
An Optimal Pre-Determinization Algorithm
for Weighted Transducers

Cyril Allauzen and Mehryar Mohri

AT&T Labs – Research,
180 Park Avenue, Florham Park, NJ 07932-0971, USA

Abstract

We present a general algorithm, pre-determinization, that makes an arbitrary weigh-
ted transducer over the tropical semiring or an arbitrary unambiguous weighted
transducer over a cancellative commutative semiring determinizable by inserting
in it transitions labeled with special symbols. After determinization, the special
symbols can be removed or replaced with ε-transitions. The resulting transducer
can be significantly more efficient to use. We report empirical results showing that
our algorithm leads to a substantial speed-up in large-vocabulary speech recognition.
Our pre-determinization algorithm makes use of an efficient algorithm for testing a
general twins property, a sufficient condition for the determinizability of all weighted
transducers over the tropical semiring and unambiguous weighted transducers over
cancellative commutative semirings. Based on the transitions marked by this test of
the twins property, our pre-determinization algorithm inserts new transitions just
when needed to guarantee that the resulting transducer has the twins property and
thus is determinizable. It also uses a single-source shortest-paths algorithm over the
min-max semiring for carefully selecting the positions for insertion of new transitions
to benefit from the subsequent application of determinization. These positions are
proved to be optimal in a sense that we describe.

Key words: finite automata, finite-state transducers, weighted finite-state
transducers, determinization, twins property

1 Introduction

Weighted transducers are used in many applications such as text, speech, or
image processing for the representation of various information sources [10,13].

Email addresses: allauzen@research.att.com (Cyril Allauzen),
mohri@research.att.com (Mehryar Mohri).

URLs: http://www.research.att.com/~allauzen (Cyril Allauzen),
http://www.research.att.com/~mohri (Mehryar Mohri).

Preprint submitted to Elsevier Science 19 May 2004



They are combined to create large and complex systems such as an informa-
tion extraction or a speech recognition system using a general composition
algorithm for weighted transducers [15,16].

The efficiency of such systems is dramatically increased when subsequential
or deterministic transducers are used, i.e. weighted transducers with a unique
initial state and with no two transitions sharing the same input label at any
state. A generic determinization algorithm for weighted transducers was in-
troduced by [13]. The algorithm can be viewed as a generalization of the
classical subset construction used for unweighted finite automata, it outputs
a deterministic transducer equivalent to the input weighted transducer. But,
unlike unweighted automata, not all weighted transducers can be determinized
using that algorithm – this is clear since some weighted transducers do not
even admit an equivalent subsequential one, they are not subsequentiable, but
some subsequentiable transducers cannot be determinized either using that
algorithm.

We present a general algorithm, pre-determinization, that makes an arbitrary
weighted transducer over the tropical semiring or an arbitrary unambiguous
weighted transducer over a cancellative commutative semiring determinizable
by inserting in it transitions labeled with special symbols. After determiniza-
tion, the special symbols can be removed or replaced with ε-transitions. The
resulting transducer can be significantly more efficient to use. We report em-
pirical results showing that our algorithm leads to a substantial speed-up in
large-vocabulary speech recognition.

Our pre-determinization algorithm makes use of an efficient algorithm for
testing a general twins property [2], which is a characterization of the deter-
minizability of functional finite-state transducers and that of unambiguous
weighted automata over the tropical semiring or any cancellative commuta-
tive semiring, and also a sufficient condition for the determinizability of all
weighted transducers over the tropical semiring.

The algorithm for testing the twins property determines and marks some tran-
sitions whose presence violates the twins property. Transitions with new sym-
bols need not be inserted at those positions however. There is some degree of
freedom in the choice of those positions and their choice is critical to ensure
greater benefits from the application of determinization. Based on the tran-
sitions marked by this test of the twins property, our algorithm inserts new
transitions just when needed to guarantee that the resulting transducer has
the twins property and thus is determinizable. It uses a single-source shortest-
paths algorithm over the min-max semiring for carefully selecting the positions
for insertion of new transitions to benefit from the subsequent application of
determinization. These positions are proved to be optimal in a sense that we
describe.

2



2 Preliminaries

A semiring (K,⊕,⊗, 0, 1) is a ring that may lack negation [12]. It has two
associative operations ⊕ and ⊗ with identity elements 0 and 1. ⊕ is commu-
tative, ⊗ distributes over ⊕ and 0 is an annihilator for ⊗. A semiring is said
to be commutative when ⊗ is commutative. A commutative semiring is said
to be cancellative when for all a, b, c in K with c 6= 0, a ⊗ c = b ⊗ c implies
a = b. The tropical semiring (R+ ∪ {∞}, min, +,∞, 0) or the real semiring
(R, +,×, 0, 1) are classical examples of cancellative commutative semirings.

A weighted transducer T = (Σ, ∆, Q, I, F, E, λ, ρ) over a semiring K is an 8-
tuple where Σ is a finite input alphabet, ∆ is a finite output alphabet, Q is a
finite set of states, I ⊆ Q the set of initial states, F ⊆ Q the set of final states,
E ⊆ Q×Σ×∆×K×Q a finite set of transitions, λ : I → K the initial weight
function mapping I to K, and ρ : F → K the final weight function mapping
F to K [18,12]. Weighted automata can be defined in a similar way by simply
omitting the output labels.

The results presented in this paper hold similarly for weighted transducers over
the tropical semiring and unambiguous weighted transducers over a cancella-
tive commutative semiring, cases where our algorithm for testing the twins
property can be used [2]. However, to simplify and shorten the presentation,
in the following, all definitions, proofs, and examples will be given for weighted
transducers over the tropical semiring.

