Structural Zeros versus Sampling Zeros

Mehryar Mohri Brian Roark
Courant Institute - NYU CSLU - oGl
719 Broadway 20000 NW Walker Road
New York, NY 10003 Beaverton, Oregon 97006
nmohri @s. nyu. edu roark@sl u. ogi . edu
Abstract

Probabilistic sequence models estimated from large carparically require smoothing
techniques to reserve some probability mass for unobsemeuts. These techniques fail
to distinguish between events unobserved due to sampiiitations,sampling zerosand
those unobserved due to structural reasons such as sgraganstraintsstructural zeros
We investigate the use of statistical tests to determinettral zeros, to avoid assigning
them probability mass and thereby improve model accuracypeBmental results on a
context-free parsing task demonstrate the usefulneseséttechniques.

1 Motivation

The design of accurate probabilistic models for sequerscaskiey problem in a variety of applications in
computational biology and natural language processimgpbahilistic models for letters, phonemes, words, or
word classes (e.g. part-of-speech tags) are crucial coemsnf information extraction, speech recognition
and synthesis, or handwriting recognition systems [7, 91#, Similar models for DNA or protein sequences
are also of considerable importance in bioinformatics |, 1

Probabilistic models for sequences are typically derivedthflarge datasets. In natural language processing
applications, the corpora used often contain tens or haisdsémillion of tokens. Even so, one of the key
problems faced in the design of these models is that of daisisyx some sequences may not appear, even in
very large samples. Numerosisioothingechniques have been introduced to deal with this sparsityi@m

by reserving some probability mass for unobserved sequsgsee, e.g., [9]). A feature common to all of
these techniques is that they do not differentiate betwegnences that were unobserved due to the limited
size of the sample, which we refer to sampling zerosfrom sequences that were unobserved due to their
being grammatically forbidden or otherwise illicit, whiete call structural zeros Smoothing techniques
reserve some probability mass both for sampling and straiczeros.

If some or all structural zeros were known in advance, theyctbe excluded from the model, or equivalently
assigned no probability mass. The probability mass thefiedid up could be non-negligible. It could be

redistributed among possible sequences in a way that coyitbive the quality of the overall model. For any
given sequence modeling task, we cannot expect to havénexiists of such ill-formed sequences. Instead,
we propose to use a large corpus to infer that some sequerestacturally impossible using statistical

criteria and to use that information to improve the modeivdel from that corpus.

Note that our detection of structural zeros and the changagplies to the design of a statistical model are not
related to the so-callexkro-inflated modeld.0]. The purpose of zero-inflated models is to account foees
zeros (zero counts greater than expected), typically ngasing a model’s probability of zero, regardless of
their being structural or sampling zeros.

To illustrate the benefit of our approach, we investigate @liad sequences of grammatical categories on
the right-hand side (RHS) of rules in a probabilistic cottiege grammar (PCFG). PCFGs induced from
commonly used treebanks, such as the Penn Wall St. Jouri&al)(Weebank, contain many productions with
a lengthy sequence of categories on the RHS, causing botrsesgata problem (many possible productions
are unobserved) and a processing efficiency problem. @egtaimmar factorizations address both issues,
but allocate significant probability mass to ungrammattalctures, leading to large reductions in parsing
accuracy. We show that detecting and removing structurakzZiecom a factored PCFG provides the benefits
of the factorization with greatly improved parsing accyrac



The paper is organized as follows. We first discuss seveatittital criteria for detecting structural zeros
and compare them by applying them to a large corpus. Sectitas&ibes the application of our method to
context-free grammar factorization for chart parsing.tidect reports in detail the results of our experiments
with a probabilistic context-free parser trained on a larggous of about one million words.

2 Statistical Criteria

The main idea behind our method for detecting structuralzisrto search for events that are very frequent but
that do not co-occur. For example, to create a statistiogllage model for English, i.e. a probabilistic model
estimating the probability of any sequence of English wpvgs may wish to rule out some ungrammatical
sequences. We can use a large corpus to count the numberwfewes of any sequence of words. If
the counts of two sequencesandy are very large but the count of their co-occurrence is zdren the
co-occurrence af andy can be viewed as a candidate for the list of events that aretstally inadmissible.

