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ABSTRACT

Weighted automata and transducers are powerful devices used in many large-scale
applications. The efficiency of these applications is substantially increased when the
automata or transducers used are deterministic. There exists a general determinization
algorithm for weighted automata and transducers that is an extension of the classical
subset construction used in the case of unweighted finite automata [14]. However, not
all finite-state transducers or weighted automata and transducers can be determinized
using that algorithm, thus the question of the determinizability in that sense is essen-
tial. There exists a characterization of the determinizability of functional finite-state
transducers and that of unambiguous weighted automata over the tropical semiring
based on a general twins property. In the case of finite-state transducers, we give an
efficient algorithm for testing functionality in time O(|Q|2 |∆|+ |E|2) where Q is the set
of states, E the set of transitions, and ∆ the ouput alphabet of the input transducer.
We also present a new and computationally more efficient algorithm for testing the
twins property whose complexity is O(|Q|2(|Q|2 + |E|2)). In the automata case, we
present a new and substantially more efficient algorithm for testing the twins property
for unambiguous and cycle-unambiguous weighted automata over commutative and
cancellative semirings whose complexity is O(|Q|2 + |E|2), which we conjecture to be
optimal. Our experiments show our algorithms for testing the twins property to be
practical with large weighted automata and transducers of several million transitions
found in speech recognition applications.

Keywords: Finite-state transducers, weighted automata, rational power series, deter-
minization, twins property, algorithms.
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1. Introduction

Finite automata are classical computational devices used in a variety of large-scale
applications [1]. Some applications such as text, speech or image processing require
more general devices, weighted automata, to account for the variability of the data and
to rank alternative hypotheses [14, 9]. A weighted automaton is a finite automaton
in which each transition carries some weight in addition to the usual symbol. Finite-
state transducers are automata whose transitions are additionally labeled with an
output label.

Weighted automata and transducers provide a common representation for the com-
ponents of complex systems in many applications. These components can be combined
efficiently using general algorithms such as composition of weighted transducers [16].
The time efficiency of such systems is substantially increased when deterministic or
subsequential machines are used [14] and the size of these machines can be further
reduced using general minimization algorithms [14, 15]. A weighted automaton or
transducer is deterministic or subsequential if it has a unique initial state and if no
two transitions leaving the same state share the same input label.

A general determinization algorithm for weighted automata and transducers was
introduced by [14]. The algorithm is an extension of the classical subset construction
used for unweighted finite automata and outputs a deterministic machine equivalent
to the input weighted automaton or transducer. But, unlike the case of unweighted
automata, not all finite-state transducers or weighted automata and transducers can
be determinized using this algorithm. In fact, some machines do not even admit any
equivalent subsequential one, they are not subsequentiable. Thus, it is important to
design an algorithm for testing the determinizability of finite-state transducers and
weighted automata.

A characterization of subsequentiable finite-state transducers based on a twins
property was given by [6, 7]. The twins property was also shown to be decid-
able by the same author [4]. The first polynomial-time algorithm for deciding the
twins property for functional transducers was given by [20], its time complexity is
O(|Q|4(|Q|2 + |E|2)|∆|) where Q is the set of states of the input transducer, E the set
of its transitions and ∆ the output alphabet.1 More recently, [3] proposed a similar
polynomial-time algorithm for deciding the twins property for functional transducers
whose complexity is O(|Q|4(|Q|2 + |E|2)).2 This complexity only differs from that of
[20] by the fact that it does not depend on the size of the output alphabet.

We present a new and computationally more efficient algorithm for testing the twins
property for finite-state transducers. The worst case complexity of our algorithm is
O(|Q|2(|Q|2 + |E|2)). It is based on a general algorithm of composition of finite-state
transducers and a new characterization of the twins property in terms of combinatorics
of words.

In the case of weighted automata, a similar twins property was introduced by

1This is based on our most favorable estimate of the complexity of that algorithm, the authors
do not give a precise analysis of the complexity of their algorithm.

2This is the correct and updated expression of the complexity as provided by the journal version
of the paper [3].
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[14] to characterize the determinizability of unambiguous weighted automata over
the tropical semiring. The property was also shown to be a sufficient condition for
the determinizability of ambiguous machines. [14] also gave an algorithm for testing
the twins property for unambiguous weighted automata over a commutative semiring
with cancellative multiplication. The complexity of an implementation of this algo-
rithm was analyzed by [5] to be O(|E|2|Q|6). We present a new and substantially
more efficient algorithm for testing the twins property for unambiguous and cycle-
unambiguous weighted automata over commutative and cancellative semirings whose
complexity is O(|Q|2 + |E|2). We further conjecture this complexity to be optimal.

The first step of our algorithms, in both the transducer and weighted automata
cases, consists of constructing the intersection or composition of the inverse of the
input machine M and itself, M−1 ◦M , which can be done in quadratic time O(|Q|2 +
|E|2). The cost of the remaining work in the automata case is linear in the size of the
result of composition.

We also give an efficient algorithm to test the functionality of a transducer T , that
is to determine if T represents a function, using the composed machine T−1 ◦ T . The
complexity of our algorithm is O(|Q|2 |∆|+ |E|2) where ∆ is the output alphabet.

Our algorithms can be used to test the twins property for weighted transducers,
which are the representations commonly used in speech recognition applications. We
report experimental results demonstrating their practicality in such applications.

The paper is organized as follows. Section (2) introduces the definitions and nota-
tion used in the following sections and briefly describes the composition algorithm for
weighted automata and transducers which is used in the first step of several of our
algorithms. Section (3) gives a brief overview of a general determinization algorithm,
introduces the twins property, and presents a number of characterization results for
various classes of semirings. In Section (4), we describe our algorithm for testing the
twins property for weighted automata. Section (5) gives some basic definitions and
presents several combinatorial results related to string residues that are crucial for the
proofs and the design of the algorithms introduced in the next sections. Section (6)
presents our algorithm for testing the functionality of a finite-state transducer, and
Section (7) our algorithm for testing the twins property for finite-state transducers.
Finally, Section (8) briefly reports experimental results showing that our algorithms
are practical even with the large automata and transducers found in large-vocabulary
speech recognition applications.

2. Preliminaries

2.1. Definitions

Weighted automata are automata in which the transitions are labeled with weights
in addition to the usual alphabet symbols. For various operations to be well-defined,
the weight set needs to have the algebraic structure of a semiring [13] or a left
semiring [15].
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Definition 1 A right semiring (left semiring) is a system (K,⊕,⊗, 0, 1) where:

• (K,⊕, 0) is a commutative monoid with 0 as the identity element for ⊕,

• (K,⊗, 1) is a monoid with 1 as the identity element for ⊗,

• ⊗ right (resp. left) distributes over ⊕: (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) (resp.
c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b)),

• 0 is an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0.

(K,⊕,⊗, 0, 1) is a semiring if it is both a left and a right semiring.

A semiring is commutative when ⊗ is commutative. Thus, a semiring is a ring that
may lack negation. Some classical examples of semirings are the tropical semiring
(R+ ∪ {∞}, min, +,∞, 0) or the semiring of non-negative integers (N, +,×, 0, 1). The
string semiring (Σ∗ ∪∞,∧, ·,∞, ε), where ∧ denotes the longest common prefix op-
eration, · concatenation and ∞ an additional element (such that, for all string w,
w ∧ ∞ = ∞ ∧ w = w and w · ∞ = ∞ · w = ∞), is a left semiring [15]. The mul-
tiplicative operation of a semiring (K,⊕,⊗, 0, 1) is said to be cancellative if for any
x, x′ and x0 in K such that x0 6= 0, x ⊗ x0 = x′ ⊗ x0 implies x = x′. The semiring
(K,⊕,⊗, 0, 1) is then also said to be cancellative.

A semiring (K,⊕,⊗, 0, 1) is said to be left divisible if for any x 6= 0, there exists
y ∈ K such that y⊗x = 1, that is if all elements of K admit a left inverse. (K,⊕,⊗, 0, 1)
is said to be weakly left divisible if for any x and y in K such that x ⊕ y 6= 0, there
exists at least one z such that x = (x⊕ y)⊗ z. When the ⊗ operation is cancellative,
z is unique and we can then write: z = (x ⊕ y)−1x. When z is not unique, we
can still assume that we have an algorithm to find one of the possible z and call it
(x ⊕ y)−1x. Furthermore, we will assume that z can be found in a consistent way,
that is: ((u⊗x)⊕ (u⊗ y))−1(u⊗x) = (x⊕ y)−1x for any x, y, u ∈ K such that u 6= 0.
A semiring is zero-sum-free if for any x and y in K, x⊕ y = 0 implies x = y = 0. In
the following definitions, K is assumed to be a left semiring or a semiring.