Given a transition e ∈ E, we denote by i[e] its input label, o[e] its output label,
w[e] its weight, p[e] its origin or previous state and n[e] its destination state
or next state. Given a state q ∈ Q, we denote by E[q] the set of transitions
leaving q. A path π = e1 · · · ek in A is an element of E∗ with consecutive
transitions: n[ei−1] = p[ei], i = 2, . . . , k. We extend n and p to paths by setting:
n[π] = n[ek] and p[π] = p[e1]. A cycle π is a path whose origin and destination
states coincide: n[π] = p[π]. We denote by P (q, q′) the set of paths from q to q′

and by P (q, x, q′) and P (q, x, y, q′) the set of paths from q to q′ with input label
x ∈ Σ∗ and output label y (transducer case). These definitions can be extended
to subsets R, R′ ⊆ Q, by: P (R, x, R′) = ∪q∈R, q′∈R′P (q, x, q′). The labeling
functions i (and similarly o) and the weight function w can also be extended
to paths by defining the label of a path as the concatenation of the labels of
its constituent transitions, and the weight of a path as the sum of the weights
of its constituent transitions: i[π] = i[e1] · · · i[ek], w[π] = w[e1] + · · · + w[ek].
We also extend w to any finite set of paths Π by setting: w[Π] = minπ∈Π w[π].
The weight associated by a transducer T to an input string x ∈ Σ∗ and output
string y ∈ ∆∗ is:

[[T ]](x, y) = min
π∈P (I,x,y,F )

(λ[p[π]] + w[π] + ρ[n[π]]) (1)

A successful path in a weighted transducer T is a path from an initial state
to a final state. A state q of T is accessible if it can be reached from I. It

3



is coaccessible if a final state can be reached from q. A weighted transducer
T is trim if it contains no transition with weight ∞ and if all its states are
both accessible and coaccessible. T is unambiguous if, for any string x ∈ Σ∗, it
admits at most one successful path with input label x. T is cycle-unambiguous
if at any state q there is at most once cycle with a given label x ∈ Σ∗. A
cycle c in T is an ε-cycle if both its input and output are labeled with ε, i.e.
i[c] = o[c] = ε. A state q in T is said to be cycle-accessible if a non ε-cycle can
be reached from q. The inverse T−1 of a weighted transducer T is obtained by
swapping the input and output labels of each transition in T and its negation
−T by negating the cost of every transition in T . 1

Composition is a general operation for combining weighted finite-state trans-
ducers [6,11,18,12]. The result of the composition of two weighted transducers
T1 and T2 over the tropical semiring is the weighted transducer defined as
follows. States in the composition T1 ◦T2 of T1 and T2 are identified with pairs
of a state of T1 and a state of T2.

2 Leaving aside transitions with ε inputs
or outputs, the following rule specifies how to compute a transition of T1 ◦ T2

from appropriate transitions of T1 and T2:
3

(q1, a, b, w1, q
′

1) and (q2, b, c, w2, q
′

2) =⇒ ((q1, q2), a, c, w1 + w2, (q
′

1, q
′

2))

When T2 = −T−1
1 , we say that a state (q1, q2) of the composed transducer

is a diagonal state if q1 = q2. Similarly, a transition is said to be a diagonal
transition when it is obtained by merging a transition (q1, a, b, w1, q

′

1) with its
negative inverse (q1, b, a,−w1, q

′

1) and more generally a path is said to be a
diagonal path if all its constituent transitions are diagonal.

The following definitions [17] will also be needed in the next sections. An
alphabet Σ can be extended by associating to each symbol a ∈ Σ a new
symbol denoted by a−1 and defining Σ−1 as: Σ−1 = {a−1 : a ∈ Σ}. X =
(Σ ∪ Σ−1)∗ is then the set of strings written over the alphabet (Σ ∪ Σ−1). If
we set aa−1 = a−1a = ε, then X forms a group called the free group generated
by Σ and is denoted by Σ(∗). Note that the inverse of a string x = a1 · · ·an is
then simply x−1 = a−1

n · · ·a
−1
1 . Two strings x and y in Σ∗ commute if xy = yx,

we then write x ≡ y.

1 Any commutative cancellative semiring can be embedded in a commutative semir-
ing whose multiplicative operation admits an inverse [2]. Since the multiplicative
operation of the semiring K is cancellative, an inverse can be simulated externally
by considering the semiring K

′ = (K × K)/ ≡ where ≡ denotes the equivalence
relation defined by (x, y) ≡ (z, t) iff x⊗ t = y⊗ z. K can then be embedded into K

′,
indeed each x ∈ K can then be identified with (x, 1) and admits (1, x) as an inverse.
In the particular case of the tropical semiring, this inverse can be identified with
the natural negation of real numbers.
2 We use a matrix notation for the definition of composition as opposed to a func-
tional notation.
3 See [15,16] for a detailed presentation of the algorithm including the use of a filter
for dealing with ε-paths.

4



0

1a/1

2

a/2

b/3

3/0

c/5

b/3 d/6 (0,0) (1,0),(2,1)a/1

b/3

(3,0)/0c/5
d/7

0

1a/1

2

a/2

b/3

3/0

c/5

b/4 d/6

(a) (b) (c)

Fig. 1. Determinization of weighted automata. (a) Weighted automaton over the
tropical semiring A. (b) Equivalent weighted automaton B obtained by determiniza-
tion of A. (c) Non-determinizable weighted automaton over the tropical semiring,
states 1 and 2 are non-twin siblings.