In the simplest case, we can choasandy to be single words and count how oftenis followed byy. For
example, the wordsdf” and “the’ typically occur extremely frequently in a large sample afdlish text,

but if the count of the of’ is zero, then we can viewthe of’ as a candidate structural zero. In general, we
may wish to relax this condition by allowing the count of seqoexy to be non-zero and only require it

to be very low compared to the countsmfandy. This is because corpora may contain noisy data causing
illicit sequences to infrequently appear. But, to simplifatters, in what follows we will consider strictly
unobserved sequences

We can similarly view a trigranryz as a structural zero, when it does not appeatr, or very selgqpmaas
in the data while the bigramsy andyz appear very frequently, e.gbfand new york More generally, we
can distinguish am-gram sequence as a structural zero if the counts of its qubsees are relatively high.

While the examples just discussed were with sequences dfspmire same approach applies to other sequence
models. For example, a context-free grammar induced frenfPdnn Treebank may have a rule of the form
NP—DT JJ JJ NN NN NNS to handle such noun phrasestaes Hot tasty duck beak soupt a treebank,

a similar rule, such as NBDT RB JJ JJ NN NN NNS, which would handle such noun phraseghes *“
very hot tasty duck beak soypsiight be unobserved. Smoothing techniques can be appliedserve
some probability mass for such unobserved rules. But, tteedmiques would then similarly assign some
probability mass to many truly ungrammatical rules as walthis case, we can look at the co-occurrence of
categories on the right-hand side of productions with aiqaer left-hand side, to infer which combinations
are illicit.

Different statistical criteria can be used to compare thent®of two events with that of their co-occurrence.
This section briefly introduces several criteria and corap#éinem by applying them to the same corpus.

2.1 Notation

This section describes several statistical criteria temeine if a sequence of two words or categories should
be viewed as a structural zero. These tests can be gendrailmnger and more complex sequences, and to
different types of events.

Given a corpug€, and a vocabular¥, we denote by, the number of occurrences ofin C. Letn be the
total number of observations &. We will denote byz the set{y € X : y # x}. Hencecz = n — c,.
Letp(x) = % andfora € X, letp(a|xz) = C:—a Note thatcz, = ¢4 — Cza.

2.2 Mutual information

The mutual information between two random variab¥sndY is defined as

p(z,y)

I(X;Y) =) p(z,y)log ————. 1)
’ Z ’ p()p(y)
For a particular word sequence of length tad, this suggests the following statistic:
I(ab) = logp(ab) —logp(a) —logp(b)
= logcgpy — logce, — logcey, + logn (2)



Unfortunately, forcqa, = 0, I(ab) is not finite. If we assume, however, that all unobserved seces are
given somee count, then

I(ab) = K —logc, — logcy, 3)
where K is a constant. We need these statistics only for rankingqaag thus we can ignore the constant
factor.

2.3 Log odds ratio

Another statistic that, as with mutual information, isdifined with zeros, is thieg odds ratio
log(6) = logcap + logc,; — logcap — logc,z- 4)

Here again, ifcqy = 0, log(#) is not finite. But, if we give all unobserved bigrams a smallie, the
expression becomes

log(d) = K +logc,; — logcy — logcg. (5)

2.4 Pearson chi-squared

CiCj
ey

For anyi,j € X, definefi;; = The Pearson chi-squared test of independence is then diefine

follows:
x2 = (Cab= M) | (Cab = fa)® | (Cab = Pap)® | (Cab — fap)®
[ab Hab Hap Hap
_ (ncap — cacp)? + (ncap — cacp)? + (ncg,p — cacp)? + (ncgp — cacy)?
NCaCh NnC5Ch nC.Cj nCcsCy

In the case of interest for ug,, = 0 and the statistic simplifies as follows:

CaCh (ncy — cacp)? (nca — cacy)? 4 (n(n — ca — cp) — cacy)?

x? =
n NC5Ch NCqyCy ncaCy
2 2 2.2
CaCp = CpC,  CqCy c,Cp NCqCh
n ncg ncg ncaCy CaCg

2.5 Log likelihood ratio

Pearson’s chi-squared statistic assumes a normal or dppatety normal distribution, but that assumption
typically does not hold for the occurrences of rare evenrtsl{3s then preferable to use the likelihood ratio
statistic which allows us to compare the null hypothesiat #{b) = p(bla) = p(bla) = 2, with the
hypothesis thap (b|a) = %:, andp(bla) = %f These discrete conditional probabilities are a binomial
distribution, hence the likelihood ratio is

p(b)ee (1 — p(b))ee—cas ( (f:b )p(b)cab(l — p(b))ca—car ( ca )