Definition 2 A weighted automaton A = (Σ, Q, I, F, E, λ, ρ) over K is a 7-tuple
where:

• Σ is the finite alphabet of the automaton,

• Q is a finite set of states,

• I ⊆ Q the set of initial states,

• F ⊆ Q the set of final states,

• E ⊆ Q× Σ×K×Q a finite set of transitions,

• λ : I → K the initial weight function mapping I to K, and

• ρ : F → K the final weight function mapping F to K.

Definition 3 A finite-state transducer T = (Σ, ∆, Q, I, F, E, λ, ρ) is an 8-tuple
where:
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• Σ is the finite input alphabet of the transducer,

• ∆ is the finite output alphabet,

• Q is a finite set of states,

• I ⊆ Q the set of initial states,

• F ⊆ Q the set of final states,

• E ⊆ Q× (Σ ∪ {ε})× (∆ ∪ {ε})×Q a finite set of transitions,

• λ : I → ∆∗ the initial output function mapping I to ∆∗, and

• ρ : F → ∆∗ the final output function mapping F to ∆∗.

Given a transition e ∈ E, we denote by i[e] its input label, p[e] its origin or previous
state and n[e] its destination state or next state, w[e] its weight (weighted automata
case), o[e] its output label (transducer case). Given a state q ∈ Q, we denote by E[q]
the set of transitions leaving q.

A path π = e1 · · · ek in A is an element of E∗ with consecutive transitions: n[ei−1] =
p[ei], i = 2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek] and p[π] =
p[e1]. We denote by P (q, q′) the set of paths from q to q′ and by P (q, x, q′) the set
of paths from q to q′ with input label x ∈ Σ∗. These definitions can be extended to
subsets R, R′ ⊆ Q, by: P (R, x, R′) =

⋃
q∈R, q′∈R′ P (q, x, q′). The labeling functions i

(and similarly o) and the weight function w can also be extended to paths by defining
the label of a path as the concatenation of the labels of its constituent transitions,
and the weight of a path as the ⊗-product of the weights of its constituent transitions:
i[π] = i[e1] · · · i[ek], w[π] = w[e1] ⊗ · · · ⊗ w[ek]. We also extend w to any finite set
of paths Π by setting: w[Π] =

⊕
π∈Π w[π]. The output weight associated by an

automaton A to an input string x ∈ Σ∗ is defined by:

[[A]](x) =
⊕

π∈P (I,x,F )

λ(p[π])⊗ w[π] ⊗ ρ(n[π])

[[A]](x) is defined to be 0 when P (I, x, F ) = ∅. The set of output strings associated
by a transducer T to an input string x is defined by:

[[T ]](x) =
⋃

π∈P (I,x,F )

λ(p[π]) · o[π] · ρ(n[π])

[[T ]](x) = ∅ when P (I, x, F ) = ∅. The domain of definition of T is defined as:
Dom(T ) = {x ∈ Σ∗ : [[T ]](x) 6= ∅}. A transducer is functional or single-valued if
it associates at most one string to any input string x, that is if |[[T ]](x)| ≤ 1. Func-
tional transducers can be viewed as weighted automata over the string semiring [14].

A successful path in a weighted automaton or transducer M is a path from an initial
state to a final state. A state q of M is accessible if q can be reached from I. It is
coaccessible if a final state can be reached from q. A weighted automaton M is trim
if there is no transition with weight 0 in M and if all states of M are both accessible
and coaccessible. M is cycle-unambiguous if for any state q and any string x there is
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at most one cycle in q labeled with x. M is unambiguous if for any string x ∈ Σ∗ there
is at most one successful path labeled with x. Thus, an unambiguous transducer is
functional.

2.2. Intersection and Composition

Intersection of weighted automata and composition of finite-state transducers are
both special cases of composition of weighted transducers, that is transducers whose
transitions are labeled with some weight in addition to the input and output symbols.
The semiring need to be commutative for this construction to work. States in the
composition T1 ◦ T2 of two weighted transducers T1 and T2 are identified with pairs
of a state of T1 and a state of T2.

3 Leaving aside transitions with ε inputs or outputs,
the following rule specifies how to compute a transition of T1 ◦ T2 from appropriate
transitions of T1 and T2:

4

(q1, a, b, w1, q2) and (q′1, b, c, w2, q
′

2) =⇒ ((q1, q2), a, c, w1 ⊗ w2, (q
′

1, q
′

2))

Intersection corresponds to the case where input and output labels of transitions
are identical and the composition of unweighted transducers is obtained by simply
omitting the weights. Thus, we can use both the notation A = A1 ∩A2 or A1 ◦A2 for
the intersection of two weighted automata A1 and A2. A string x is recognized by A
iff it is recognized by both A1 and A2 and [[A]](x) = [[A1]](x)⊗ [[A2]](x).

Similarly, given two strings x ∈ Σ∗ and y ∈ Θ∗, y ∈ [[T1 ◦T2]](x) iff there is a string
z ∈ ∆∗ such that z ∈ [[T1]](x) and y ∈ [[T2]](z). The inverse of T is the transducer
denoted by T−1 and obtained from T by transposing the input and output labels of
each transition of T . Note that, given two string x ∈ Σ∗ and y ∈ ∆∗, x ∈ [[T−1]](y) iff
y ∈ [[T ]](x). In the following, we will assume without loss of generality that the initial
weight or output function λ is respectively 1 and ε to simplify the presentation.

3. Determinization and the twins property

3.1. Deterministic or subsequential machines

A weighted automaton or a finite-state transducer M is deterministic or subsequential
if it has a deterministic input [19], that is if it has a unique initial state and if no two
transitions leaving the same state share the same input label. A weighted automaton
or a finite-state transducer M is subsequentiable if there exists a subsequential machine
M ′ equivalent to M : [[M ]] = [[M ′]].

In what follows, we assume that the weighted automata considered are all such
that for any string x ∈ Σ∗, w[P (I, x, Q)] 6= 0. This condition is always satisfied with
trim machines over the tropical semiring, the string semiring or any zero-sum-free
semiring.

3We use a matrix notation for the definition of composition as opposed to a functional notation.
4See [16] for a detailed presentation of the algorithm including the use of a filter for dealing with

ε-multiplicity in the case of non-idempotent semirings
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Figure 1: Determinization of a weighted automaton over the tropical semiring.
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Figure 2: Determinization of a functional transducer.

3.2. Determinization

There exists a natural extension of the classical subset construction to the case of
weighted automata over a weakly left divisible left semiring called determinization
[14]. The algorithm is generic: it works with any weakly left divisible left semiring.
It covers in particular the case of finite-state transducers since the string semiring is
weakly left divisible.

The states of the result of the determinization of a weighted automaton A =
(Q, I, F,Σ, δ, σ, λ, ρ) correspond to weighted subsets {(q0, w0), . . . , (qn, wn)} where
each qi ∈ Q is a state of the input machine, and wi a remainder weight. The al-
gorithm starts with the subset reduced to {(i, λ(i)) : i ∈ I} and proceeds by creating
a transition labeled with a ∈ Σ and weight w leaving {(q0, w0), . . . , (qn, wn)} if there
exists at least one state qi admitting an outgoing transition labeled with a, w being
defined by:5

w =
⊕

e∈E[qi], l[e]=a

wi ⊗ w[e]

Fig. (1) illustrates the application of the algorithm to an input weighted automaton
over the tropical semiring. A state r of the output automaton that can be reached
from the start state by a path π corresponds to the set of pairs (q, x) ∈ Q× K such
that q can be reached from an initial state of the original machine by a path σ with
label i[σ] = i[π] and weight w[σ] such that λ(p[σ])⊗w[σ] = λ(p[π])⊗w[π]⊗x. Thus,

5See [14] for a full description of the algorithm.
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Figure 3: (a) Non-determinizable weighted automaton over the tropical semiring; states 1
and 2 are non-twin siblings. (b) The first states created by determinization applied to the
automaton of Figure (a). The algorithm does not halt and produces an infinite number of
states in this case.
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Figure 4: (a) Non-determinizable functional transducer, or weighted automaton over the
string semiring; states 1 and 2 are non-twin siblings. (b) Determinization does not halt and
creates an infinite number of states in this case.

x can be viewed as the remainder weight at state q.

