β2T 2cmax

c = 0

c ≥ 2

Proof Cont’d

12

Search-based Structured Prediction 11

Proof The proof largely follows the proofs of Lem 6.1 and Theorem 4.1 for
conservative policy iteration [23]. The three differences are that (1) we must
deal with the finite horizon case; (2) we move away from rather than toward
a good policy; and (3) we expand to higher order.

The proof works by separating three cases depending on whether hCS

or h is called in the process of running hnew. The easiest case is when hCS

is never called. The second case is when it is called exactly once. The final
case is when it is called more than once. Denote these three events by c = 0,
c = 1 and c ≥ 2, respectively.

L(D, hnew) =Pr(c = 0)L(D, hnew | c = 0)
+ Pr(c = 1)L(D, hnew | c = 1)
+ Pr(c ≥ 2)L(D, hnew | c ≥ 2) (6)

≤(1 − β)T L(D, h) + Tβ(1 − β)T−1
[
L(D, h) + "CS

h (h′)
]

(7)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax

=L(D, h) + Tβ(1 − β)T−1"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
L(D, h)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (8)

≤L(D, h) + Tβ"CS
h (h′) (9)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
(cmax − L(D, h))

≤L(D, h) + Tβ"CS
h (h′)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (10)

=L(D, h) + Tβ"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
cmax (11)

≤L(D, h) + Tβ"CS
h (h′) +

1
2
T 2β2cmax (12)

The first inequality is by bounding the probabilities of each event and
the corresponding losses. The second is by the assumption that the cost-
sensitive regret is negative (we are moving away from the optimal policy).
The third uses the assumption that β < 1/T . Others are by algebra.

Search-based Structured Prediction 11

Proof The proof largely follows the proofs of Lem 6.1 and Theorem 4.1 for
conservative policy iteration [23]. The three differences are that (1) we must
deal with the finite horizon case; (2) we move away from rather than toward
a good policy; and (3) we expand to higher order.

The proof works by separating three cases depending on whether hCS

or h is called in the process of running hnew. The easiest case is when hCS

is never called. The second case is when it is called exactly once. The final
case is when it is called more than once. Denote these three events by c = 0,
c = 1 and c ≥ 2, respectively.

L(D, hnew) =Pr(c = 0)L(D, hnew | c = 0)
+ Pr(c = 1)L(D, hnew | c = 1)
+ Pr(c ≥ 2)L(D, hnew | c ≥ 2) (6)

≤(1 − β)T L(D, h) + Tβ(1 − β)T−1
[
L(D, h) + "CS

h (h′)
]

(7)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax

=L(D, h) + Tβ(1 − β)T−1"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
L(D, h)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (8)

≤L(D, h) + Tβ"CS
h (h′) (9)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
(cmax − L(D, h))

≤L(D, h) + Tβ"CS
h (h′)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (10)

=L(D, h) + Tβ"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
cmax (11)

≤L(D, h) + Tβ"CS
h (h′) +

1
2
T 2β2cmax (12)

The first inequality is by bounding the probabilities of each event and
the corresponding losses. The second is by the assumption that the cost-
sensitive regret is negative (we are moving away from the optimal policy).
The third uses the assumption that β < 1/T . Others are by algebra.

Search-based Structured Prediction 11

Proof The proof largely follows the proofs of Lem 6.1 and Theorem 4.1 for
conservative policy iteration [23]. The three differences are that (1) we must
deal with the finite horizon case; (2) we move away from rather than toward
a good policy; and (3) we expand to higher order.

The proof works by separating three cases depending on whether hCS

or h is called in the process of running hnew. The easiest case is when hCS

is never called. The second case is when it is called exactly once. The final
case is when it is called more than once. Denote these three events by c = 0,
c = 1 and c ≥ 2, respectively.

L(D, hnew) =Pr(c = 0)L(D, hnew | c = 0)
+ Pr(c = 1)L(D, hnew | c = 1)
+ Pr(c ≥ 2)L(D, hnew | c ≥ 2) (6)

≤(1 − β)T L(D, h) + Tβ(1 − β)T−1
[
L(D, h) + "CS

h (h′)
]

(7)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax

=L(D, h) + Tβ(1 − β)T−1"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
L(D, h)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (8)

≤L(D, h) + Tβ"CS
h (h′) (9)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
(cmax − L(D, h))

≤L(D, h) + Tβ"CS
h (h′)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (10)

=L(D, h) + Tβ"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
cmax (11)

≤L(D, h) + Tβ"CS
h (h′) +

1
2
T 2β2cmax (12)

The first inequality is by bounding the probabilities of each event and
the corresponding losses. The second is by the assumption that the cost-
sensitive regret is negative (we are moving away from the optimal policy).
The third uses the assumption that β < 1/T . Others are by algebra.