0

1x:a

2

x:ε

3y:b

5

x:b

z:a

4

y:a

y:a

y:b

(0,ε) (1,a),(2,ε)x:ε

(5,b)
x:a

(3,b), (4,ε)y:a

(5,ε)

z:a

(.,ε)ε:b

y:b 0

1x:a

2

x:b

3y:b

5

x:b

z:a

4
y:a

y:a

y:b

(a) (b) (c)

Fig. 2. Determinization of finite-state transducers. (a) Finite-State transducer T . (b)
Equivalent transducer T ′ obtained by determinization of T . (c) Non-determinizable
finite-state transducer, states 1 and 2 are non-twin siblings.

3 Determinization and the Twins Property

3.1 Determinization

A weighted automaton or transducer is said to be deterministic if it has a
unique initial state and if no two transitions leaving the same state have
the same input label. There exists a generic determinization algorithm for
weighted automata and transducers [13]. The algorithm is a generalization of
the classical subset construction [1].

Figure 1 illustrates the determinization of a weighted automaton. The states
of the output weighted automaton correspond to weighted subsets of the type
{(q0, w0), . . . , (qn, wn)} where each qk ∈ Q is a state of the input machine,
and wk a remainder weight. The algorithm starts with the subset reduced to
{(p, 0)} where p is an initial state and proceeds by creating a transition labeled
with a ∈ Σ and weight w leaving {(q0, w0), . . . , (qn, wn)} if there exists at least
one state qk admitting an outgoing transition labeled with a, w being defined
by: w = min{wk + w[e] : e ∈ E[qk], i[e] = a}.

Similarly, Figure 2 illustrates the determinization of a finite-state transducer.
Here, the states of the resulting transducer are string subsets of the type

5



{(q0, x0), . . . , (qn, xn)}, where each qk ∈ Q is a state of the input machine,
and xk a remainder string. We refer the reader to [13] for a more detailed
presentation of these algorithms.

Unlike the unweighted automata case, not all weighted automata or finite-
state transducers are determinizable, that is the determinization algorithm
does not halt with some inputs. Figure 1(c) shows an example of a non-
determinizable weighted automaton and Figure 2(c) a non-determinizable
finite-state transducer. Note that the automaton of Figure 1(c) differs from
that of Figure 1(a) only by the weight of the self-loop at state 2. The difference
between that weight and that of the similar loop at state 1 is the cause of the
non-determinizability.

3.2 The twins property

There exists a characterization of the determinizability of weighted transducers
based on a general twins property and an efficient algorithm for testing that
property under some general conditions [13,2].

The twins property was originally introduced by [7,8,6] to give a characteri-
zation of the determinizability of unweighted functional finite-state transduc-
ers. 4 The definition of the twins property and the characterization results
were later extended by [13] to the case of weighted automata. The general
twins property for weighted transducers presented here combines both sets of
definitions and characterizations [2].

Two states q and q′ are said to be siblings when they can be reached from the
initial states I by paths sharing the same input label and when there exists a
cycle at q and a cycle at q′ labeled with the same input. Figure 3(a) illustrates
this definition. Two sibling states q and q′ of a weighted finite-state transducer
are said to be twins if the following two conditions hold for any paths π from
I to q and π′ from I to q′ and for any cycles c at q and c′ at q′ such that
i[π] = i[π′] and i[c] = i[c′]:

o[π]−1o[π′] = o[πc]−1o[π′c′] (2)

w[P (q, i[c], q)]= w[P (q′, i[c′], q′)] (3)

T is said to have the twins property if any two siblings in T are twins. Note
that in this definition q may be equal to q′ and that we may have π = π′ or
c = c′, or that π or π′ can be the empty path if q, or q′, is the initial state.

For weighted automata, only condition 3 on the equality of the cycle weights is
required. For unweighted transducers, only condition 2 on the output labels is
needed. The twins property is a sufficient condition for the determinizability of
weighted automata or weighted transducers over the tropical semiring [13]. It

4 The twins property was recently shown to provide a characterization of the de-
terminizability of all unweighted finite-state transducers [3].

6



I

qx:u/w

q’x:u’/w’

y:v/c

y:v’/c’ I, I q, q’u:u’/w’- w

v:v’/c’- c

(a) (b)

Fig. 3. (a) Two sibling states q and q′ in T . (b) The corresponding configuration in
−T−1 ◦ T .

is a necessary and sufficient condition for the determinizability of unweighted
transducers [3] and that of unambiguous weighted automata or weighted trans-
ducers over the tropical semiring [13,2].

Polynomial-time algorithms were given by [19,5] to test the twins property for
unweighted transducers. A more efficient algorithm for testing the twins prop-
erty for weighted and unweighted transducers was given by [2]. The algorithm
is based on the composition of T with its negative inverse −T−1. Assume that
T is a trim cycle-unambiguous weighted transducer over the tropical semiring,
then T has the twins property if and only if the following conditions hold for
any state q, any path π from the initial state to q, and any cycle c at q in
−T−1 ◦ T [2]: ¡

i[π]−1o[π] = i[πc]−1o[πc] (4)

w[c] = 0 (5)

Figures 3(a)-(b) illustrate these conditions. Note that condition 4 trivially
holds for any path π if c is an ε-cycle. If T is a cycle-ambiguous weighted
transducer over the tropical semiring, conditions 4 and 5 become sufficient
conditions for T to have the twins property and hence for T to be determiniz-
able.