Similarly, Fig. (2) illustrates the determinization of a functional transducer, or,
equivalently, a weighted automaton over the string semiring. Here, the weighted
subsets are made of pairs (q, x) where q is a state of the original transducer and x a
remainder string.

Unlike the unweighted case, determinization does not halt for some input weighted
automata. This is clear since some weighted automata are not even subsequentiable.
Fig. (3) and Fig. (4) show a weighted automaton over the tropical semiring and a
functional finite-state transducer for which determinization does not halt and that are
not subsequentiable. In what follows, we say that a weighted automaton or a finite-
state transducer M is determinizable if the determinization algorithm of [14] halts
for the input M . With a determinizable input, the algorithm outputs an equivalent
subsequential weighted automaton. Note that any acyclic weighted automaton is
determinizable because the number of weighted subsets created by the algorithm is at
most equal to the number of distinct strings labeling the paths of the original machine
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Figure 5: Illustration of the relationship between the twins property and determinization.

starting at an initial state.
By definition, determinizability implies subsequentiability, but the converse does

not always hold: in some semirings, there are subsequentiable weighted automata
that are not determinizable. In general, it is not known if the sequentiability or the
determinizability of a machine M is decidable. Some results are available for specific
semirings or classes of semirings however. In particular, in the string semiring, both
subsequentiability and determinizability are known to be decidable and are in fact
equivalent for trim machines, see Section (3.5). Partial decidability results are also
available for the tropical semiring, see Section (3.4). For both of these semirings,
the results and characterizations are based on a property of the input automaton or
transducer that we will describe in the next section.

3.3. The twins property

This property was first formulated for finite-state transducers by [7, 4] and for
weighted automata over the tropical semiring by [14]. Here, we give a general for-
mulation of this property for weighted automata over any weakly left divisible left
semiring not necessary commutative. The definition covers in particular the case of
finite-state transducers.

Definition 4 Let A be a weighted automaton over a weakly left divisible left semiring
K. Two states q and q′ of A are said to be siblings if there exist two strings x and y
in Σ∗ such that both q and q′ can be reached from I by paths labeled with x and there
is a cycle at q and a cycle at q′ both labeled with y. Two sibling states q and q′ are
said to be twins if for any strings x and y, the following equation and its symmetric
counterpart obtained by transposing q and q′ hold:

(w[P (I, x, q)] ⊕ w[P (I, x, q′)])−1w[P (I, x, q′)] =

((w[P (I, x, q)] ⊗ w[P (q, y, q)]) ⊕ (w[P (I, x, q′)]⊗ w[P (q′, y, q′)]))−1

w[P (I, x, q′)]⊗ w[P (q′, y, q′)] (1)

A has the twins property if any two sibling states of A are twins.

Figs. (5)(a)-(b) illustrate the connection between the twins property and determiniza-
tion. States q and q′ of the automaton of Fig. (5) (a) are siblings. Determinization
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creates a state r corresponding to the subset {(q, (u⊕u′)−1u), (q′, (u⊕u′)−1u′)}. For
determinization to terminate and not to create an infinite number of states, there
needs to be a cycle with input label y at state r. For this cycle to exists, the subset
corresponding to the destination state and the one corresponding to r must coincide,
in particular the weight associated to q must be the same in both subsets:

[(u⊕ u′)−1((u ⊗ v)⊕ (u′ ⊗ v′))]−1((u⊕ u′)−1u⊗ v) = (u⊕ u′)−1u

which can be rewritten as: ((u ⊗ v) ⊕ (u′ ⊗ v′))−1(u ⊗ v) = (u ⊕ u′)−1u, that is the
twins property.

In the following paragraphs, we will present the decidability results known for
several classes of semirings and several characterizations based on the twins property.

3.4. Commutative and cancellative semirings

In this section, we assume that the semiring K is commutative and that its multi-
plicative operation is cancellative.

3.4.1. Simpler formulation of the twins property

Proposition 1 Assume that K is commutative and cancellative, then two sibling
states q and q′ are twins iff for any string y:

w[P (q, y, q)] = w[P (q′, y, q′)] (2)

Proof. Let q and q′ be two sibling states. For any strings x and y, Eq. (1) can then
be rewritten as:

(u⊕ u′)−1u = (uv ⊕ u′v′)−1uv

if we let u = w[P (I, x, q)], u′ = w[P (I, x, q′)], v = w[P (q, y, q)] and v′ = w[P (q′, y, q′)].
Multiplying both sides of this equality by (u⊕ u′)(uv ⊕ u′v′) gives:

(u⊕ u′)(uv ⊕ u′v′)(u ⊕ u′)−1u = (u ⊕ u′)(uv ⊕ u′v′)(uv ⊕ u′v′)−1uv

Since the semiring is commutative, this can be reduced to (uv ⊕ u′v′)u = (u⊕ u′)uv.
Since multiplication is cancellative, factor u can be removed from both sides:

(uv ⊕ u′v′) = (u⊕ u′)v (3)

Similarly, the symmetric version of Eq. (1) for q′ and q leads to:

(uv ⊕ u′v′) = (u ⊕ u′)v′ (4)

Eqs. (3) and (4) imply that (u ⊕ u′)v = (u ⊕ u′)v′, which gives v = v′ since ⊗ is
cancellative. Conversely, assume that v = v′, then:

(uv ⊕ u′v′)−1uv = (uv ⊕ u′v)−1uv = v−1(u⊕ u′)−1uv

Using the commutativity of ⊗, we obtain: (uv ⊕ u′v′)−1uv = (u⊕ u′)−1u. 2
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0

x/1

1/1x/1

x/1

Figure 6: Infinitely ambiguous weighted automaton over the real semiring which has the
twins property but is not determinizable.

3.4.2. Tropical semiring

Eq. (2) corresponds to our original formulation of the twins property for weighted
automata [14]. We had proved that the twins property is a sufficient condition for
determinizability in the tropical semiring using that formulation.

Theorem 1 ([14]) Let A be a weighted automaton over the tropical semiring. If A
has the twins property, then A is determinizable.

With trim unambiguous weighted automata, the condition is also necessary.

Theorem 2 ([14]) Let A be a trim unambiguous weighted automaton over the trop-
ical semiring. Then the three following properties are equivalent:

1. A is determinizable.

2. A has the twins property.

3. A is subsequentiable.

The theorem motivates the need for an efficient algorithm testing the twins property
for weighted automata over the tropical semiring.

3.4.3. Other commutative and cancellative semirings

Theorem 2 can be generalized to the real semiring and the log semirings using the
proofs given by [14]. But, the equivalent of theorem 1 does not hold for these semir-
ings. Some infinitely ambiguous weighted automata over the real or log semirings are
not subsequentiable and thus not determinizable despite they have the twins property.
Fig. (6) shows a simple example of such a weighted automaton.

3.5. The string semiring

Eq. (1) of Section (3.3) defining the twins property can be simplified in the particular
case of the string semiring and re-written as: for any paths π1 ∈ P (I, y, q), π2 ∈
P (q, x, q), π′

1 ∈ P (I, y, q′), π′

2 ∈ P (q′, x, q′),

o[π1]
−1o[π′

1] = (o[π1]o[π2])
−1o[π′

1]o[π
′

2] (5)

if we adopt the notation of the first definition of finite-state transducers given in
Section (2.1). The twins property provides a characterization of the determinizability
of functional transducers.
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Theorem 3 Let T be a trim functional transducer. Then the three following proper-
ties are equivalent:

1. T is determinizable.

2. T has the twins property.

3. T is subsequentiable.

The equivalence of the last two properties was shown by [7] who also showed that
the twins property is decidable. The proof of the equivalence of the first two state-
ments is a special case of a general proof given by [2]. Since the twins property is
decidable, the theorem also implies that subsequentiability and determinizability are
decidable for trim functional transducers. We will present efficient algorithms for
testing functionality and the twins property for finite-state transducers.

