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Structured Prediction Intro

Given: labeled training data (z1,y1),. -+, (Tm,Ym) € X X Y
Task: learn mapping from inputs z € X to outputs y € )V
Special cases

® Binary classification: Y = {-1,1}

The dog chased the cat

® Multiclass classification:y = {1,....k FX oYY
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The dog chased the cat

Natural language parsing example:




Exploiting Structure

® Naive approach: treat each possible output in) as
discrete label, apply multiclass classification. But:

® Enumerating all members of ) often intractable

® Cannot model closeness of examples (changing one
node of tree vs. changing the entire tree)

® Approach: try to exploit structure and dependencies
within the output space

° Represent closeness of outputs using loss function

./f small loss .Tf big loss




SP Overview

Discriminative structured prediction papers typically
extend multiclass classification or regression techniques

Most classification schemes use SVM-like max-margin
linear classifications incorporating loss functions

® [Taskar, Guestrin, Koller '03], [Tsochantaridis,
Hofmann, Joachims, Altun '04] [Sha, Saul '07]

Regression formulation of SP: [Cortes, Mohri,VWeston '06]

Searn is a meta-algorithm. Claim: given multiclass classifier
achieving good generalization, Searn does the same for SP




Search-based SP

[Daume '06] [Daume, Langford, Marcu ’07]

Searn: view structured prediction as search problem
SP: distribution D over inputs, output costs (z,¢) |c| = ||
® e.g.. Tis input, ¢y is the loss for any ¥ to the true label ¥:

Define loss of cost-sensitive classifier h : X — ) as
L(D,h) = Eg,c)p {Chix) }

View outputs as vectors y = [y'", ..., yV], but
classification problems not limited to sequences

A classifier defines a path through space of input/output

pairs, and training process iteratively refines the classifier
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Searn Specifics

® We need to provide:
® (Cost-sensitive multiclass learning algorithm
® |nitial classifier
® | oss function

® |nitial classifier should have low training error, but need
not generalize well

® Could be best path from any standard search algorithm

® FEach Searn iteration finds a classifier that is not as good

on the training set, but generalizes a little better
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Searn Training

® Search state space: (input, partial output): s = (z,y'",...,y")

® |nitial classifier: pick next label that minimizes cost,
assuming that all future decisions are also optimal:

ho(S, C) — arg miny<z+1) miny(z+2),._.7y(L) C[(y(1),m,y(L))]

® |terative step: use current classifier i to construct a set of
examples to train the next classifier; then interpolate

® For each state, try every possible next output
® Cost assigned to each output tried is loss difference

In(c,s,a) = Eyos,a,n)Cy — I Eyr(s,a7,m)Cy
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Searn Training lllustration

In(¢, 8,a) = Eyr(s,a,n)Cy — L By~ (s,a7,h)Cy

1=1 1=2 1=3 1=4 1=5 1=06

/0

—> Prediction of current classifier h

---> Other path being considered (s,a,h)
® (Current state s

© Potential next state a
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Searn Training lllustration

In(c,s,a) =By (s,0,n)Cy — Il’Clbl/n Eym(s,a,1)Cy
=1 1=2 1=3 1=4 1=5 1=06

o o
”,’ﬁl.: 2 >

—> Prediction of current classifier h
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Searn Meta-Algorithm

® Input: (z1,1),--+, (Tm;Ym), ho, A
® while 1 has a significant dependence on %o:

® |nitialize set of cost-sensitive examples: S «— ()

® for i—1... .. m Use losses to
’ ’ build up
® Compute prediction: (y'V, ..., y%)) «— h(z;) | training
examples for

® for [ — L,...,L next iteration
1 l
State consists| ® St < (T4, y( )7 e 7y( )) /
of input and R

/

® for each next output aafters; : ¢ , < ln(c, s, a)

® Compute features and add example: S «— f(s;,¢)
® |earn and interpolate: A« A(S);h «— Bh' + (1 — B)h

® Return h with hp removed




Algorithm Analysis

h; is the classifier trained up to the:th iteration and [, (h})
is the loss of h;on this iteration’s training examples

T is the maximum length of any output sequence

Theorem: If ¢iaz = E(y c)op max c, and lgpg = 7 ZZ U, (RE)
(average loss over I |terat|ons) then total loss with g =1/7°
and 273InT iterations is bounded as

L(D, hiast) < L(D,ho) + 2T g glogT + (1 +1og T')crmaa /T
Proof analyses the mixture of old and new classifiers