4 Pre-Determinization Algorithm

This section describes a general algorithm, pre-determinization, to make an
arbitrary weighted transducer T over the tropical semiring or an arbitrary
unambiguous weighted transducer T over a cancellative commutative semiring
determinizable. The key steps of our algorithm are the following. We first
augment the algorithm for testing the twins property for weighted transducers
to tag with distinct marks the transitions of the transducer −T−1 ◦T that are
found by the algorithm to violate the twins property. These marks are then
used to disconnect some paths of −T−1◦T by inserting transitions with special
symbols in T . We use a single-source shortest-first algorithm over the min-max
semiring to disconnect simple cycles at a favorable position and in the desired
order of visit of the simple cycles.

7



4.1 Marking transitions of the composed transducer

The algorithm for testing the twins property computes the composed trans-
ducer S = −T−1 ◦ T and determines paths violating condition (4) or (5). We
augment this algorithm to tag the transitions of S found to violate these con-
ditions with distinct marks. More precisely, we use the following marks. If a
transition e in S is marked by

i) Ml, then there exist a cycle c containing e and a path π such that the
label condition (4) does not hold;

ii) Mw, then there exist a cycle c containing e and a path π such that the
weight condition (5) does not hold;

iii) Ma, then there exists a path π0 containing e such that the label condition
(4) does not hold for all non ε-cycles c accessible by a path π admitting
π0 as a prefix.

Marks are not exclusive, a transition may be assigned several marks or none.
We denote by M [e] the set of marks assigned to a transition e by the aug-
mented test of the twins property.

We now describe in detail how the algorithms given in [2] can be augmented to
mark transitions as specified above starting with the algorithm for checking
condition 5. For each strongly connected component U in S, the algorithm
checks if the weight of each cycle in U is 0. Let qU be an arbitrary state in U ,
this is equivalent to checking if for any state q in U , all paths from qU to q

have the same weight.

The pseudocode of the algorithm is given below. For each state q, we maintain
two attributes: W [q], which denotes the weight of the first path from qU to n[e]
found in a depth-first search (DFS) of U , and a Boolean attribute m[q] which
is set to be true if all paths from n[e] to qU , e ∈ E[q], contain a transition
marked with Mw.

We assume that, for all q ∈ U − {qU}, W [q] is initialized to some undefined
value undefined, W [qU ] is initialized to 0 and m[q] to false for all q ∈ U .
The initial call is Cycle Identity(qU , U).

Cycle Identity(q, U)

1 m← true

2 for each e ∈ E[q] such that n[e] ∈ U

3 do if (W [n[e]] = undefined)
4 then W [n[e]]←W [p[e]] + w[e]
5 Cycle Identity(n[e], U)
6 else if (W [n[e]] 6= W [p[e]] + w[e] and m[n[e]] = false)
7 then M [e]←M [e] ∪ {Mw}
8 if (Mw 6∈M [e] and m[n[e]] = false)
9 then m← false

10 m[q]← m

8



In line 1, m is set to true and keeps this value unless an unmarked path from
q to qU is found (lines 8-9). Lines 3-5 define W [n[e]] as the weight of the first
path from qU to n[e] found in the current DFS of U . Lines 6-7 check that the
weight of any other path from qU to q found in a DFS of U equals W [n[e]]
and otherwise mark e with Mw if all the paths from n[e] to qU are not al-
ready marked. If e is not marked with Ml and not all paths from n[e] to qU are
marked, then m must be set to false (lines 8-9). Finally, line 10 sets m[q] to m.

The algorithm for checking condition 4 is based on the notion of residue. The
residue of a path π is defined as the element of the free group i[π]−1o[π]. In
[2], it is shown that it is sufficient to compute for each cycle-accessible state
q at most two distinct paths residues reaching q from the initial state of S.
These residues must verify some combinatorial identities that are checked by
the algorithm whose pseudocode is given below.

Residue(q, k)

1 m← {Ml,Ma}
2 for each e ∈ E[q] such that cyacc[n[e]] = true and Ma 6∈ m[n[e]] ∪M [e] do

3 R← i[e]−1Rk[p[e]]o[e]
4 if (R 6∈ (Σ ∪Σ−1)∗)
5 then M [e]←M [e] ∪ {Ma}
6 else if (Rk[n[e]] =∞)
7 then Rk[n[e]]← R
8 Residue(n[e], k)
9 else if (scc[n[e]] = scc[p[e]] and Rk[n[e]] 6= R and Ml 6∈ m[n[e]])
10 then M [e]←M [e] ∪ {Ml}
11 if (scc[p[e]] 6= scc[n[e]] or Ml ∈M [e] ∪m[n[e]])
12 then if (k = 1 and R1[n[e]] 6=∞ and R2[n[e]] =∞

and R1[n[e]] 6= R)
13 then R2[n[e]]← R
14 Residue(n[e], 2)
15 else if (R1[n[e]] 6=∞ and R2[n[e]] 6=∞)
16 then if (R1[n[e]]−1R2[n[e]] 6≡ R1[n[e]]−1R)
17 then M [e]←M [e] ∪ {Ma}
18 if (scc[p[e]] = scc[n[e]])
19 then m← m ∩ (m[n[e]] ∪M [e])
20 else m← m ∩ (m[n[e]] ∪M [e] ∪ {Ml})
21 m[q]← m

The algorithm uses a DFS of S to compute two distinct residues R1 and R2,
initialized to an undefined value ∞, for each cycle-accessible state in S. The
initial call is Residue(i, 1) where i is the initial state of S.