Determinization can be extended to output finitely subsequential transducers, that
is deterministic transducers with a finite number of final outputs. With that exten-
sion, theorem 3 can be generalized by relaxing the condition on the functionality of
the transducer, and by replacing subsequentiable transducers by finitely subsequen-
tiable transducers, that is transducers that admit an equivalent finitely subsequential
transducer.

Theorem 4 ([2]) Let T be a trim finite-state transducer. Then the following three
properties are equivalent:

1. T is determinizable.

2. T has the twins property.

3. T is finitely subsequentiable.

3.6. Finite semirings

The case of finite semirings is trivial since only a finite number of distinct weighted
subsets can be constructed by determinization in such semirings. Thus all weighted
automata over a finite semiring are determinizable and subsequentiable. The specific
case of the Boolean semiring or unweighted automata is a classical result of automata
theory.

4. Test of the twins property for weighted automata

In this section, we assume that the semiring (K,⊕,⊗, 0, 1) is commutative and can-
cellative. By proposition 1, two sibling states q and q′ of a weighted automaton over
K are twins iff for any string y: w[P (q, y, q)] = w[P (q′, y, q′)].

Since the multiplicative operation of the semiring K is cancellative, an inverse can
be simulated externally by considering the semiring K

′ = (K×K)/ ≡ where ≡ denotes
the equivalence relation defined by (x, y) ≡ (z, t) iff x ⊗ t = y ⊗ z. K can then be
embedded into K

′, indeed each x ∈ K can then be identified with (x, 1) and admits
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I

qx/u

q’

x/u’

y/v

y/v’
I,I q,q’x/u   u’  ⊗ –   1

y/v   v’⊗ –   1

(a) (b)

Figure 7: (a) Weighted automaton A with sibling states q and q′. (b) Intersection machine
A∩A−1. The paths from I to q and I to q′ with the same labels are matched by composition.
By proposition 1, q and q′ are twins iff v = v′, that is iff the weight v ⊗ v′−1 of the cycle in
A ∩ A−1 is 1.

(1, x) as an inverse. Thus, we can freely assume that K admits an inverse in the rest
of the section.

Our algorithm for testing the twins property is based on the intersection of weighted
automata. We define A−1 as the machine obtained from A by replacing each non-0
weight by its inverse.

Theorem 5 Let A be a trim cycle-unambiguous weighted automaton over K. A has
the twins property iff the weight of any cycle in A ∩A−1 is 1.

Proof. Let A be a trim cycle-unambiguous weighted automaton over K. Since A
is trim, the transition weights of A are all non-0. By definition of the weighted
intersection algorithm, two states q1 and q2 of A are siblings iff the state R = (q1, q2)
is constructed by the intersection algorithm and there is a cycle c at R. Let q1 and q2

be two such states, and let x be the label of c. The weight of c is the ⊗-product of the
weights of a cycle c1 in A at state q1 labeled with x and the inverse of the weight of a
cycle c2 at q2 labeled with x: w[c] = w[c1]⊗ w[c2]

−1. Since A is cycle-unambiguous,
the cycles c1 and c2 are unique. Thus A has the twins property iff w[c1] = w[c2], that
is iff w[c] = 1. Fig. (7) illustrates the proof of the theorem. 2

Example The cycles of the intersected automaton A ∩ A−1 of Fig. (8)(a) are all
weighted with 0 = 1. This can be used to verify that the automaton A of Fig. (1)(a)
has the twins property. The intersected automaton A∩A−1 of Fig. (8)(b) admits two
cycles with non-zero weights: 1 6= 0 and −1 6= 0. This confirms that the automaton
A of Fig. (3)(a) does not have the twins property.

Checking that the weight of each cycle of a weighted automaton A equals 1 can be
done in linear time. Indeed, let S be a strongly connected component of A and qS

an arbitrary state of S. We can run a depth-first search (DFS) of S starting from qS

to compute the weight of any path from qS to each state q ∈ S. Clearly, that weight
must be unique, otherwise there would be two cycles through qS and q with distinct
weights and the weight of one at least would be different from 1. Fig. (9) illustrates
this fact. Thus, we can denote by W [q] the weight of a path from qS to q. We
initialize the value of W [q], for q ∈ S − {qS}, by some undefined value undefined
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0,0

1,1
a/0

1,2a/1

2,1

a/-1

2,2

a/0

b/0

3,3

c/0
b/0

b/0

b/0

d/0
0,0

1,1
a/0

1,2a/1

2,1

a/-1

2,2

a/0

b/0

3,3

c/0
b/1

b/-1

b/0

d/0

(a) (b)

Figure 8: Intersected automata A ∩ A−1, A being the weighted automaton over the topical
semiring of: (a) Fig. (1)(a); (b) Fig. (3)(a).

qs q
π1
π2
π

Figure 9: qS and q are two states of the same strongly connected component of A ∩ A−1. If
there are two paths π1 and π2 from qS to q, then, since qS and q are in the same strongly
connected component, there is also a path π from q to qS . π1π and π2π are cycles, thus
w[π1π] = w[π2π] = 1 and w[π1] = w[π2].

and set: W [qS ]← 1. The following is the pseudocode of our algorithm.

Cycle Identity(S)
1 for each e ∈ E � transitions visited in the order of a DFS of S from qS

2 do if (W [n[e]] = undefined)
3 then W [n[e]]← W [p[e]]⊗ w[e]
4 if (W [n[e]] 6= W [p[e]]⊗ w[e])
5 then return false

6 return true

Lines 2-3 define W [n[e]] as the weight of the first path from qS to n[e] found in a DFS
of S. Lines 4-5 check that the weight of any other path from qS to q found in a DFS
of S equals W [n[e]] and otherwise output false. If this condition is never violated,
the algorithm returns true (line 6).

Cycle Identity(S) returns true iff the weight of any cycle in S equals 1. Indeed, it
returns true iff for all transitions e in S, W [n[e]] = W [p[e]]⊗ w[e]. By induction on
the length of π, this is equivalent to: W [n[π]] = W [p[π]]⊗ w[π] for any path π in S.
If π is a cycle, then p[π] = n[π], and thus w[π] = 1. Conversely, as already pointed
out above, if the weight of each cycle equals 1, all paths from qS to any state q must
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have the same weight, in particular those found in a DFS of S and thus the algorithm
returns true.

Theorem 6 There exists an algorithm to test the twins property for any trim cycle-
unambiguous weighted automaton A over K in time O(|Q|2 + |E|2).

Proof. By Theorem 5, the test is equivalent to testing that the weight of any cycle of
B = A∩A−1 equals 1. This can be done by running Cycle Identity for each strongly
connected component S of B. The total cost of the algorithm is linear in the size of B
since a DFS can be done in linear time and since the strongly connected components
of B can also be computed in linear time [8]. Thus the complexity of the algorithm
is O(|Q|2 + |E|2). 2

We conjecture this complexity to be optimal when the alphabet Σ contains at least
two distinct elements. Indeed, determining sibling states seems to require matching
paths with the same input label and thus computing the intersection machine.

5. Residues

Our test of functionality and our test of the twins property are based on the properties
of the residue of two strings or that of two paths. Thus, we start with some definitions
and give results that are relevant to the proofs presented in the following sections.

We first introduce some classical notions of combinatorics on words, see [17] for a
recent survey of the results in this field. Given two strings x and y in Σ∗, we say
that y is a prefix (suffix) of x if there exists z ∈ Σ∗ such that x = yz (resp. x = zy).
Let Σ(∗) denote the free group generated by Σ. Given two elements x and y of Σ(∗),
the residue of x by y is defined as: y−1x. A residue is said to be pure if it is in
Σ∗ ∪ (Σ−1)∗. Note that when x and y are strings, y−1x is pure if y is a prefix of x or
x is a prefix of y. An element x ∈ Σ(∗) is said to be primitive if it cannot be written
as: x = yn, with n ∈ N and y 6= x. For any element x ∈ Σ(∗), there exists a unique
primitive element y ∈ Σ(∗) such that x = yn, n ∈ N, y is called the primitive root of
x. The following is an essential combinatorial property of the elements of Σ(∗) that
applies in particular to residues.

Lemma 1 ([17]) Let x and y be two elements of Σ(∗)−{ε}. x and y commute, i.e.,
xy = yx, iff x and y, or x and y−1, have the same primitive roots.

