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Abstract

Many tasks in text and speech processing and computational biology require es-
timating functions mapping strings to real numbers. A broad class of such func-
tions can be defined by weighted automata. Spectral methods based on the sin-
gular value decomposition of a Hankel matrix have been recently proposed for
learning a probability distribution represented by a weighted automaton from a
training sample drawn according to this same target distribution. In this paper, we
show how spectral methods can be extended to the problem of learning a general
weighted automaton from a sample generated by an arbitrary distribution. The
main obstruction to this approach is that, in general, some entries of the Hankel
matrix may be missing. We present a solution to this problem based on solving a
constrained matrix completion problem. Combining these two ingredients, matrix
completion and spectral method, a whole new family of algorithms for learning
general weighted automata is obtained. We present generalization bounds for a
particular algorithm in this family. The proofs rely on a joint stability analysis of
matrix completion and spectral learning.

1 Introduction

Many tasks in text and speech processing, computational biology, or learning models of the environ-
ment in reinforcement learning, require estimating a function mapping variable-length sequences to
real numbers. A broad class of such functions can be defined by weighted automata. The mathe-
matical and algorithmic properties of weighted automata have been extensively studied in the most
general setting where they are defined in terms of an arbitrary semiring [28, 9, 23]. Weighted au-
tomata are widely used in applications ranging from natural text and speech processing [24] to
optical character recognition [12] and image processing [1]. This paper addresses the problem of
learning weighted automata from a finite set of labeled examples.

The particular instance of this problem where the objective is to learn a probabilistic automaton
from examples drawn from this same distribution has recently drawn much attention: starting with
the seminal work of Hsu et al. [19], the so-called spectral method has proven to be a valuable tool in
developing novel and theoretically-sound algorithms for learning HMMs and other related classes
of distributions [5, 30, 31, 10, 6, 4]. Spectral methods have also been applied to other probabilistic
models of practical interest, including probabilistic context-free grammars and graphical models
with hidden variables [26, 22, 16, 3, 2]. The main idea behind these algorithms is that, under
an identifiability assumption, the method of moments can be used to formulate a set of equations
relating the parameters defining the target to observable statistics. Given enough training data, these
statistics can be accurately estimated. Then, solving the corresponding approximate equations yields
a model that closely estimates the target distribution. The spectral term takes its origin from the use
of a singular value decomposition in solving those equations.
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This paper tackles a significantly more general and more challenging problem than the specific
instance just mentioned. Indeed, in general, there seems to be a large gap separating the scenario
of learning a probabilistic automaton using data drawn according to the distribution it generates,
from that of learning an arbitrary weighted automaton from labeled data drawn from some unknown
distribution. For a start, in the former setting there is only one object to care about because the
distribution from which examples are drawn is the target machine. In contrast, the latter involves two
distinct objects: a distribution according to which strings are drawn, and a target weighted automaton
assigning labels to these strings. It is not difficult in this setting to conceive that, for a particular
target, an adversary could find a distribution over strings making the learner’s task insurmountably
difficult. In fact, this is the core idea behind the cryptography-based hardness results for learning
deterministic finite automata given by Kearns and Valiant [20] – these same results apply to our
setting as well.

But, even in cases where the distribution “cooperates,” there is still an obstruction in leveraging the
spectral method for learning general weighted automata. The statistics used by the spectral method
are essentially the probabilities assigned by the target distribution to each string in some fixed finite
set B. In the case where the target is a distribution, increasingly large samples yield uniformly
convergent estimates for these probabilities. Thus, it can be safely assumed that the probability of
any string from B not present in the sample is zero. When learning arbitrary weighted automata,
however, the value assigned by the target to an unseen string is unknown. Furthermore, one cannot
expect that a sample would contain the values of the target function for all the strings in B. This
observation raises the question of whether it is possible at all to apply the spectral method in a
setting with missing data, or, alternatively, whether there is a principled way to “estimate” this
missing information and then apply the spectral method.