It also maintains an attribute m[q] for each state. If Ml ∈ m[q], then all cycles
at q contain a transition marked with Ml. If Ma ∈ m[q], then all paths going
through q from the initial state to a cycle-accessible state contain a transition
marked with Ma. For each state q, m[q] is initialized to the empty set.

9



The original call is Residue(i, 1) where i is the initial state. We also assume
that the cycle-accessible states q of T have been marked with cyacc[q] = true,
this can be done in linear time with respect to the size of T . In line 1, m is
initialized to {Ml, Ma}, m is a temporary variable meant to hold the value
of m[q] that is being computed. The search is only necessary for transitions e

such that n[e] is cycle-accessible and Ma 6∈ m[n[e]] ∪M [e] (line 2). The new
residue R = i[e]−1Rk[p[e]]o[e] is computed in line 3. If R is not in Σ∗ ∪ (Σ−1)∗,
e is marked with Ma (lines 4-5). When Rk[n[e]] is undefined and R is in
Σ∗ ∪ (Σ−1)∗, it is set to R and the computation of Rk continues with the call
Residue(n[e], k) (lines 6-8). If q and n[e] are in the same strongly connected
component, Rk[n[e]] has already been computed and is not equal to R, thus e

is marked with Ml unless Ml ∈ m[n[e]] (lines 9-10).

Lines 11-17 correspond to the case where q and n[e] are in distinct strongly
connected components or Ml ∈M [e]∪m[n[e]]. When R1[n[e]] has been already
computed, R2[n[e]] is undefined and R 6= R1[n[e]], R2[n[e]] is set to R and the
computation of the second residue R2 continues with the call Residue(n[e], 2)
(lines 12-14). If both R1[n[e]] and R2[n[e]] are defined, R1[n[e]]−1R2[n[e]] and
R1[n[e]]−1R must commute otherwise e is marked with Ma (lines 15-17). Lines
18-20 update m such that Ma ∈ m if for all transitions e considered so far,
Ma ∈ M [e] ∪ m[n[e]] and that Ml ∈ m if for all transitions e considered so
far such that scc[p[e]] = scc[n[e]], Ml ∈ M [e] ∪ m[n[e]]. At line 21, after all
transitions leaving q have been considered, m is assigned to m[q].

4.2 Disconnecting Paths

By definition of composition, a path π = e1 · · · en in the composed transducer
S is the result of matching the input label of a path π1 = e1

1 · · · e
n
1 of T with

the input label of a path π2 = e1
2 · · · e

n
2 of T . Assume that π is not a diagonal

path, then π can be eliminated from the composed machine S by inserting a
new transition with a special symbol in π1 or π2, at any position i, 1 ≤ i ≤ n,
such that ei is not a diagonal transition (ei

1 6= ei
2), since this would prevent π1

or π2 to match. We then say that path π has been disconnected and will often
use the transition ei

1 (or ei
2) to refer to the position of insertion of that special

transition in T . Each of these special transitions will have for input label a
distinct special symbol that is not part of the original input alphabet Σ and
that will not be used to label any other special transition. The choice of the
position ei

1 (or ei
2) is critical for the subsequent application of determinization

and will be discussed in detail in Section 4.3.

Proposition 1 (Correctness) Let T be a weighted transducer over the trop-
ical semiring or an unambiguous weighted transducer over a cancellative com-
mutative semiring, let S be the corresponding composed transducer, and let T ′

be the transducer obtained from T after application of the following operations:

(1) if M [e]∩{Mw} 6= ∅, disconnect all simple non-diagonal cycles containing
e in S.

10



(2) if M [e]∩ {Ml} 6= ∅, disconnect all simple non-diagonal non ε-cycles con-
taining e in S.

(3) if M [e] ∩ {Ml} 6= ∅, disconnect all simple non-diagonal paths from an
initial state leading to a diagonal cycle containing e in S.

(4) if M [e]∩{Ma} 6= ∅, disconnect all simple non-diagonal cycles in S reach-
able from e, and all simple non-diagonal paths containing e in S from the
initial state to a diagonal cycle.

Then T ′ has the twins property and if we replace the special symbols in T ′ by
ε, then T ′ becomes equivalent to T .

Proof. The proof follows directly the definition of the twins property and the
proof of the correctness of the algorithm to test for the twins property from
[2]. 2

In what follows, we will focus on the algorithm for disconnecting all the simple
non-diagonal cycles containing a transition e in S with M [e]∩{Mw} 6= ∅ (the
first item of Proposition 1), or similarly all the simple non-diagonal non ε-
cycles containing a transition e in S with M [e]∩{Ml} 6= ∅ (the second item of
Proposition 1). A similar algorithm can be used to disconnect the paths leading
to a diagonal cycle containing a transition e with M [e]∩{Ml} 6= ∅ (third item).
Disconnecting the paths defined by the fourth item of Proposition 1 can be
done using the same algorithms. It requires first determining all the strongly
connected components reachable from a transition e with M [e] ∩ {Ma} 6= ∅.
This can be done in time linear in the size of S by computing a topological
order of the component graph of S [9].

Comments. Our test of the twins property marks violating transitions and
not paths. Ideally, one would mark just the violating paths instead. Our al-
gorithm inserts auxiliary transitions just where needed given the transitions
marked by the test of the twins property. However, in some cases, disconnect-
ing some paths makes it unnecessary to insert symbols at other transitions.
Ideally, one would disconnect just the paths that need to be disconnected, but
this is difficult to determine and is likely to be computationally hard.