Cab

p(bla)ee (1 = p(oja)y=-ee (2 ) pla)ees (1 = piola))es—eas ()
_ p(b)°=* (1 — p(b))°==>p(b)°=* (1 — p(b))°a = "
p(bla)cer (1 — p(bla))ca—carp(bla)cas (1 — p(b|a))ca—ca
In the special case wheeg, = 0, p(bla) = p(b), and this expression can be simplified as follows
(1 —p(b))*p(b)** (1 — p(b))= =

A
p(bla)e=>(1 — p(bla))ca—car
= (1 —p(®)™-. 8
The log likelihood ratio, denote@?, is known to be asymptoticallx? distributed. In this case
G? = —2c,log(1— p(b)) 9

and with the binomial, this has 1 degree of freedom, hencédigtgbution will asymptotically have a mean
of 1 and a standard deviation f2.



Top 50 list Top 200 list Top 500 list

Statistic| X2 | I | log(d) || X2 | I | log(9) || X% | I | log(h)
G? 3 |1 3 9 |4 9 28 | 13 28
x? - 3 0 - |8 0 - |25 0

T - 3 - 8 - 25

Table 1:Maximum difference in rank between different statisticstfip 50, 200 and 500 scoring unseen bigrams in 4M
word Switchboard corpus.

2.6 Ranking differences

Although all of these statistics are measuring nearly thmesthing, i.e., the frequency of the individual
events, each statistic is slightly different. To get a sesfskow these differences affect the ranking, we
generated the lists of the most surprising zero bigramsrdowpto each statistic, and compared their rank
order. For each list ok bigrams, we look for the largest difference in rank between s$tatistics. Table

1 shows the differences found, when the bigram statistieggathered from a 4 million-word Switchboard
corpus. The log odds ratio and Pearson chi-squared statigtie identical rankings. The log likelihood ratio
and mutual information statistics are closer togetherplatall the lists given by all of the statistics are quite
similar. In view of this similarity, we chose to use in our exjmnents the log likelihood ratio test.

3 Application to Statistical Parsing

We chose to illustrate these techniques within the contéxirababilistic grammar estimation because
smoothing techniques are widely used in this domain, but bécause adjacent categories on the right-
hand side (RHS) of a rule are by definition strongly consrdinhy grammaticality. With a relatively small
non-terminal vocabulary (about 100), this makes it for @mést-bed for detection and use of structural zeros.

3.1 Definitions

A context-free grammar (CFQF = (V, T, ST, P) consists of a set of non-terminal symbdfs a set of
terminal symbolsT’, a start symbolSt € V, a set of rule production® of the form: A — «, where

A € Vanda € (VUT)*. APCFG is a CFG with a probability assigned to each rule, shahthe
probabilities of all rules expanding a given non-terminahgo one; specifically, each RHS has a probability
given the left-hand side of the rule. For all of the trialsadgpd here, we trained a PCFG on sections 2-21
of the Penn WSJ Treebank (40k sentences, 936k words), ahditahon section 24 (1346 sentences, 32K
words). True part-of-speech tags are taken as terminalsyards are ignored.

3.2 Grammar smoothing and factorization

PCFGs induced from the Penn Treebank have many productitimsery long sequences of non-terminals
on the RHS. Probability estimates of the RHS given the lafichside are often smoothed by making a
Markov assumption regarding the conditional independefi@ecategory on those more th&ncategories
away [4, 2].

p(X - Yi...Y,) = p(i|X)[[p(¥ilX,Y1...Yi_1)
1=2
n
~ pM|X) [[ p(YilX,Yick...Yio1) (10)
=2

This Markov assumption provides probability mass to unolesproductions, whether those productions
are sampling or structural zeros.