When x and y commute, we write x ≡ y. Note that for any string u ∈ Σ∗, x ≡ y iff
u−1xu ≡ u−1yu. The following lemma gives some general properties of commutativity
in the free group.

Lemma 2 Let x, y and z be in Σ(∗). Then the following properties hold:

(i) If x ≡ y, x ≡ z and x 6= ε then y ≡ z and we can write x ≡ y ≡ z.

(ii) If x ≡ y and x ≡ z, then x ≡ yz.

(iii) If x ≡ y, then x ≡ y−1.
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Proof. The statement (i) follows directly Lemma 1. The proof of (ii) is given by:
xyz = yxz = yzx and that of (iii) by: xb−1 = b−1bxb−1 = b−1xbb−1 = b−1x. 2

The first statement of the lemma implies the transitivity of the relation ≡ over Σ(∗)−
{ε}. More generally, ≡ defines an equivalence relation on Σ(∗) − {ε}.

Given a path π in a transducer T , we define the residue of π as the residue of
its input and output labels: 〈π〉 = i[π]−1o[π]. We extend the definition of purity to
paths: a path π is pure if its residue 〈π〉 is pure. The following properties of path
residues will be used in our design of an algorithm for testing the twins property.

Lemma 3 Let π1, π2, π3 and π be four paths in a transducer T such that n[π1] =
n[π2] = n[π3] = p[π]. Then,

(i) 〈π1〉 = 〈π2〉 iff 〈π1π〉 = 〈π2π〉;

(ii) 〈π1〉
−1〈π3〉 ≡ 〈π1〉

−1〈π2〉 iff 〈π1π〉
−1〈π3π〉 ≡ 〈π1π〉

−1〈π2π〉;

(iii) if π1 is not pure, then π1π is not pure;

(iv) if π1 is not pure and 〈π1π〉 = 〈π1〉, then i[π] = o[π] = ε.

Proof. The condition 〈π1〉 = 〈π2〉 is equivalent to i[π]−1〈π1〉o[π] = i[π]−1〈π2〉o[π],
which proves (i). The second statement follows the observation that for x, y, u ∈ Σ(∗),
x and y commute iff u−1xu and u−1yu commute. (iii) and (iv) result from the fact
that when π1 is not pure, there exist two strings x and y with no common non-empty
prefix such that 〈π1〉 = x−1y. 2

The following combinatorial result for residues will be used to prove the main
theorem of Section 7.

Lemma 4 Let r, r1, r2, s1 and s2 be residues in Σ(∗) such that s−1
1 s2 6= ε. If

r−1
1 r2 ≡ r−1

1 s1, r−1
1 r2 ≡ r−1

1 s2 and s−1
1 s2 ≡ s−1

1 r, then r−1
1 r2 ≡ r−1

1 r.

Proof. By Lemma 2 (iii):

r−1
1 r2 ≡ r−1

1 s1 =⇒ r−1
1 r2 ≡ s−1

1 r1

By Lemma 2 (ii):

(r−1
1 r2 ≡ s−1

1 r1 and r−1
1 r2 ≡ r−1

1 s2) =⇒ r−1
1 r2 ≡ (s−1

1 r1)(r
−1
1 s2) = s−1

1 s2

By hypothesis, s−1
1 s2 6= ε, thus by Lemma 2 (i),

(s−1
1 s2 ≡ r−1

1 r2 and s−1
1 s2 ≡ s−1

1 r) =⇒ r−1
1 r2 ≡ s−1

1 r

Finally, by Lemma 2 (ii):

(r−1
1 r2 ≡ r−1

1 s1 and r−1
1 r2 ≡ s−1

1 r) =⇒ r−1
1 r2 ≡ (r−1

1 s1)(s
−1
1 r) = r−1

1 r

This ends the proof of the lemma. 2
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6. Test of functionality for finite-state transducers

The general idea behind the design of our algorithm for testing the functionality
of a finite-state transducer T is to test the identity of the finite-state transducer
T−1 ◦ T . This idea of reducing functionality to identity was previously suggested
in [10]. Functionality was first proved to be decidable for finite-state transducers by
[18]. It was later shown to be decidable in polynomial-time by [11]. In [3], the authors
give another algorithm for testing the functionality of finite-state transducers whose
complexity is O(|Q2|(|Q|2 + |E|2)).

6.1. Characterization

We denote by IdX the restriction of the identity function to a subset X ⊆ Σ∗. The
functionality of a transducer can be tested using the composed machine T−1 ◦T . For
the sake of clarity, we will assume in the following without loss of generality that the
transducer T and thus T−1 ◦ T have a unique initial state.

Lemma 5 A transducer T is functional iff [[T−1 ◦ T ]] = IdDom(T−1◦T ).

Proof. Indeed, by definition of T−1, y ∈ [[T−1 ◦ T ]](x) iff there exists z such that
y ∈ [[T ]](z) and x ∈ [[T ]](z). This proves the lemma. 2

6.2. Algorithm

We will show that checking that a transducer T is equivalent to the identity function
over its domain of definition can be done in linear time in the size of T . This is
equivalent to i[π] = o[π], or equivalently 〈π〉 = ε, for any successful path π. Note
that if [[T ]] = IdDom(T ), then for any two paths π and π′ from the unique initial state
s to a coaccessible state q, 〈π〉 = 〈π′〉. Thus, we can denote by R[q] the residue of
any path from s to such a state q. The following is the pseudocode of the procedure
Identity for checking that [[T ]] = IdDom(T ).

Identity(T )
1 for each e ∈ E such that coacc[n[e]] = true � in the order of a DFS from s
2 do if (R[n[e]] = undefined)
3 then R[n[e]]← i[e]−1R[p[e]]o[e]
4 if (R[n[e]] 6= i[e]−1R[p[e]]o[e]) or (n[e] ∈ F and R[n[e]] 6= ε)
5 then return false

6 return true

R[i] is initialized to ε and the set of coaccessible states q of T marked by coacc[q] =
true. Lines 2-3 define R[n[e]] as the residue of the first path from I to n[e] found
in a DFS of T for any coaccessible state n[e] (coacc[n[e]] = true). Lines 4-5 check
that the residue of any other path from s to q found in a DFS of T equals R[n[e]]
and that the residue of n[e] is ε if n[e] is a final state and otherwise output false. If
these conditions are never violated, the algorithm returns true (line 6).
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Figure 10: (a) Non-functional finite-state transducer T . (b) Composed transducer T−1
◦ T .

The residue of the path from 0 to 5 through 1 is ε and differs from the residue of the path
from 0 to 5 through 2, which is a. Thus Identity returns false since two distinct values, ε

and a, are found for R[5] in a DFS of T−1
◦ T .

Identity(T ) returns true iff the residue of any successful path in T is ε.
Indeed, Identity(T ) returns true iff for any transition e in T , R[n[e]] =
i[e]−1R[p[e]]o[e]. By induction on the length of π, this is equivalent to: R[n[π]] =
i[π]−1R[p[π]]o[π] for any path π to a coaccessible state n[π]. If π is a successful path,
p[π] = s, R[p[π]] = ε, and the condition can be rewritten as R[n[π]] = i[π]−1o[π].
Thus, if the algorithm returns true then R[n[π]] = ε for any successful path π and
thus [[T ]] = IdDom(T ). Conversely, as already pointed out above, if T is the restriction
of the identity function to its domain of definition, all paths from s to any coaccessi-
ble state q must have the same residue, in particular those found in a DFS of T and
R[n[π]] = ε for any successful path, thus the algorithm returns true.

Note that if a path π from the initial state to a coaccessible state with a non-pure
residue is found, then the residue of a successful path beginning with π cannot be ε
(see Lemma 3 (iii)). Thus, the algorithm can immediately return false in such cases.
Figs. (10)(a)-(b) illustrate the algorithm in the case of a non-functional transducer.

Theorem 7 There exists an algorithm for testing the identity of a finite-state trans-
ducer T in time O(|E| + |∆| |Q|).

Proof. Finding the coaccessible states of T and thus defining the array coacc can be
done in linear time [8]. The algorithm performs a linear number of residue operations:
the computation of new residues (line 3) and their comparison (line 4). As mentioned
above, we can restrict ourselves to operations on pure residues. In the following, we
show that each of these operations can be done in constant time after a pre-processing
stage, linear in the size of T .