4.3 Positions for Insertion of Transitions

As mentioned earlier, different positions may be chosen to disconnect a non-
diagonal simple cycle C of S. Our choice is motivated by the subsequent ap-
plication of determinization. We wish the longest possible paths to be merged
by determinization in order to improve the efficiency of use of the resulting
transducer.

For any transition e in T , we define its merging power, m[e], as the minimum
length of the paths that can be merged with a path containing e if a special

11



symbol is inserted at e. Thus, if the choice is between two transitions e1 and
e2 for the insertion of a special symbol, with m[e1] < m[e2], e2 is preferable
since it can allow longer paths to be merged. We then say that e2 is a more
favorable position for determinization than e1.

Since composition merges pairs of paths with matching labels, the merging
power of a transition e can be naturally defined in terms of the composed
transducer S. Let ES denote the set of transitions of S and denote by (e, e′) a
transition of ES obtained by matching the negative inverse of the transition e

and the transition e′ in composition. The level of each transition (e, e′) ∈ ES

in a breadth-first search tree of S can be computed in linear time in the size
of S [9]. Let L[(e, e′)] denote the level of (e, e′). For any transition e in T , let
Φ[e] be the set of non-diagonal transitions of ES obtained by matching e with
some other transition e′. The merging power of a transition e of T can then
be defined by:

m[e] =











min{L[(e′, e′′)] : (e′, e′′) ∈ Φ[e]} if (Φ[e] 6= ∅)

0 otherwise
(6)

And a simple cycle C in S should be disconnected at a transition (e, e′) such
that e (or e′) is the most favorable position for determinization:

e = argmax{m[e] : Φ[e] ∩ C 6= ∅} (7)

Since disconnecting one cycle may affect another, it is also important to de-
termine in what order simple cycles are disconnected. To avoid disconnecting
a cycle more than once, we must start with the simple cycle whose most fa-
vorable insertion position e has the minimum merging power. Note that the
max operation is used to determine the most favorable position along a cycle
and the min operation to determine the order in which these cycles are visited
and disconnected.

For each strongly connected component, we must disconnect each simple non-
diagonal cycle containing a transition marked with Mw in the order just de-
fined. Enumerating all simple cycles explicitly to disconnect them can be very
costly. Instead, since the operations used are min and max and since the
min-max semiring is 0-closed, we can use a single-source shortest-distance
algorithm over (N ∪ {∞}, min, max,∞, 0) to visit and disconnect simple cy-
cles in the desired order [14]. For the purpose of determining the order of
visit of the cycles, we can assign to each transition (e1, e2) ∈ ES the weight
max{m[e1], m[e2]}. By definition, the shortest-first order of this algorithm then
coincides exactly with the desired order and guarantees that all simple cycles
are visited as described. A simple cycle is disconnected at the transition with
the maximum merging power if it was marked to be disconnected and is not
already disconnected as a result of the disconnection of another cycle.

For each state s in a strongly connected component Γ, we use a depth-first

12



search from s to identify the set Xs of transitions that belong to a simple
non-diagonal cycle at s containing a transition marked with Mw: these are
the transitions along the paths containing a transition marked with Mw that
are either not a back edge or a back edge with destination state s. We use a
single-source shortest-distance algorithm over (N∪{∞}, min, max,∞, 0) from
s restricted to transitions in Xs to compute for each state q the shortest
distance ds[q] from s to q [14]. We use the same algorithm on the reverse graph
to compute the shortest distance fs[q] from each state q to s. The pseudocode
of the algorithm is given below.

It is derived from the pseudocode of the generic single-source shortest distance
algorithm presented in [14] restricted to a set of transitions Xs. The algorithm
computes the shortest distance from s to q, i.e., the minimal weight of a path
in Xs from s to q. For each state q we maintain the attribute ds[q] which is
the current estimate of the shortest-distance from s to q, initialized in line
1-3. We use a queue S with a shortest-first discipline to maintain the set of
states whose transitions need to be relaxed. The weight of a state q in the
queue is ds[q]. S is initialized to {s} (Line 4). The state q with the minimal
ds[q] is extracted from S (lines 5-7). At lines 9-12, each transition in E[q]∩X

is relaxed. If max(ds[q], w[e]) is less than ds[n[e]], then ds[n[e] is updated and
if n[e] is not already in S, it is added to S so that its outgoing transitions can
be later relaxed.

ShortestDistance(G, s, Xs)

1 for e ∈ Xs

2 do ds[p[e]]← d[n[e]]←∞
3 ds[s]← 0
4 S ← {s}
5 while S 6= ∅
6 do q ← head(S)
7 Dequeue(S)
8 for each e ∈ E[q] ∩Xs

9 do if ds[n[e]] > max(ds[q], w[e])
10 then ds[n[e]]← max(ds[q], w[e])
11 if n[e] 6∈ S

12 then Enqueue(S, n[e])

Once the distances ds and fs have been computed for each state s in Γ, we can
use them to identify the potential positions for insertion. A transition e is said
to be maximal if there exists a state s such that w[e] ≥ max(ds[q], fs[q]). We
consider all the maximal transitions e in the order of increasing weights w[e]
and apply the following operations. When e is maximal for a state s, then we
disconnect e since it is indeed the most favorable position for the cycle π1eπ2,
unless p[e] has been made non-accessible by some previous disconnection or
the shortest path π1 from s to p[e] or π2 from n[e] to s has been disconnected.