Search-based Structured Prediction 11

Proof The proof largely follows the proofs of Lem 6.1 and Theorem 4.1 for
conservative policy iteration [23]. The three differences are that (1) we must
deal with the finite horizon case; (2) we move away from rather than toward
a good policy; and (3) we expand to higher order.

The proof works by separating three cases depending on whether hCS

or h is called in the process of running hnew. The easiest case is when hCS

is never called. The second case is when it is called exactly once. The final
case is when it is called more than once. Denote these three events by c = 0,
c = 1 and c ≥ 2, respectively.

L(D, hnew) =Pr(c = 0)L(D, hnew | c = 0)
+ Pr(c = 1)L(D, hnew | c = 1)
+ Pr(c ≥ 2)L(D, hnew | c ≥ 2) (6)

≤(1 − β)T L(D, h) + Tβ(1 − β)T−1
[
L(D, h) + "CS

h (h′)
]

(7)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax

=L(D, h) + Tβ(1 − β)T−1"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
L(D, h)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (8)

≤L(D, h) + Tβ"CS
h (h′) (9)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
(cmax − L(D, h))

≤L(D, h) + Tβ"CS
h (h′)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (10)

=L(D, h) + Tβ"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
cmax (11)

≤L(D, h) + Tβ"CS
h (h′) +

1
2
T 2β2cmax (12)

The first inequality is by bounding the probabilities of each event and
the corresponding losses. The second is by the assumption that the cost-
sensitive regret is negative (we are moving away from the optimal policy).
The third uses the assumption that β < 1/T . Others are by algebra.

Search-based Structured Prediction 11

Proof The proof largely follows the proofs of Lem 6.1 and Theorem 4.1 for
conservative policy iteration [23]. The three differences are that (1) we must
deal with the finite horizon case; (2) we move away from rather than toward
a good policy; and (3) we expand to higher order.

The proof works by separating three cases depending on whether hCS

or h is called in the process of running hnew. The easiest case is when hCS

is never called. The second case is when it is called exactly once. The final
case is when it is called more than once. Denote these three events by c = 0,
c = 1 and c ≥ 2, respectively.

L(D, hnew) =Pr(c = 0)L(D, hnew | c = 0)
+ Pr(c = 1)L(D, hnew | c = 1)
+ Pr(c ≥ 2)L(D, hnew | c ≥ 2) (6)

≤(1 − β)T L(D, h) + Tβ(1 − β)T−1
[
L(D, h) + "CS

h (h′)
]

(7)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax

=L(D, h) + Tβ(1 − β)T−1"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
L(D, h)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (8)

≤L(D, h) + Tβ"CS
h (h′) (9)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
(cmax − L(D, h))

≤L(D, h) + Tβ"CS
h (h′)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (10)

=L(D, h) + Tβ"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
cmax (11)

≤L(D, h) + Tβ"CS
h (h′) +

1
2
T 2β2cmax (12)

The first inequality is by bounding the probabilities of each event and
the corresponding losses. The second is by the assumption that the cost-
sensitive regret is negative (we are moving away from the optimal policy).
The third uses the assumption that β < 1/T . Others are by algebra.

Search-based Structured Prediction 11

Proof The proof largely follows the proofs of Lem 6.1 and Theorem 4.1 for
conservative policy iteration [23]. The three differences are that (1) we must
deal with the finite horizon case; (2) we move away from rather than toward
a good policy; and (3) we expand to higher order.

The proof works by separating three cases depending on whether hCS

or h is called in the process of running hnew. The easiest case is when hCS

is never called. The second case is when it is called exactly once. The final
case is when it is called more than once. Denote these three events by c = 0,
c = 1 and c ≥ 2, respectively.