As it turns out, the latter approach can be naturally formulated as a constrained matrix completion
problem. When applying the spectral method, the (approximate) values of the target on B are ar-
ranged in a matrix H. Thus, the main difference between the two settings can be restated as follows:
when learning a weighted automaton representing a distribution, unknown entries of H can be filled
in with zeros, while in the general setting there is a priori no straightforward method to fill in the
missing values. We propose to use a matrix completion algorithm for solving this last problem. In
particular, since H is a Hankel matrix whose entries must satisfy some equality constraints, it turns
out that the problem of learning weighted automata under an arbitrary distribution leads to what
we call the Hankel matrix completion problem. This is essentially a constrained matrix completion
problem where entries of valid hypotheses need to satisfy a set of equalities. We give an algorithm
for solving this problem via convex optimization. Many existing approaches to matrix completion,
e.g., [14, 13, 27, 18], are also based on convex optimization. Since the set of valid hypotheses for our
constrained matrix completion problem is convex, many of these algorithms could also be modified
to deal with the Hankel matrix completion problem.

In summary, our approach leverages two recent techniques for learning a general weighted automa-
ton: matrix completion and spectral learning. It consists of first predicting the missing entries in
H and then applying the spectral method to the resulting matrix. Altogether, this yields a family
of algorithms parametrized by the choice of the specific Hankel matrix completion algorithm used.
These algorithms are designed for learning an arbitrary weighted automaton from samples generated
by an unknown distribution over strings and labels.

We study a special instance of this family of algorithms and prove generalization guarantees for
its performance based on a stability analysis, under mild conditions on the distribution. The proof
contains two main novel ingredients: a stability analysis of an algorithm for constrained matrix
completion, and an extension of the analysis of spectral learning to an agnostic setting where data
is generated by an arbitrary distribution and labeled by a process not necessarily modeled by a
weighted automaton.

The rest of the paper is organized as follows. Section 2 introduces the main notation and definitions
used in subsequent sections. In Section 3, we describe a family of algorithms for learning general
weighted automata by combining constrained matrix completion and spectral methods. In Sec-
tion 4, we give a detailed analysis of one particular algorithm in this family, including generalization
bounds.
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2 Preliminaries

This section introduces the main notation used in this paper. Bold letters will be used for vec-
tors v and matrices M. For vectors, ‖v‖ denotes the standard euclidean norm. For matri-
ces, ‖M‖ denotes the operator norm. For p ∈ [1,+∞], ‖M‖p denotes the Schatten p-norm:
‖M‖p = (

∑
n≥1 σp

n(M))1/p, where σn(M) is the nth singular value of M. The special case
p = 2 coincides with the Frobenius norm which will be sometimes also written as ‖M‖F . The
Moore–Penrose pseudo-inverse of a matrix M is denoted by M+.

2.1 Functions over Strings and Hankel Matrices

We denote by Σ = {a1, . . . , ak} a finite alphabet of size k ≥ 1 and by ε the empty string. We also
write Σ′ = {ε} ∪ Σ. The set of all strings over Σ is denoted by Σ? and the length of a string x
denoted by |x|. For any n ≥ 0, Σ≤n denotes the set of all strings of length at most n. Given two
sets of strings P,S ⊆ Σ? we denote by PS the set of all strings uv obtained by concatenation of a
string u ∈ P and a string v ∈ S. A set of strings P is called Σ-complete when P = P ′Σ′ for some
set P ′. P ′ is then called the root of P . A pair (P,S) with P,S ⊆ Σ? is said to form a basis of Σ?

if ε ∈ P ∩ S and P is Σ-complete. We define the dimension of a basis (P,S) as the cardinality of
PS, that is |PS|.
For any basis B = (P,S), we denote by HB the vector space of functions RPS whose dimension
is the dimension of B. We will simply write H instead of HB when the basis B is clear from the
context. The Hankel matrix H ∈ RP×S associated to a function h ∈ H is the matrix whose entries
are defined by H(u, v) = h(uv) for all u ∈ P and v ∈ S. Note that the mapping h 7→ H is linear.
In fact, H is isomorphic to the vector space formed by all |P|× |S| real Hankel matrices and we can
thus write by identification

H =
{
H ∈ RP×S : ∀u1, u2 ∈ P, ∀v1, v2 ∈ S, u1v1 = u2v2 ⇒ H(u1, v1) = H(u2, v2)

}
.