Making a Markov assumption on productions is closely relate grammar transformations required for
certain efficient parsing algorithms. For example, the CéKsing algorithm [8, 13] takes as input a binarized
PCFG, i.e. a grammar with only binary productibnBCFGs are induced from a treebank, which has been

*Our implementation has been extended to allow for unaryymtions in the PCFG.
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Figure 1:Five representations of am-ary production;,n = 4. (a) Original production (b) Right-factored production
(c) Right-factored Markov-2 (d) Right-factored Markov4€) Right-factored Markov-0

PCFG Time (s) | Words/s| |NT| LR LP | F-measure
Right-factored 4171 7.8 10105 69.4 | 73.9 71.6
Right-factored, Markov-2 1145 28.3 2492 | 69.2 | 74.0 71.5
Right-factored, Markov-1 281 115.1 564 | 68.3 | 73.3 70.7
Right-factored, Markov-0 120 269.6 99 | 61.4| 65.7 63.5

Table 2:Baseline results of CYK parser using different probabdisbntext-free grammars. Grammars are trained from
sections 2-21 of the Penn WSJ Treebank and tested on sedtigivén the true POS-tags. The second and third columns
report the total parsing time in second and the number of svpadsed per second. The number of non-termifiis|,

is indicated in the next column. The last three columns st@ptecision, recall and F-measure.

factored so thah-ary productions wittn > 2 become sequencesaf— 1 binary productions. Full right-
factorization involves creating composite non-termingiéch group together the final — 1 categories from
the RHS of ann-ary production. For example, the original production NP DT JJ NN NNS shown in
figure 1(a) is factored into three binary rules, as shown iarédL(b). Note that a PCFG induced from such
right-factored trees is weakly equivalent to a PCFG indUoeh the original treebank, i.e. it describes the
same language.

From such a factorization, one can make a Markov assumptioastimating the production probabilities
by simply recording only the labels of the fiktchildren dominated by the composite factored label. Fig-
ure 1 (c), (d), and (e) show right-factored trees of Markodens 2, 1 and O respectively. In addition to a
smoothing benefit as mentioned above, these factorizatimhse the size of the non-terminal set, which in
turn improves CYK efficiency. The efficiency benefit of makiamd/iarkov assumption in factorization can
be substantial, since the CYK algorithm has complexitn&¥5|(|Vo|? + |Vy|)), wheren is the length

of the string,| Vo] is the size of the original, non-factored non-terminal setl | V| is the size of the set
of new, factored non-terminals With standard right-factorization, as in figure 1 (b), thensterminal set
for the PCFG induced from sections 2-21 of the Penn WSJ Tréegaws from its original size of 72 to
10105. With a Markov factorization of orders 2, 1 and 0 we get-terminal sets of size 2492, 564, and 99,
respectively.

These reductions in the size of the non-terminal set fronotiginal factored grammar results in an order
of magnitude reduction in complexity of the CYK algorithmn&common strategy in statistical parsing is
to first build a chart with a simple PCFG, which is then prungdmdo evaluating parses with richer, higher
complexity models [4, 2]. As a result, producing such a charefficiently as possible is very important
[3, 1], making these factorizations particularly useful.

Table 2 shows baseline results for standard right-facitidm and factorization with Markov orders 0-2.
Training consists of applying a particular grammar facation to the treebank prior to inducing a PCFG
using maximum likelihood (relative frequency) estimatidpasting consists of CYK parsing of the evaluation
set with the induced grammar, then de-transforming the mai likelihood parse back to the original format
for evaluation against the reference parse. Evaluationdies the standard PARSEVAL measures labeled
precision (LP) and labeled recall (LR), plus the harmoniam@--measure) of these two scores.

From these results, we can see the large efficiency benefiteofMarkov assumption, as the size of the

2Every binary production in the factored grammar must haeadithe original non-terminals as the first child, hence
there arg V| possibilities for first child andlV'| = |Vo| + | V| possibilities for second child. If the second child is in
Vo, then there ar@| Vy| possible parents. If the second child ig ¥ |, then there are just 2 possible parents, since the
factored category encodes parent information.