In practice, 3 can be larger (more aggressive learning)
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Proof

Lemma |: For classifier 1" learned by interpolating » and 7'

as h"" «— Bh' + (1 —B)h, if oo = ]E(%C)ND max c, , We have
Y

1
L(D, k") < L(D, h) + TBU” (1) + 58T ¢

Proof: Consider 3 cases: i’ is never called (c = 0), is called
exactly once (c = 1),and is called more than once (¢ > 2)

Then loss of h,,.,, is bounded as
L(D,h"*") =Pr(c =0)L(D,h"" | ¢ =0)
+ Pr(c=1)L(D,h"¥ | c=1)
+ Pr(c > 2)L(D,h"" | ¢ > 2)
<(1= B)TL(D, k) + TH(1 — BT [L(D, k) + (5 (1)

1= (=07 = T80 - 8 e




Proof Cont'd

Lo, ey <(1 — BT L(D, h) + TH(1 — B)T- 1[L (D, h) + (S5 (h )}
+[1—(1—5) —TH(1— )T
=L(D,h) + TH(1 — B)T N5 (W) + (Z > (D, h)

1
:| Cmax

+ [1—(1—6 ~TH(1—B)T~ 1fcmax
<L(D,h) + TpL;" (k)

# 1= (1= 8)T = TB(L = BT (cmax — LD, 1))
<L(D,h) +TBL:5(h)

1= =BT = T8~ 8)"" | ema

—L(D,h) + TR (W) + (Z(—l)zﬂi (f)) Cmax

1=2

[Binomial
Expansion]

[Binomial
Expansion]

, 1
SL(D,h) + THES (W) + 5126 Cuna [Keep first term and s <7/2]




Proof Cont'd

® |emma 2:After(C/j3iterations of Searn, the loss of the
final classifier learned is bounded as

1
L(D, hzast) < L(D,ho) + CTlapg + Crmax <§CT25 4 Texp(—C’))

® Proof: Invoking Lemma | repeatedly, we get
L(D,h) < L(D, hg) + CTlyy, + <%CT26>

® If we remove the initial (optimal) classifier, might incur a
loss of Cax; probability of failing after C/ 3 iterations

T(1—B)°/5 <Texp[—C]




Experiments

® Handwriting recognition [Kassel '95]

® Named entity recognition

El presidente de la [Junta de Extremadura]org , [Juan Carlos Rodriguez Ibarralper
, recibird en la sede de la [Presidencia del Gobierno|org extremenio a familiares
de varios de los condenados por el proceso “ [Lasa-Zabalalmisc 7 , entre ellos
a [Lourdes Diez Urracalper , esposa del ex gobernador civil de [Guiptzcoa]Loc
[Julen Elgorriagalper ; v a [Antonio Rodriguez Galindo]pgr , hermano del general
[Enrique Rodriguez Galindo]per .

® Syntactic chunking and part-of-speech (POS) tagging

[Great American|np [said]vp [it]np [increased]vp [its loan-loss reserves|np [bylpp [$
93 million]|np [after]pp [reviewing]yp [its loan portfolio]np , [raising]ve [its total loan
and real estate reserves|yp [to|pp [$ 217 million|np .

NNP VBD itE_RNPP increased\é?v% itsE_R,\Tg loan-losswp

Greatihip American)\p  saidjam
reservesine bympp $$|§_NP 93 Rp million‘Rp afterh'pp reviewingyiss itsgﬁ\fg loan\p

portfoliolNp -5
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Experiments

ALGORITHM Handwriting NER
Small Large | Small Large

CLASSIFICATION
Perceptron 65.56  70.05 | 91.11  94.37
Log Reg 68.65  72.10 | 93.62  96.09
SVM-Lin 75.75  82.42 | 93.74 97.31
SVM-Quad 82.63  82.52 | 85.49 85.49

STRUCTURED
Str. Perc. 69.74 74.12 | 93.18 95.32
CRF — — 94.94 ~
SV Mstruet — — 94.90 ~
M°N-Lin ~ — —
M>N-Quad ~ — —

SEARN
Perceptron
Log Reg
SV M-Lin
SVM-Quad




Experiments

® New “vine-growth” model for sentence summarization
e DUC 2005 data set: 50 sets of 25 documents each

® Evaluation: Rouge (n-gram overlap) vs. human summaries

B by oo

sandwich l

[P

“the man ate .”

“the man ate a sandwich .”
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