We first build a deterministic tree T accepting the input and output strings of all
the paths of a DFS tree of the transducer T . A DFS tree of T has O(|Q|) states and
edges, thus T also has O(|Q|) states and edges and we can construct the suffix tree S
of T in time O(|∆| |Q|) [12]. Since a DFS is performed in linear time, the total cost
of this pre-processing step is O(|E| + |∆| |Q|).

The residue of a path π is 〈π〉 = i[π]−1o[π]. Thus, when it is pure, it is either
a suffix of o[π] or the inverse of a suffix of i[π]. Thus, it can be encoded by a bit
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specifying that information and a position in the suffix tree S corresponding to the
string 〈π〉. Two residues are then equal iff they have the same bit and correspond to
the same position in the suffix tree. Hence, the comparison of residues can be done
in constant time.

The computation of a new residue a−1rb (line 3) from a residue r with a and b
in Σ ∪ {ε} can be done in constant time. Indeed, if r is pure, it can be decided in
constant time if a−1rb is pure. The corresponding position in S can be found by going
possibly one step up the suffix link followed by one step down in the tree and can
therefore be done in constant time. Thus, the total cost of the algorithm Identity is
O(|E| + |∆| |Q|). 2

This result combined with Lemma 5 gives an efficient algorithm for testing the
functionality of a transducer.

Corollary 1 There exists an algorithm for testing the functionality of a finite-state
transducer T in time O(|E|2 + |∆| |Q|2).

Proof. The proof follows immediately Theorem 7, Lemma 5, and the fact that the
number of states of T−1 ◦T is in O(|Q|2) and the number of its transitions in O(|E|2).

2

7. Test of the twins property for finite-state transducers

7.1. Characterization

For finite-state transducers, the twins property can be reformulated in terms of
residues of paths in T−1 ◦ T .

Proposition 2 A transducer T has the twins property iff the following condition
holds for the composed transducer T−1 ◦ T : for any path π from an initial state to a
cycle c, 〈π〉 = 〈πc〉.

Proof. Recall from Section (3.5) Eq. (5) defining the twins property for transducers:

o[π1]
−1o[π′

1] = (o[π1]o[π2])
−1o[π′

1]o[π
′

2]

By definition of composition, a path from an initial state to a cycle c in T−1 ◦ T
is the result of matching the output of a path π1 from the initial state to a cycle
π′

1 and the output of a path π2 from the initial state to a cycle π′

2 in T where c is
the result of matching the output of π′

1 with the output of π′

2. Thus, the lemma
follows immediately the definition of residues of paths and that of the twins property
as presented above. 2

Figs. (12)(a)-(b) show example of the composed transducers T−1◦T . Our algorithm
for testing the twins property is based on the computation of the residues of paths in
T−1 ◦ T as suggested by the proposition. However, we use two properties of residues
to avoid redundant computations. One is the property of Lemma 3 (i), which applies
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Figure 11: (a) Two sibling states q and q′ in a transducer T . (b) The corresponding state in
T−1

◦ T . Both the twins property in (a) and the condition on residues in (b) are equivalent
to the same condition: (uv)−1u′v′ = u−1u′.
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Figure 12: Composed transducer T−1
◦ T where T is: (a) the transducer given by Figure 2

(a); (b) the transducer given by Figure 4 (a).

to paths sharing the same suffix, the other is that we only need to compute at most
two distinct path residues R1 and R2 for any state q, as will be shown by Corollary
2.

In Proposition 2, the condition 〈π〉 = 〈πc〉 implies that |i[c]| = |o[c]| for any cycle
c, in particular, i[c] = ε iff o[c] = ε. When i[c] = o[c] = ε, the condition holds for any
path π. A state q is said to be cycle-accessible if there exists a path from q to a non-ε
cycle c (i[c] 6= ε or o[c] 6= ε).

Lemma 6 If T has the twins property, then the residue of any path π1 in T−1 ◦ T
from the initial state to a cycle-accessible state q is pure.

Proof. Let π be a path from q to a non-ε cycle c. Since T has the twins property,
〈π1πc〉 = 〈π1π〉. By Lemma 3 (iv), this implies that π1π is pure, and by the third
statement of the same lemma that π1 is pure. 2

Lemma 7 Let π1 and π2 be two paths leading from the initial state to the same state
of a non-ε cycle c. Assume that 〈π1〉 = 〈π1c〉, then 〈π2〉 = 〈π2c〉 iff 〈π1〉

−1〈π2〉 ≡ o[c].

Proof. Assume that 〈π2c〉 = 〈π2〉, then: 〈π1〉
−1〈π2〉 = o[c]−1〈π1〉

−1〈π2〉o[c]. Thus
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〈π1〉
−1〈π2〉 and o[c] commute. Conversely, if 〈π1〉

−1〈π2〉 and o[c] commute:

〈π2〉 = 〈π1〉〈π1〉
−1〈π2〉 = 〈π1c〉〈π1〉

−1〈π2〉

= i[c]−1〈π1〉o[c]〈π1〉
−1〈π2〉 = i[c]−1〈π1〉〈π1〉

−1〈π2〉o[c] = 〈π2c〉

2

Note that the condition 〈π1〉
−1〈π2〉 ≡ o[c] implies that 〈π1〉

−1〈π2〉 is pure since o[c] is
in Σ∗.

Corollary 2 Let π1, π2, and π be three paths leading from the initial state to the
same state of a non-ε cycle c such that 〈π1〉 6= 〈π2〉. Assume that 〈π1〉 = 〈π1c〉 and

〈π2〉 = 〈π2c〉, then: 〈π〉 = 〈πc〉 iff 〈π1〉
−1〈π2〉 ≡ 〈π1〉

−1〈π〉.

Proof. By Lemma 7, 〈π1〉
−1〈π2〉 ≡ o[c] and 〈π〉 = 〈πc〉 iff 〈π1〉

−1〈π〉 ≡ o[c]. Thus, if

〈π〉 6= 〈π1〉, by transitivity of ≡ over Σ(∗)−{ε}, 〈π〉 = 〈πc〉 iff 〈π1〉
−1〈π2〉 ≡ 〈π1〉

−1〈π〉.

If 〈π〉 = 〈π1〉, then by hypothesis, 〈π1〉 = 〈π1c〉, that is 〈π〉 = 〈πc〉. And 〈π1〉
−1〈π2〉 ≡

〈π1〉
−1〈π〉 trivially holds since 〈π1〉

−1〈π〉 = ε. 2

Lemma 8 If T has the twins property, then the following condition holds for the
composed transducer T−1 ◦ T : let π1, π2 and π3 be three paths leading to the same
cycle-accessible state, then 〈π1〉

−1〈π2〉 ≡ 〈π1〉
−1〈π3〉.

Proof. The lemma is a direct consequence of Corollary 2 and Lemma 3(ii). 2

By proposition 2, testing the twins property is equivalent to testing that 〈π〉 = 〈πc〉
for any path π from an initial state to a cycle c in the transducer U = T−1 ◦ T . We
can limit ourselves to the cycle-accessible part of U since the condition is otherwise
always satisfied.

The main idea behind the design of our algorithm for testing the twins property
for transducers is based on Corollary 2. It consists of computing, when possible, two
distinct residues for each cycle-accessible state q of the transducer U = T−1◦T . These
residues correspond to two paths π1 and π2 from the initial state to q. We will be
testing 〈π1〉

−1〈π2〉 ≡ 〈π1〉
−1〈π〉 rather than 〈π〉 = 〈πc〉 since the former can be tested

more efficiently and we will use lemma 8 to restrict the number of paths π to consider.
We need to compute the distinct residues in a consistent and efficient manner: if

the path corresponding to the first (second) residue computed for a state q is π = π′e,
then the path corresponding to the first (resp. second) residue computed for p[e] must
be π′. Thus, the set of paths corresponding to the first (or second) residue computed
for each state forms a spanning tree of U = T−1 ◦ T .