L(D, hnew) =Pr(c = 0)L(D, hnew | c = 0)
+ Pr(c = 1)L(D, hnew | c = 1)
+ Pr(c ≥ 2)L(D, hnew | c ≥ 2) (6)

≤(1 − β)T L(D, h) + Tβ(1 − β)T−1
[
L(D, h) + "CS

h (h′)
]

(7)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax

=L(D, h) + Tβ(1 − β)T−1"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
L(D, h)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (8)

≤L(D, h) + Tβ"CS
h (h′) (9)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
(cmax − L(D, h))

≤L(D, h) + Tβ"CS
h (h′)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (10)

=L(D, h) + Tβ"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
cmax (11)

≤L(D, h) + Tβ"CS
h (h′) +

1
2
T 2β2cmax (12)

The first inequality is by bounding the probabilities of each event and
the corresponding losses. The second is by the assumption that the cost-
sensitive regret is negative (we are moving away from the optimal policy).
The third uses the assumption that β < 1/T . Others are by algebra.

Search-based Structured Prediction 11

Proof The proof largely follows the proofs of Lem 6.1 and Theorem 4.1 for
conservative policy iteration [23]. The three differences are that (1) we must
deal with the finite horizon case; (2) we move away from rather than toward
a good policy; and (3) we expand to higher order.

The proof works by separating three cases depending on whether hCS

or h is called in the process of running hnew. The easiest case is when hCS

is never called. The second case is when it is called exactly once. The final
case is when it is called more than once. Denote these three events by c = 0,
c = 1 and c ≥ 2, respectively.

L(D, hnew) =Pr(c = 0)L(D, hnew | c = 0)
+ Pr(c = 1)L(D, hnew | c = 1)
+ Pr(c ≥ 2)L(D, hnew | c ≥ 2) (6)

≤(1 − β)T L(D, h) + Tβ(1 − β)T−1
[
L(D, h) + "CS

h (h′)
]

(7)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax

=L(D, h) + Tβ(1 − β)T−1"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
L(D, h)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (8)

≤L(D, h) + Tβ"CS
h (h′) (9)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
(cmax − L(D, h))

≤L(D, h) + Tβ"CS
h (h′)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (10)

=L(D, h) + Tβ"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
cmax (11)

≤L(D, h) + Tβ"CS
h (h′) +

1
2
T 2β2cmax (12)

The first inequality is by bounding the probabilities of each event and
the corresponding losses. The second is by the assumption that the cost-
sensitive regret is negative (we are moving away from the optimal policy).
The third uses the assumption that β < 1/T . Others are by algebra.

Search-based Structured Prediction 11

Proof The proof largely follows the proofs of Lem 6.1 and Theorem 4.1 for
conservative policy iteration [23]. The three differences are that (1) we must
deal with the finite horizon case; (2) we move away from rather than toward
a good policy; and (3) we expand to higher order.

The proof works by separating three cases depending on whether hCS

or h is called in the process of running hnew. The easiest case is when hCS

is never called. The second case is when it is called exactly once. The final
case is when it is called more than once. Denote these three events by c = 0,
c = 1 and c ≥ 2, respectively.

L(D, hnew) =Pr(c = 0)L(D, hnew | c = 0)
+ Pr(c = 1)L(D, hnew | c = 1)
+ Pr(c ≥ 2)L(D, hnew | c ≥ 2) (6)

≤(1 − β)T L(D, h) + Tβ(1 − β)T−1
[
L(D, h) + "CS

h (h′)
]

(7)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax

=L(D, h) + Tβ(1 − β)T−1"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
L(D, h)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (8)

≤L(D, h) + Tβ"CS
h (h′) (9)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
(cmax − L(D, h))

≤L(D, h) + Tβ"CS
h (h′)

+
[
1 − (1 − β)T − Tβ(1 − β)T−1

]
cmax (10)

=L(D, h) + Tβ"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
cmax (11)

≤L(D, h) + Tβ"CS
h (h′) +

1
2
T 2β2cmax (12)

The first inequality is by bounding the probabilities of each event and
the corresponding losses. The second is by the assumption that the cost-
sensitive regret is negative (we are moving away from the optimal policy).
The third uses the assumption that β < 1/T . Others are by algebra.

[Binomial
Expansion]

[Binomial
Expansion]

[Keep first term and]

=L(D, h) + Tβ"CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
cmax (B.6)

≤L(D, h) + Tβ"CS
h (h′) +

1
2
T 2β2cmax (B.7)

The first inequality is by bounding the probabilities of each event and the correspond-
ing losses. The second is by the assumption that the cost-sensitive regret is negative (we
are moving away from the optimal policy). The third uses the assumption that β < T/2.
Others are by algebra.