Unobs. productions | G2 scorg Req. NTs || Unobs. productions | G2 scord Req. NTs
S— a VP VP«y 24938.2 | S:VP S— aPPVP vy 2549.9 |S:VP+.
S— a VP VP .~y 24575.9 | S:VP+. NP — o DT CC NP~|2430.5 |NP:CC+NP
S— aVPNP VP~ [9096.3 [S:NP+VP || VP — o TONP~y 24246 |[VP:NP
S— a VP, NPy 7095.0 |S:+NP NP — o NNP, NP~ [2410.5 |NP:+NP

S— a,VPy 6582.3 |S:VP S— a VP ADVP~ |2331.7 |S:ADVP
S— a,VP.vy 6486.7 |S:VP+. S— a VP S« 23249 |S:S
NP — a DT, ~ 6136.9 |NP:, S— a NP CCx 2105.7 |S:CC

QP— a CDCDCD~|5358.6 |QP.CD+CI) NP— a PRP NNPy |2072.2 |NP:NNP
NP— aDT,NPy |2973.8 |[NP,+NP || NP— a NNP NPy |2048.9 |NP:NP
S=>a, .y 27833 |S, S aNPCCSy [20249 |SiCC+S

Table 3:Top 20 ranked unobserved production templates, using thikielihood ratio statistic, along with the factored
non-terminal required to give them zero probability.

PCFG Time (s) | Words/s| |NT]| LR LP | F-measure
Right-factored, Markov-0 120 269.6 99 | 61.4| 65.7 63.5
RF, Markov-0, top 100 zeros 157 206.1 152 | 68.0 | 72.5 70.2
RF, Markov-0, top 200 zeros 173 187.0 184 | 68.6 | 73.4 70.9
RF, Markov-0, top 500 zeros 234 138.3| 286 | 69.1| 73.8 71.4
RF, Markov-0, top 1000 zero$ 272 118.9| 386 | 69.2| 73.9 71.5
RF, Markov-0, top 2000 zero$ 370 874 596 | 69.2| 74.1 71.6

Table 4:Trials adding in categories to rule out unobserved prodadgmplates.

non-terminal set shrinks. However, the efficiency gains €@ha cost, with the Markov order-0 factored
grammar resulting in a loss of a full 8 percentage points afé¢asure accuracy. Ideally, one would like to
get the benefit of the small non-terminal set, while enfaydiey grammatical constraints. We will do this by
using a statistical test to find structural zeros and chamgdactorization to remove probability mass from
them.

4 Experiments — Structural Zeros

We used the log likelihood ratio statist@? to rank unobserved eventsh, wherea € (V U T) and
b € (VUT)* are asequence of children in the same producior+ « a b~,wherea,~v € (V UT)*
andby € (V U T)*fork > 1.

This corresponds to a situation where a sequence of chitébenith parentA are never observed. For use
in equation 9,

Ca = Za,b’,-y c(A — aabvy) c= Za,a,ﬂ c(A — aa' by)

Cap = Srn (A — aaby)  p(b) = moi . (1)

Thus,a andb may represent, for example, two events such as DT beingtthehild of an NP production,
and JJ being the1)th child of an NP production.

In the original or fully factored PCFGs, d,, = 0 then all productions that fit such a production template
would have probability zero using maximum likelihood esttion. With a Markov order-0 factored PCFG,
however, they would be given probability mass. To removeghabability mass, we can change the Markov
order-0 factorization to create the non-termidad b when factoring a sequence of children undebegin-
ning with b. The resulting grammar would provide zero probability masa non-terminak followed by b
under category.

We looked forb € (V U T)* for k € {1, 2} to find child sequences of length 2 and 3 that do not occur.
Table 3 shows the 20 highest ranked zero occurrence ruldagsmiven the=? statistic. The top ranked
unobserved rule template is a sequence of two VP childremi @roduction. In order to provide zero
probability to such productions, when factoring an S praidug the S:VP factored category (or one even
more specific, if needed for another zero, such as the seoahe list) must be used when the first child in
the factored sequence is a VP.



Table 4 shows the results of using an order-0 Markov facation, with factored categories required to
remove probability mass from the the tepranked unobserved production templates. Using the top 100
increases the size of the non-terminal set by just 53, butdrgs the F-measure accuracy by 6.7 percent.

5 Conclusion

We presented simple techniques for detecting structunaszesing large natural language corpora and
demonstrated their effectiveness for improving the acgud smoothed, factored PCFGs. The methods
outlined can be used to improve model accuracy in other dusndior example, the detection of structural
zeros in images could help improve the accuracy of image fimgpey adding data-derived model-constraints
to the recognizer. Using more complex features than cofoeaoes of neighboring events may lead to more
accurate techniques for detecting structural zeros. litiaddo their use for model enhancement, accu-
rate techniques for detecting structural zeros could hetfebunderstand human learning. The problem of
accurate detection of structural zeros may also arise muastions in statistical learning theory.
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