Let T1 and T2 be two spanning trees of U . For each state q, we denote by Πk[q]
the path in Tk, (k = 1, 2), leading to q from the initial state and we denote by σk

the predecessor function of the tree Tk: σk[q] is the predecessor node of q in Tk. We
say that T1 and T2 are consistent if for any cycle-accessible state q, the paths Π1[q]
and Π2[q] are pure and if 〈Π1[q]〉 6= 〈Π2[q]〉 when q can be reached by two paths with
distinct residues. In the following, we denote by Rk[q] the residue 〈Πk[q]〉 and denote
by scc[q] the strongly connected component of a state q of T−1 ◦ T .
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Lemma 9 If T has the twins property, then the composed transducer U = T−1 ◦ T
admits two consistent spanning trees T1 and T2.

Proof. Our proof is constructive. We denote by s the initial state of U and set
σk[s] = nil. We assume that the cycle-accessible states q of U have been marked
by cyacc[q] = true and that the attributes R1 and R2 have been initialized to an
undefined value ∞. This can be done in linear time in the size of U .

The following is the pseudocode of an algorithm for computing two consistent
spanning trees T1 and T2 for the transducer U if we complete σ2 by setting
σ2[q] = σ1[q] for all states q for which σ2[q] has not been defined at the end of the
execution of the algorithm.

SpanningTrees(q, k)
1 for each e ∈ E[q] such that cyacc[n[e]] = true

2 do R← i[e]−1Rk[q] o[e]
3 if (k = 1 and R1[n[e]] 6=∞ and R2[n[e]] =∞ and R1[n[e]] 6= R)
4 then R2[n[e]]← R; σ2[n[e]]← q
5 SpanningTrees(n[e], 2)
6 if (Rk[n[e]] =∞)
7 then Rk[n[e]]← R; σk[n[e]]← q
8 SpanningTrees(n[e], k)

If we leave aside the instructions of lines 3-5, SpanningTrees(q, k) corresponds to the
basic DFS algorithm applied to the part of U that is accessible and cycle-accessible
and that we will refer to as U ′. Thus, it creates a DFS tree Tk and computes Rk in
a consistent manner, that is: Rk[n[e]] = i[e]−1Rk[p[e]]o[e] (lines 2 and 7).

The initial call is SpanningTrees(s, 1), which creates a spanning tree T1 that coin-
cides with the DFS tree of U ′ rooted in s. When a new residue is found for a state q
for which R1[q] is already defined and R2[q] is not, that residue is assigned to R2[q]
and T2 is constructed by starting a DFS of U ′ from q (lines 3-5). We will refer to
such states q as the root states. The computation of the residue R2 is consistent, that
is R2[n[e]] = i[e]−1R2[p[e]]o[e] for a transition e in T2.

Thus, a residue R2[q] is computed either at a root state, or when q belongs to a
DFS tree rooted in a root state r. In the former case, by construction, R2[q] 6= R1[q].
In the latter, there is a tree path π in both T1 and T2 from r to q. Since the
computation of the residues along the tree paths is consistent R1[q] = i[π]−1R1[r]o[π]
and R2[q] = i[π]−1R2[r]o[π], which implies R2[q] 6= R1[q] since R2[r] 6= R1[r]. Thus,
in all cases, when R2[q] is defined, R2[q] 6= R1[q].

By Lemma 6, since T has the twins property, all the residues computed by the
algorithm are pure. To show that T1 and T2 are consistent, we need to show that
when R2[q] is undefined for a state q, then there exists no path π from s to q with a
residue distinct from R1[q]. Assume that this does not hold for a state q and let π be
a path from s to q with 〈π〉 6= R1[q]. Without loss of generality, we can assume that
q is the first state along π with that property. Denote by e the last transition of π.
Let π′ be defined by π = π′e and q′ by q′ = n[π′].
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R2[q
′] must be undefined since otherwise R2[q] would have been computed by the

call SpanningTrees(q′, 2) of line 5 or 7. During the execution of SpanningTrees(q′, 1),
when the transition e is selected, R1[q] is already defined since otherwise it would be
set to R = i[e]−1R1[q

′]o[e] = 〈π〉 6= R1[q]. Thus, the condition of line 3 holds and
R2[q] is set to 〈π〉 (line 4), which leads to a contradiction. 2

Our algorithm for testing the twins property is derived from the following theorem
which gives a necessary and sufficient condition based on two consistent spanning
trees T1 and T2 of U for T to have the twins property.

Theorem 8 A transducer T has the twins property iff the following condition holds
for the composed transducer U = T−1 ◦ T : there exist two consistent spanning trees
T1 and T2 such that for any edge e such that n[e] is cycle-accessible:

(i) if scc[n[e]] = scc[p[e]] then for k = 1, 2, Rk[n[e]] = i[e]−1Rk[p[e]]o[e].

(ii) if scc[n[e]] 6= scc[p[e]] then for any residue R in {〈Π1[p[e]] e〉, 〈Π2[p[e]] e〉},
R1[n[e]]−1R2[n[e]] ≡ R1[n[e]]−1R.

Proof. Assume that T has the twins property. Then, by Lemma 9, U admits two
consistent spanning trees T1 and T2. Let e be an edge within a strongly connected
component S (scc[n[e]] = scc[p[e]]). Let k be fixed and let q be the first state examined
in the computation of the spanning tree Tk that belongs to S. Since in the construction
of the spanning trees of Lemma 9 the states of U are visited according to a depth-first
search order, Tk contains a path π from q to p[e] and a path π′ from q to n[e]. Since
q and n[e] are both in S, there exists a path π′′ in U from n[e] to q. Thus π e π′′

and π′π′′ are both cycles at q and in view of proposition 2: 〈Πk[q]〉 = 〈Πk[q]π′π′′〉 =
〈Πk[q]π e π′′〉, which implies:

〈Πk[q]π′〉 = 〈Πk[q]π e〉 (6)

Since Tk is consistent, Rk[n[e]] = 〈Πk[q]π′〉 and Rk[p[e]] = 〈Πk[q]π〉 and Eq. (6) can
be rewritten as: Rk[n[e]] = i[e]−1Rk[p[e]]o[e]. This proves the first statement of the
theorem. The second statement of the theorem follows directly Lemma 8.

Conversely, assume that U verifies the conditions of the theorem. Note that (i)
trivially implies that (ii) holds for any edge e including when scc[n[e]] = scc[p[e]].
By induction on the length of π, (i) also implies that for any path π such that
scc[p[π]] = scc[n[π]] and for k = 1, 2:

Rk[n[π]] = 〈Πk[p[π]]π〉 (7)

We will first show that for any cycle-accessible state q and any path π from the initial
state to q, we have:

R1[q]
−1R2[q] ≡ R1[q]

−1〈π〉 (8)

Assume that the strongly connected components of U are numbered in topological
order, thus for any path π, scc[p[π]] ≤ scc[n[π]]. This ordering can be computed in
linear time using classical graph algorithms [8]. We will show that Eq. (8) holds for
any q by induction on scc[q].
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For the basis, note that the initial state s belongs to the first strongly connected
component, thus, if π is a path from s to a state q with scc[q] = 0, then scc[p[π]] =
scc[n[π]] = 0. By Eq. (7), R1[n[π]] = 〈Π1[p[π]]π〉, that is R1[q] = 〈π〉, in which case
Eq. (8) trivially holds.