Proof (Theorem 3.6: Convergence). The proof involves invoking Lemma 3.5 repeatedly.
After C/β iterations, we can verify that:

L(D, h) ≤ L(D, h0) + CT "avg + cmax

(
1
2
CT 2β

)

Last, if we call the optimal policy, we fail with loss at most cmax. The probability of
failure after C/β iterations is at most T (1 − β)C/β ≤ T exp[−C].

Section 3.6.1

Proof (Theorem 3.8). For the first part, we use a vector encoding of y that maintains
the decomposition over regions. Given a prefix y1, . . . , yi, solve opt on the future choices,
which gives us an optimal policy.

For the second part, we simply make Φ complex: for instance, include long-range
dependencies in sequence labeling. At the extreme, for non-zero w, this means computing
a minimum-energy configuration of a fully-connected Boltzmann machine, which is hard.

133

Proof Cont’d

• Lemma 2: After iterations of Searn, the loss of the
final classifier learned is bounded as

• Proof: Invoking Lemma 1 repeatedly, we get

• If we remove the initial (optimal) classifier, might incur a
loss of ; probability of failing after iterations

13

C/β

L(D, h) ≤ L(D, h0) + CTlavg +

(

1

2
CT 2β

)

12 Hal Daumé III et al.

This lemma states that applying a single iteration of Searn does not cause
the structured prediction loss of the learned hypothesis to degrade too much.
In particular, up to a first order approximation, the loss increases propor-
tional to the loss of the learned classifier. This observation can be iterated
to yield the following lemma:

Lemma 2 (Iteration) For all D, for all learned h′, after C/β iterations
of Searn beginning with a policy π with loss L(D,π), and average learned
losses as Eq (4), the loss of the final learned policy h (without the optimal
policy component) is bounded by Eq (13).

L(D, hlast) ≤ L(D,π) + CT #avg + cmax

(
1
2
CT 2β + T exp[−C]

)
(13)

This lemma states that after C/β iterations of Searn the learned policy
is not much worse than the quality of the initial policy π. The theorem
follows from a choice of the constants β and C in Lemma 2.

Proof The proof involves invoking Lemma 1 repeatedly. After C/β itera-
tions, we can verify that:

L(D, h) ≤ L(D,π) + CT #avg + cmax

(
1
2
CT 2β

)

Last, if we call the initial policy, we fail with loss at most cmax. The prob-
ability of failure after C/β iterations is at most T (1 − β)C/β ≤ T exp[−C].

5 Comparison to Alternative Techniques

Standard techniques for structured prediction focus on the case where the
arg max in Eq (14) is tractable. Given its tractability, they attempt to
learn parameters θ such that solving Eq (14) often results in low loss. There
are a handful of classes of such algorithms and a large number of variants
of each. Here, we focus on independent classifier models, perceptron-based
models, and global models (such as conditional random fields and max-
margin Markov networks). There are, of course, alternative frameworks (see,
eg., [58,36,1,39,54]), but these are common examples.

5.1 The arg max Problem

Many structured prediction problems construct a scoring function F (y | x, θ).
For a given input x ∈ X and set of parameters θ ∈ Θ, F provides a score for
each possible output y. This leads to the “arg max” problem (also known
as the decoding problem or the pre-image problem), which seeks to find the
y that maximizes F in order to make a prediction.

12 Hal Daumé III et al.

This lemma states that applying a single iteration of Searn does not cause
the structured prediction loss of the learned hypothesis to degrade too much.
In particular, up to a first order approximation, the loss increases propor-
tional to the loss of the learned classifier. This observation can be iterated
to yield the following lemma:

Lemma 2 (Iteration) For all D, for all learned h′, after C/β iterations
of Searn beginning with a policy π with loss L(D,π), and average learned
losses as Eq (4), the loss of the final learned policy h (without the optimal
policy component) is bounded by Eq (13).

L(D, hlast) ≤ L(D,π) + CT #avg + cmax

(
1
2
CT 2β + T exp[−C]

)
(13)

This lemma states that after C/β iterations of Searn the learned policy
is not much worse than the quality of the initial policy π. The theorem
follows from a choice of the constants β and C in Lemma 2.

Proof The proof involves invoking Lemma 1 repeatedly. After C/β itera-
tions, we can verify that:

L(D, h) ≤ L(D,π) + CT #avg + cmax

(
1
2
CT 2β

)

Last, if we call the initial policy, we fail with loss at most cmax. The prob-
ability of failure after C/β iterations is at most T (1 − β)C/β ≤ T exp[−C].