13



0

1/0x/0 [1] 2
z/0 [1]

3/0

x/0 [1]

5z/0 [1]

y/0 [2]
y/0 [2]

4y/0 [2]

y/0 [2]
y/1 [3]

0

1/0
x/0 2

z/0

3/0

x/0

5

z/0

y/0
y/0

4y/0
y/0

6y/1
#1/0

(a) (b)

Fig. 4. (a) Non-determinizable weighted automaton A over the tropical semiring.
The merging power m[e] of each transition e is indicated in square brackets. (b)
Weighted automaton B, output of the pre-determinization algorithm applied to A.

To keep track of that, after disconnecting a transition e, we mark all states q

whose shortest path to (or from) a state s is thereby disconnected. We also
keep track of which states become non-accessible when e is disconnected.

Proposition 2 (Optimality) Let T be a weighted transducer over the trop-
ical semiring or an unambiguous weighted transducer over a cancellative com-
mutative semiring and let T ′ be the result of the application of the pre-determin-
ization algorithm to T . Let es be a special transition in T ′ inserted at position
e. Then, es cannot be moved from e to a position e′ in T ′ more favorable for
determinization without violating the hypothesis of Proposition 1.

Proof. By definition of the pre-determinization algorithm, there exists a path
π in S that contains a transition in Φ(e), that must be disconnected according
to Proposition 1 and for which e was the most favorable position. If another
position e′ along π is selected for inserting es, then, by definition of the min-
max single-source shortest paths algorithm, m[e′] ≤ m[e], thus e′ is not more
favorable than e. If the position for the insertion of es is not along π then π is
not disconnected and the hypotheses of Proposition 1 are not verified. 2

Example. Let A be the weighted automaton over the tropical semiring
shown in Figure 4(a). Figure 5 shows the composed automaton −A−1 ◦ A.
A does not have the twins property since −A−1 ◦ A admits non-zero cycles:
the cycle at state (1, 3) has weight 2 and the symmetric cycle at state (3, 1)
has weight −2. The algorithm for testing the twins property marks with Mw

one of the transitions of each one of these cycles, e.g., the transitions from
(2, 5) and (5, 2) labeled with y. A single-source shortest-distance algorithm
over the min-max semiring from (1, 3) identifies the transition leaving state
(4, 1) as a maximal transition since it has the largest value (3) and hence as the
position for the insertion of a special symbol. This corresponds to inserting a
new transition with the new special symbol #1 at the transition leaving state
4 in A. This insertion disconnects in fact both cycles with non-zero weight,
thus no other disconnection is needed. Figure 4(b) shows B, the result of the

14



0,0

1,1/0x/0 [0]

1,3/0x/0 [1]

2,2

z/0 [0]

2,5

z/0 [1]

3,1/0
x/0 [1]

3,3/0

x/0 [0]

5,2

z/0 [1]

5,5z/0 [0]

y/0 [0]

2,4y/0 [2]

y/0 [0]

y/0 [2]

4,2y/0 [2]

4,4y/0 [0]

y/0 [2]

y/0 [0]

1,5y/1 [3]

5,1y/-1 [3]

y/0 [0]

2,3y/0 [2]

3,2y/0 [2]

1,4y/0 [2]

4,1y/0 [2]

y/1 [3]

y/-1 [3]

Fig. 5. The negative composition −A−1 ◦ A where A is the weighted automaton
of Figure 4. For each transition (e1, e2), max{m[e1],m[e2]} is indicated in square
brackets.

0 1/0
x/0

2
z/0 3y/0y/0 4/0y/0

5y/0

6
#1/1

7/0y/0

8/0y/0

y/0

9y/0

10
y/1

#1/0

Fig. 6. The result of the determinization of the weighted automaton B of Figure 4(b).

application of the pre-determinization algorithm to A. B has the twins prop-
erty and is thus determinizable. Figure 6 shows the automaton obtained by
determinizing B.

4.4 Complexity

Let Q be the set of states and E the set of transitions of the weighted trans-
ducer T . In the worst case, the composed transducer S = −T−1 ◦ T may
have as many as |Q|2 states and |E|2 transitions. The worst-case complexity
of the algorithm for testing the twins property and marking the transitions is
quadratic in the size of S: O(|Q|2(|Q|2 + |E|2)) [2]. The algorithm for discon-
necting paths and cycles is based on multiple applications of a single-source
shortest-distance algorithm over (N ∪ {∞}, min, max,∞, 0) whose worst case
complexity is in O(|Q|2 log |Q|+ |E|2) when the graph it applies to has order
|Q|2 states and |E|2 transitions [14]. The algorithm also requires computing
the component graph of S and its topological order which can be done in linear
time in the size of S. Thus, the overall complexity of our pre-determinization
algorithm is in O(|Q|2(|Q|2 log |Q|+ |E|2)).

5 Experimental Results

We have fully implemented the test of the twins property described and ap-
plied it to pre-determinization. We measured its benefits by testing it in the

15



 

real-time factor

w
or

d 
ac

cu
ra

cy

0.0 0.2 0.4 0.6 0.8

50
55

60
65

70

a

a

a
a

a
a

b

b

b

b

b

a pre-Det & Det
b No Optimization

 

real-time factor

w
or

d 
ac

cu
ra

cy

0.0 0.2 0.4 0.6 0.8 1.0

60
65

70
75

80

a

a

a

a

a

a
a a

b

b

b

b

b

a pre-Det & Det
b No Optimization

(a) (b)

Fig. 7. Comparison of the optimization based on our pre-determinization algorithm
and determinization versus no optimization in the 5,500-word vocabulary HMIHY
0300 task with (a) a class-based language model and (b) a phrase-based model.