Assume now that Eq. (8) holds for any state q with scc[q] < n, n ≥ 1. Let q be a
cycle-accessible state with scc[q] = n and let π be a path from the initial state to q. π
can be factorized as π = π′ e π′′ with scc[p[e]] < scc[n[e]] = n. Let us first show that:

R1[n[e]]−1R2[n[e]] ≡ R1[n[e]]−1〈π′e〉 (9)

Since T1 and T2 are consistent, if R1[p[e]] = R2[p[e]], then all paths from the initial
state to p[e] have the same residue, in particular: 〈π′〉 = R1[p[e]] = R2[p[e]], which
implies: 〈π′e〉 = 〈Π1[p[e]]e〉 = 〈Π2[p[e]]e〉. Eq. (9) then coincides with the statements
(ii) of the theorem. If R1[p[e]] 6= R2[p[e]], then Eq. (9) results from the application of
Lemma 4 with rk = Rk[n[e]] and sk = 〈Πk[p[e]]e〉 for k = 1, 2, and r = 〈π′e〉 to the
equations of statement (ii):

R1[n[e]]−1R2[n[e]] ≡ R1[n[e]]−1〈Πk[p[e]] e〉

and the induction hypothesis:

R1[p[e]]−1R2[p[e]] ≡ R1[p[e]]−1〈π′〉

with s−1
1 s2 = R1[p[e]]−1R2[p[e]] 6= ε. By Lemma 3 (ii), Eq. (9) implies:

〈Π1[n[e]]π′′〉
−1
〈Π2[n[e]]π′′〉 ≡ 〈Π1[n[e]]π′′〉

−1
〈π〉

Since scc[p[π′′]] = scc[n[π′′]] = n, by Eq. (7), 〈Πk[n[e]]π′′〉−1
= Rk[n[π′′]] = Rk[q], for

k = 1, 2. This proves Eq. (8).
We can now prove that T has the twins property. Let q be a state with a non-ε

cycle c, and let π be a path leading to q from the initial state. As already mentioned,
(i) implies that 〈Πk[q] c〉 = 〈Πk[q]〉 holds for k = 1, 2. Since the spanning trees Tk

are consistent, if R1[q] = R2[q] then all paths leading to q have the same residue, in
particular: 〈πc〉 = 〈π〉. Otherwise if R1[q] 6= R2[q], by Corollary 2, Eq. (8) implies
that 〈πc〉 = 〈π〉, which, in view of proposition 2, shows that T has the twins property.

2

7.2. Algorithm

The theorem leads to a short and simple algorithm for testing the twins property.
The pseudocode given in the proof of Lemma 9 is augmented to verify the conditions
of the theorem. Since we are not interested in the actual definition of the spanning
trees T1 and T2 but only in the residues at each node of those trees, we can omit the
definition of the predecessor functions of T1 and T2 in the algorithm. The following
is the pseudocode of our algorithm.
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Residue(q, k)
1 for each e ∈ E[q] such that cyacc[n[e]] = true

2 do R← i[e]−1 Rk[q] o[e]
3 if (R 6∈ Σ∗ ∪ (Σ−1)∗) then return false

4 if (scc[n[e]] = scc[q])
5 then if (Rk[n[e]] 6=∞ and Rk[n[e]] 6= R) return false

6 else if (k = 1 and R1[n[e]] 6=∞ and R2[n[e]] =∞ and R1[n[e]] 6= R)
7 then R2[n[e]]← R
8 Residue(n[e], 2)
9 else if (R1[n[e]] 6=∞ and R2[n[e]] 6=∞)
10 then if (R1[n[e]]−1R2[n[e]] 6≡ R1[n[e]]−1R)
11 then return false

12 if (Rk[n[e]] =∞)
13 then Rk[n[e]]← R
14 Residue(n[e], k)
15 return true

We use a DFS of U to compute the residues R1 and R2 which are initialized to an
undefined value∞ starting from the initial state and with k = 1. Thus the original call
is Residue(s, 1) where s is the initial state. We also assume that the cycle-accessible
states q of U have been marked by cyacc[q] = true, which can be done in time linear
in the size of U .

According to the theorem, the search can be limited to the edges e such that n[e]
is cycle-accessible (line 1). The new residue R = i[e]−1Rk[p[e]]o[e] is computed in line
2 and its purity checked in line 3. Lines 4-5 correspond exactly to the condition (i) of
the theorem. When R1[n[e]] has already been computed and R 6= R1[n[e]], R2[n[e]]
is set to R and the construction of the second spanning tree T2 continues (lines 7-8).
Lines 9-11 correspond exactly to the second condition of the theorem. When Rk[n[e]]
is undefined, it is set to R and the construction of Tk and Rk continues with the call
Residue(n[e], k). The algorithm returns true when the conditions of the theorem
have been verified (line 15).

Each edge e is traversed at most two times during the execution of the algorithm
since Residue(q, k) is called only when R1[q] or R2[q] equals ∞. This guarantees the
termination of the algorithm. Its correctness follows immediately theorem 8.

Several operations on strings are performed in each execution of the loop of lines
1-14: computation of a new residue, comparison of two residues, and comparison of
the primitive root of two residues. Some of these operations can be performed very
efficiently, e.g., by using a suffix tree for the representation of the residues. However,
the comparison of the primitive roots dominates the complexity of these operations.
In the worst case, the comparison of the primitive roots may require up to |Q|2 − 1
comparisons, the maximal length of a string of a spanning tree. Since each transition
of U is visited at most two times and since the size of U is O(|Q|2 + |E|2)), the total
complexity of the algorithm is O(|Q|2 (|Q|2 + |E|2)), based on our current analysis of
the complexity of the comparison of primitive roots. Any improvement to the worst
cost complexity of this operation would lead to an improvement of the complexity of
our algorithm.
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Figure 13: (a) A finite-state transducer T . (b) The composed machine U = T−1
◦ T .

7.3. Example

In this section, we are illustrating the execution of the algorithm in a particular
example.

Let T be the finite-state transducer shown in Fig. (13) (a). Fig. (13) (b) shows the
corresponding composed transducer U = T−1 ◦ T . We can distinguish three distinct
sets in U : (I) the states and transitions accessible from states 1 and 4; (II) the states
and transitions accessible from 2, 3, 5 and 8; and (III) the states and transitions
accessible from 6 and 7. In the set (II), all transitions have the same input and
output label and the residue of any path π from 0 to a state in (II) is ε. Thus, the
condition 〈πc〉 = 〈π〉 clearly holds for such a path. Set (III) is simply the symmetric
of set (I): it is obtained form (I) by exchanging the input and output labels of each
transition. Thus, to examine the execution of our algorithm, we can restrict ourselves
to part (I).

The residues R1 and R2 computed by the algorithm are shown by Fig. (14). Note
that state 30 is never visited since it is not cycle-accessible. Fig. (15) shows the tree
of function calls restricted to the set (I). A full arrow corresponds to the execution of
the instruction of line 14, a dotted arrow to that of the instruction of line 8.

A dashed box represents a call of Residue(q, k) in which the condition of line 5 is
tested. A dotted box represents a call in which the condition of line 10 is tested. For
example, in the execution of the call Residue(14, 1), the condition of line 10 is tested
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q 0 1 4 9 10 14 21 25 29

R1 ε a−1 ε b−1a−1 a−1 b a−1b−1a−1 b−1a−1b−1a−1 a−1b−1a−1b−1

R2 ∞ ∞ ∞ ∞ ∞ ∞ a−1 b−1a−1 a−1b−1

Figure 14: Residues R1 and R2 computed by the algorithm for the states in set (I) of the
transducer U shown in Fig. (13) (b).

Residue(0,1)

Residue(1,1) Residue(4,1)

Residue(9,1) Residue(10,1) Residue(14,1)

Residue(21,1) Residue(21,2)

Residue(25,1) Residue(25,2)

Residue(29,1) Residue(29,2)

Figure 15: The portion of the tree of function calls Residue(q, k) restricted to the states in
set (I) starting from the initial state q = 0.

for the transition e = (14, ε, ε, 21), with R = ε−1R1[14] ε = b. We have:

R1[21]−1R2[21] = (a−1b−1a−1)−1a−1 = abaa−1 = ab

R1[21]−1R = (a−1b−1a−1)−1b = abab

Since ab ≡ abab, the condition of line 10 holds. More generally, the execution of the
algorithm shows that the set (I) satisfies the conditions of Theorem 8. Since sets (III)
and (I) are symmetric, this also holds for set (III). Set (II) also trivially satisfies these
conditions, thus T has the twins property.

8. Experimental Results

We tested the efficiency of our algorithms by running them with very large automata
and transducers found in large-vocabulary speech recognition systems on a Pentium
III 700 MHz with a cache size of 2048 Kb. The results showed that they can be used
to test the determinizability of very large machines in short time. As an example, it
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took about 1m30s to test the twins property for a weighted automaton A of about
3.9M states and 7.6M transitions, with about 118, 000 strongly connected components.
The intersection machine A∩A−1 had about 6M states, 11M transitions and 144, 000
strongly connected components.

9. Conclusion

We presented new and efficient algorithms for testing the twins property for weighted
automata and finite-state transducers and for testing the functionality of finite-state
transducers. Our implementation of the algorithms shows these algorithms to be
practical even for very large automata and transducers. They can be used to test the
determinizability of finite-state transducers and that of cycle-unambiguous weighted
automata and weighted transducers.
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