5 Comparison to Alternative Techniques

Standard techniques for structured prediction focus on the case where the
arg max in Eq (14) is tractable. Given its tractability, they attempt to
learn parameters θ such that solving Eq (14) often results in low loss. There
are a handful of classes of such algorithms and a large number of variants
of each. Here, we focus on independent classifier models, perceptron-based
models, and global models (such as conditional random fields and max-
margin Markov networks). There are, of course, alternative frameworks (see,
eg., [58,36,1,39,54]), but these are common examples.

5.1 The arg max Problem

Many structured prediction problems construct a scoring function F (y | x, θ).
For a given input x ∈ X and set of parameters θ ∈ Θ, F provides a score for
each possible output y. This leads to the “arg max” problem (also known
as the decoding problem or the pre-image problem), which seeks to find the
y that maximizes F in order to make a prediction.

C/β

L(D, hlast) ≤ L(D, h0) + CTlavg + cmax

(

1

2
CT 2β + T exp(−C)

)

Experiments

• Handwriting recognition [Kassel ’95]

• Named entity recognition

• Syntactic chunking and part-of-speech (POS) tagging

14

18 Hal Daumé III et al.

El presidente de la [Junta de Extremadura]ORG , [Juan Carlos Rodŕıguez Ibarra]PER

, recibirá en la sede de la [Presidencia del Gobierno]ORG extremeño a familiares
de varios de los condenados por el proceso “ [Lasa-Zabala]MISC ” , entre ellos
a [Lourdes Dı́ez Urraca]PER , esposa del ex gobernador civil de [Guipúzcoa]LOC

[Julen Elgorriaga]PER ; y a [Antonio Rodŕıguez Galindo]PER , hermano del general
[Enrique Rodŕıguez Galindo]PER .

Fig. 3 Example labeled sentence from the Spanish Named Entity Recognition
task.

6.1.1 Handwriting Recognition The handwriting recognition task we con-
sider was introduced by [25]. Later, [52] presented state-of-the-art results on
this task using max-margin Markov networks. The task is an image recogni-
tion task: the input is a sequence of pre-segmented hand-drawn letters and
the output is the character sequence (“a”-“z”) in these images. The data
set we consider is identical to that considered by [52] and includes 6600
sequences (words) collected from 150 subjects. The average word contains 8
characters. The images are 8×16 pixels in size, and rasterized into a binary
representation. Example image sequences are shown in Figure 2 (the first
characters are removed because they are capitalized).

For each possible output letter, there is a unique feature that counts
how many times that letter appears in the output. Furthermore, for each
pair of letters, there is an “edge” feature counting how many times this pair
appears adjacent in the output. These edge features are the only “structural
features” used for this task (i.e., features that span multiple output labels).
Finally, for every output letter and for every pixel position, there is a feature
that counts how many times that pixel position is “on” for the given output
letter.

In the experiments, we consider two variants of the data set. The first,
“small,” is the problem considered by [52]. In the small problem, ten fold
cross-validation is performed over the data set; in each fold, roughly 600
words are used as training data and the remaining 6000 are used as test data.
In addition to this setting, we also consider the “large” reverse experiment:
in each fold, 6000 words are used as training data and 600 are used as test
data.

6.1.2 Spanish Named Entity Recognition The named entity recognition
(NER) task is concerned with spotting names of persons, places and or-
ganizations in text. Moreover, in NER we only aim to spot names and
neither pronouns (“he”) nor nominal references (“the President”). We use
the CoNLL 2002 data set, which consists of 8324 training sentences and
1517 test sentences; examples are shown in Figure 3. A 300-sentence sub-
set of the training data set was previously used by [54] for evaluating the
SVMstruct framework in the context of sequence labeling. The small train-
ing set was likely used for computational considerations. The best reported
results to date using the full data set are due to [2]. We report results on
both the “small” and “large” data sets.

20 Hal Daumé III et al.

GreatNNP
B-NP AmericanNNP

I-NP saidVBD
B-VP itPRP

B-NP increasedVBD
B-VP itsPRP$

B-NP loan-lossNN
I-NP

reservesNNS
I-NP byIN

B-PP $$
B-NP 93CD

I-NP millionCD
I-NP afterIN

B-PP reviewingVBG
B-VP itsPRP$

B-NP loanNN
I-NP

portfolioNN
I-NP ..O

Fig. 5 Example sentence for the joint POS tagging and syntactic chunking task.