5,500-word vocabulary HMIHY 0300 speech recognition task [4]. The class-
based statistical language models used in that task are not determinizable and
lead to other non-determinizable machines when combined with the weighted
transducers representing information sources such as the pronunciation dic-
tionary.

Our experiments showed that pre-determinization leads to a substantial recog-
nition speed-up in this task. Figure 7 gives recognition accuracy as a function
of recognition time, in multiples of real-time on a single processor of a 1GHz
Intel Pentium III Linux cluster with 256 KB of cache and 2 GB of memory.
Figure 7(a) shows the results corresponding to a class-based language model.
Using our algorithm, the accuracy achieved by the old non-optimized inte-
grated transducer at .4 times real-time is reached by the new system using
our optimization at about .15 times real-time, that is more than 2.6 times
faster. Figure 7(b) shows similar plots when a phrase-based language model
is used. The accuracy achieved by the non-optimized transducer at .45 times
real-time is achieved by the optimized transducer at .1 times real-time.

The optimization of the weighted transducer T obtained by composing the
pronunciation dictionary and the phrase-based language model plays a crucial
role in the improvement of the speech recognition speed. To measure the ben-
efits of our algorithm, we computed the input multiplicity of the transitions
of T and that of the transitions of T ′ obtained by applying to T our pre-
determinization algorithm followed by determinization and removal of aux-
iliary transitions. The input multiplicity of a transition e is defined as the
number of transitions sharing the same input label and the same origin state
as e. Figure 8 shows the distribution of the input multiplicities in T and T ′ in
quantiles. The transducer T we are starting from in this experiment is not very

16



0 20 40 60 80 100

1
2

5
10

20
50

10
0

20
0

50
0

quantiles (in percent)

in
pu

t l
ab

el
 m

ul
tip

lic
ity

Fig. 8. Distribution of input multiplicities in T (in red) and T ′ (in blue).

non-deterministic since 76% of its transitions have input multiplicity 1. In T ′,
this proportion increases to 94% and more generally the resulting distribution
of multiplicities is much more favorable for T ′.

6 Conclusion

A general algorithm was presented that makes an arbitrary weighted trans-
ducer over the tropical semiring or any unambiguous weighted transducer over
a cancellative commutative semiring determinizable by inserting in it auxil-
iary symbols and transitions just when needed to ensure that it has the twins
property. The auxiliary symbols are inserted at carefully selected positions to
increase the benefits of the subsequent determinization. After determinization,
the auxiliary symbols can be removed or simply replaced by the empty string.

Experiments in large-vocabulary speech recognition show that the resulting
transducer can lead to a substantial recognition speed-up when the original
weighted transducer is not determinizable.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles,
Techniques and Tools. Addison Wesley: Reading, MA, 1986.

[2] Cyril Allauzen and Mehryar Mohri. Efficient Algorithms for Testing the Twins
Property. Journal of Automata, Languages and Combinatorics, 8(2):117–144,
2003.

17



[3] Cyril Allauzen and Mehryar Mohri. Finitely Subsequential Transducers.
International Journal of Foundations of Computer Science, 14(6):983–994,
2003.

[4] Cyril Allauzen and Mehryar Mohri. Generalized Optimization Algorithm for
Speech Recognition Transducers. In Proceedings of the 2003 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP 2003),
volume 1, pages 352–355, 2003.

[5] Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch.
Squaring transducers: An efficient procedure for deciding functionality and
sequentiality. Theoretical Computer Science, 292:45–63, 2003.

[6] Jean Berstel. Transductions and Context-Free Languages. Teubner
Studienbucher: Stuttgart, 1979.

[7] Christian Choffrut. Une caractérisation des fonctions séquentielles et des
fonctions sous-séquentielles en tant que relations rationnelles. Theoretical
Computer Science, 5:325–338, 1977.

[8] Christian Choffrut. Contributions à l’étude de quelques familles remarquables
de fonctions rationnelles. PhD thesis, (thèse de doctorat d’Etat), Université
Paris 7, LITP: Paris, France, 1978.

[9] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press: Cambridge, MA, 1992.

[10] Karel Culik II and Jarkko Kari. Digital Images and Formal Languages. In
Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages,
volume 3, pages 599–616. Springer, 1997.

[11] Samuel Eilenberg. Automata, Languages and Machines, volume A-B. Academic
Press, 1974-1976.

[12] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Number 5
in EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
Berlin, Germany, 1986.

[13] Mehryar Mohri. Finite-State Transducers in Language and Speech Processing.
Computational Linguistics, 23(2), 1997.

[14] Mehryar Mohri. Semiring Frameworks and Algorithms for Shortest-Distance
Problems. Journal of Automata, Languages and Combinatorics, 7(3):321–350,
2002.

[15] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted Automata
in Text and Speech Processing. In Proceedings of the 12th biennial European
Conference on Artificial Intelligence (ECAI-96), Workshop on Extended finite
state models of language, Budapest, Hungary. ECAI, 1996.

[16] Fernando C. N. Pereira and Michael D. Riley. Speech recognition by composition
of weighted finite automata. In Finite-State Language Processing, pages 431–
453. MIT Press, Cambridge, Massachusetts, 1997.

18



[17] Dominique Perrin. Words. In M. Lothaire, editor, Combinatorics on words,
Cambridge Mathematical Library. Cambridge University Press, 1997.

[18] Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power
Series. Springer-Verlag: New York, 1978.

[19] Andreas Weber and Reinhard Klemm. Economy of Description for Single-
Valued Transducers. Information and Computation, 118(2):327–340, 1995.

19