[49]. An example sentence jointly labeled for these two outputs is shown in
Figure 5 (under the BIO encoding).

For Searn, there is little difference between standard sequence labeling
and joint sequence labeling. We use the same data set as for the standard
syntactic chunking task (Section 6.1.3) and essentially the same features.
In order to model the fact that the two streams of labels are not indepen-
dent, we decompose the problem into two parallel tagging tasks. First, the
first POS label is determined, then the first chunk label, then the second
POS label, then the second chunk label, etc. The only difference between
the features we use in this task and the vanilla chunking task has to do
the structural features. The structural features we use include the obvious
Markov features on the individual sequences: counts of singleton, doubleton
and tripleton POS and chunk tags. We also use “crossing sequence” fea-
tures. In particular, we use counts of pairs of POS and chunk tags at the
same time period as well as pairs of POS tags at time t and chunk tags at
t − 1 and vice versa.

6.1.5 Search and Initial Policies The choice of “search” algorithm in Searn

essentially boils down to the choice of output vector representation, since,
as defined, Searn always operates in a left-to-right manner over the output
vector. In this section, we describe vector representations for the output
space and corresponding optimal policies for Searn.

The most natural vector encoding of the sequence labeling problem is
simply as itself. In this case, the search proceeds in a greedy left-to-right
manner with one word being labeled per step. This search order admits
some linguistic plausibility for many natural language problems. It is also
attractive because (assuming unit-time classification) it scales as O(NL),
where N is the length of the input and L is the number of labels, inde-
pendent of the number of features or the loss function. However, this vector
encoding is also highly biased, in the sense that it is perhaps not optimal for
some (perhaps unnatural) problems. Other orders are possible (such as al-
lowing any arbitrary position to be labeled at any time, effectively mimicing
belief propagation); see [12] for more experimental results under alternative
orderings.

For joint segmentation and labeling tasks, such as named entity identi-
fication and syntactic chunking, there are two natural encodings: word-at-
a-time and chunk-at-a-time. In word-at-a-time, one essentially follows the
“BIO encoding” and tags a single word in each search step. In chunk-at-
a-time, one tags single chunks in each search step, which can consist of
multiple words (after fixing a maximum phrase length). In our experiments,

Search-based Structured Prediction 19

[Great American]NP [said]VP [it]NP [increased]VP [its loan-loss reserves]NP [by]PP [$
93 million]NP [after]PP [reviewing]VP [its loan portfolio]NP , [raising]VP [its total loan
and real estate reserves]NP [to]PP [$ 217 million]NP .

Fig. 4 Example labeled sentence from the syntactic chunking task.

The structural features used for this task are roughly the same as in the
handwriting recognition case. For each label, each label pair and each label
triple, a feature counts the number of times this element is observed in the
output. Furthermore, the standard set of input features includes the words
and simple functions of the words (case markings, prefix and suffix up to
three characters) within a window of ±2 around the current position. These
input features are paired with the current label. This feature set is fairly
standard in the literature, though [2] report significantly improved results
using a much larger set of features. In the results shown later in this section,
all comparison algorithms use identical feature sets.

6.1.3 Syntactic Chunking The final sequence labeling task we consider is
syntactic chunking (for English), based on the CoNLL 2000 data set. This
data set includes 8936 sentences of training data and 2012 sentences of test
data. An example is shown in Figure 4. (Several authors have considered
the noun-phrase chunking task instead of the full syntactic chunking task.
It is important to notice the difference, though results on these two tasks
are typically very similar, indicating that the majority of the difficulty is
with noun phrases.)

We use the same set of features across all models, separated into “base
features” and “meta features.” The base features apply to words individu-
ally, while meta features apply to entire chunks. The standard base features
used are: the chunk length, the word (original, lower cased, stemmed, and
original-stem), the case pattern of the word, the first and last 1, 2 and 3
characters, and the part of speech and its first character. We additionally
consider membership features for lists of names, locations, abbreviations,
stop words, etc. The meta features we use are, for any base feature b, b
at position i (for any sub-position of the chunk), b before/after the chunk,
the entire b-sequence in the chunk, and any 2- or 3-gram tuple of bs in the
chunk. We use a first order Markov assumption (chunk label only depends
on the most recent previous label) and all features are placed on labels,
not on transitions. In the results shown later in this section, some of the
algorithms use a slightly different feature set. In particular, the CRF-based
model uses similar, but not identical features; see [50] for details.

6.1.4 Joint Chunking and Tagging In the preceding sections, we considered
the single sequence labeling task: to each element in a sequence, a single
label is assigned. In this section, we consider the joint sequence labeling
task. In this task, each element in a sequence is labeled with multiple tags.
A canonical example of this task is joint POS tagging and syntactic chunking

Experiments

15

22 Hal Daumé III et al.

ALGORITHM Handwriting NER Chunk C+T

Small Large Small Large
CLASSIFICATION

Perceptron 65.56 70.05 91.11 94.37 83.12 87.88
Log Reg 68.65 72.10 93.62 96.09 85.40 90.39
SVM-Lin 75.75 82.42 93.74 97.31 86.09 93.94
SVM-Quad 82.63 82.52 85.49 85.49 ∼ ∼

STRUCTURED

Str. Perc. 69.74 74.12 93.18 95.32 92.44 93.12
CRF − − 94.94 ∼ 94.77 96.48
SVMstruct − − 94.90 ∼ − −
M3N-Lin 81.00 ∼ − − − −
M3N-Quad 87.00 ∼ − − − −

SEARN

Perceptron 70.17 76.88 95.01 97.67 94.36 96.81
Log Reg 73.81 79.28 95.90 98.17 94.47 96.95
SVM-Lin 82.12 90.58 95.91 98.11 94.44 96.98
SVM-Quad 87.55 90.91 89.31 90.01 ∼ ∼

Table 1 Empirical comparison of performance of alternative structured predic-
tion algorithms against Searn on sequence labeling tasks. (Top) Comparison for
whole-sequence 0/1 loss; (Bottom) Comparison for individual losses: Hamming
for handwriting and Chunking+Tagging and F for NER and Chunking. Searn is
always optimized for the appropriate loss.

For all Searn-based models, we use the the following settings of the
tunable parameters (see [12] for a comparison of different settings). We use
the optimal approximation for the computation of the per-action costs. We
use a left-to-right search order with a beam of size 10. For the chunking
tasks, we use chunk-at-a-time search. We use weighted all pairs and costing
to reduce from cost-sensitive classification to binary classification.

Note that some entries in Table 1 are missing. The vast majority of these
entries are missing because the algorithm considered could not reasonably
scale to the data set under consideration. These are indicated with a “∼”
symbol. Other entries are not available simply because the results we report
are copied from other publications and these publications did not report all
relevant scores. These are indicated with a “−” symbol.

We observe several patterns in the results from Table 1. The first is that
structured techniques consistently outperform their classification counter-
parts (eg., CRFs outperform logistic regression). The single exception is on
the small handwriting task: the quadratic SVM outperforms the quadratic
M3N.5 For all classifiers, adding Searn consistently improves performance.

An obvious pattern worth noticing is that moving from the small data
set to the large data set results in improved performance, regardless of

5 However, it should be noted that a different implementation technique was
used in this comparison. The M3N is based on an SMO algorithm, while the
quadratic SVM is libsvm [6].

Experiments

• New “vine-growth” model for sentence summarization

• DUC 2005 data set: 50 sets of 25 documents each

• Evaluation: Rouge (-gram overlap) vs. human summaries

16

24 Hal Daumé III et al.

Fig. 6 An example of the creation of a summary under the vine-growth model.

document collection until a pre-defined word limit is reached. [53] and [33]
describe representative examples. Recent work in sentence compression [26,
38] and document compression [13] attempts to take small steps beyond
sentence extraction. Compression models can be seen as techniques for ex-
tracting sentences then dropping extraneous information. They are more
powerful than simple sentence extraction systems, while remaining train-
able and tractable. Unfortunately, their training hinges on the existence of
〈 sentence, compression 〉 pairs, where the compression is obtained from
the sentence by only dropping words and phrases (the work of [56] is an
exception). Obtaining such data is quite challenging.

The exact model we use for the document summarization task is a novel
“vine-growth” model, described in more detail in [12]. The vine-growth
method uses syntactic parses of the sentence in the form of dependency
structures. In the vine-growth model, if a word w is to be included in the
summary, then all words closer to the tree root are included.

6.2.1 Search Space and Actions The search algorithm we employ for im-
plementing the vine-growth model is based on incrementally growing sum-
maries. In essence, beginning with an empty summary, the algorithm incre-
mentally adds words to the summary, either by beginning a new sentence
or growing existing sentences. At any step in search, the root of a new sen-
tence may be added, as may any direct child of a previously added node. To
see more clearly how the vine-growth model functions, consider Figure 6.
This figure shows a four step process for creating the summary “the man
ate a sandwich .” from the original document sentence “the man ate a big
sandwich with pickles .”

When there is more than one sentence in the source documents, the
search proceeds asynchronously across all sentences. When the sentences
are laid out adjacently, the end summary is obtained by taking all the green
summary nodes once a pre-defined word limit has been reached. This final
summary is a collection of subtrees grown off a sequence of underlying trees:
hence the name “vine-growth.”

n

26 Hal Daumé III et al.

ORACLE SEARN BAYESUM

Vine Extr Vine Extr D05 D03 Base Best
100 w .0729 .0362 .0415 .0345 .0340 .0316 .0181 -
250 w .1351 .0809 .0824 .0767 .0762 .0698 .0403 .0725

Table 2 Summarization results; values are Rouge 2 scores (higher is better).

system. (Note that it is impossible to compare against competing structured
prediction techniques. This summarization problem, even in its simplified
form, is far too complex to be amenable to other methods.) For comparison,
we present results from the BayeSum system [14,16], which achieved the
highest score according to human evaluations of responsiveness in DUC 05.
This system, as submitted to DUC 05, was trained on DUC 2003 data; the
results for this configuration are shown in the “D03” column. For the sake
of fair comparison, we also present the results of this system, trained in
the same cross-validation approach as the Searn-based systems (column
“D05”). Finally, we present the results for the baseline system and for the
best DUC 2005 system (according to the Rouge 2 metric).

As we can see from Table 2 at the 100 word level, sentence extraction
is a nearly solved problem for this domain and this evaluation metric. That
is, the oracle sentence extraction system yields a Rouge score of 0.0362,
compared to the score achieved by the Searn system of 0.0345. This differ-
ence is on the border of statistical significance at the 95% level. The next
noticeable item in the results is that, although the Searn-based extraction
system comes quite close to the theoretical optimal, the oracle results for the
vine-growth method are significantly higher. Not surprisingly, under Searn,
the summaries produced by the vine-growth technique are uniformally bet-
ter than those produced by raw extraction. The last aspect of the results
to notice is how the Searn-based models compare to the best DUC 2005
system, which achieved a Rouge score of 0.0725. The Searn-based systems
uniformly dominate this result, but this comparison is not fair due to the
training data. We can approximate the expected improvement for having
the new training data by comparing the BayeSum system when trained on
the DUC 2005 and DUC 2003 data: the improvement is 0.0064 absolute.
When this result is added to the best DUC 2005 system, its score rises to
0.0789, which is better than the Searn-based extraction system but not as
good as the vine-growth system. It should be noted that the best DUC 2005
system was a purely extractive system [59].

7 Discussion and Conclusions

In this paper, we have:

– Presented an algorithm, Searn, for solving complex structured predic-
tion problems with minimal assumptions on the structure of the output
and loss function.

Bibliography
• Harold C. Daumé III, Practical structured learning for natural language processing, Ph.D. Thesis,

University of Southern California, 2006.
• Harold C. Daumé III, John Langford, and Daniel Marcu. Search-Based Structured Prediction,

Submitted to Machine Learning, 2007
• Robert Kassel. A Comparison of Approaches to On-line Handwritten Character Recognition.

PhD thesis, Massachusetts Institute of Technology, Spoken Language Systems Group, 1995.
• Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based

vector machines. Journal of Machine Learning Research, 2(5):265-292, 2001.
• Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks. Neural

Information Processing Systems (NIPS) 16, 2003.
• Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support vector

machine learning for interdependent and structured output spaces. Proceedings ICML, 2004.
• Fei Sha and Lawrence K. Saul. Large margin hidden Markov models for automatic speech

recognition, Neural Information Processing Systems (NIPS) 19, 2007.
• William W. Cohen and Vitor Carvalho. Stacked sequential learning. In Proceedings of the

International Joint Conference on Artificial Intelligence (IJ-CAI), 2005.
• Michael Collins and Brian Roark. Incremental parsing with the perceptron algorithm. In

Proceedings of the Conference of the Association for Computational Linguistics (ACL), 2004.
• Alina Beygelzimer, Varsha Dani, Tom Hayes, John Langford, and Bianca Zadrozny. Error limiting

reductions between classification tasks. In Proceedings of the International Conference on
Machine Learning (ICML), 2005.