It is clear from this characterization that H is a convex set because it is a subset of a convex
space defined by equality constraints. In particular, a matrix in H contains |P||S| coefficients with
|PS| degrees of freedom, and the dependencies can be specified as a set of equalities of the form
H(u1, v1) = H(u2, v2) when u1v1 = u2v2. We will use both characterizations of H indistinctly for
the rest of the paper. Also, note that different orderings of P and S may result in different sets of
matrices. For convenience, we will assume for all that follows an arbitrary fixed ordering, since the
choice of that order has no effect on any of our results.

Matrix norms extend naturally to norms in H. For any p ∈ [1,+∞], the Hankel–Schatten p-norm
on H is defined as ‖h‖p = ‖H‖p. It is straightforward to verify that ‖h‖p is a norm by the linearity
of h 7→ H. In particular, this implies that the function ‖ · ‖p : H → R is convex. In the case p = 2,
it can be seen that ‖h‖22 = 〈h, h〉H, with the inner product on H defined by

〈h, h′〉H =
∑

x∈PS
cxh(x)h′(x) ,

where cx = |{(u, v) ∈ P×S : x = uv}| is the number of possible decompositions of x into a prefix
in P and a suffix in S.

2.2 Weighted finite automata

A widely used class of functions mapping strings to real numbers is that of functions defined by
weighted finite automata (WFA) or in short weighted automata [23]. These functions are also known
as rational power series [28, 9]. A WFA over Σ with n states can be defined as a tuple A =
〈α,β, {Aa}a∈Σ〉, where α,β ∈ Rn are the initial and final weight vectors, and Aa ∈ Rn×n the
transition matrix associated to each alphabet symbol a ∈ Σ. The function fA realized by a WFA A
is defined by

fA(x) = α>Ax1 · · ·Axtβ ,

for any string x = x1 · · ·xt ∈ Σ∗ with t = |x| and xi ∈ Σ for all i ∈ [1, t]. We will say that a WFA
A = 〈α,β, {Aa}〉 is γ-bounded if ‖α‖, ‖β‖, ‖Aa‖ ≤ γ for all a ∈ Σ. This property is convenient
to bound the maximum value assigned by a WFA to any string of a given length.
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1 -1

a, 0
b, 2/3

a, 0
b, 3/4

a, 1/3
b, 1

a, 3/4
b, 6/5

1/2 1/2

α> = [1/2 1/2] β> = [1 −1]

Aa =
[
3/4 0
0 1/3

]
Ab =

[
6/5 2/3
3/4 1

]
(a) (b)

Figure 1: Example of a weighted automaton over Σ = {a, b} with 2 states: (a) graph representation;
(b) algebraic representation.

WFAs can be more generally defined over an arbitrary semiring instead of the field of real numbers
and are also known as multiplicity automata (e.g., [8]). To any function f : Σ? → R, we can
associate its Hankel matrix Hf ∈ RΣ?×Σ?

with entries defined by Hf (u, v) = f(uv). These are
just the bi-infinite versions of the Hankel matrices we introduced in the case P = S = Σ?. Carlyle
and Paz [15] and Fliess [17] gave the following characterization of the set of functions f in RΣ?

defined by a WFA in terms of the rank of their Hankel matrix rank(Hf ).1

Theorem 1 ([15, 17]) A function f : Σ? → R can be defined by a WFA iff rank(Hf ) is finite and in
that case rank(Hf ) is the minimal number of states of any WFA A such that f = fA.

Thus, WFAs can be viewed as those functions whose Hankel matrix can be finitely “compressed”.
Since finite sub-blocks of a Hankel matrix cannot have a larger rank than its bi-infinite extension,
this justifies the use of a low-rank-enforcing regularization in the definition of a Hankel matrix
completion.

Note that deterministic finite automata (DFA) with n states can be represented by a WFA with at
most n states. Thus, the results we present here can be directly applied to classification problems in
Σ?. However, specializing our results to this particular setting may yield several improvements.

2.2.1 Example

Figure 1 shows an example of a weighted automaton A = 〈α,β, {Aa}〉 with two states defined
over the alphabet Σ = {a, b}, with both its algebraic representation (Figure 1(b)) in terms of vectors
and matrices and the equivalent graph representation (Figure 1(a)) useful for a variety of WFA
algorithms [23]. Let W = {ε, a, b}, then B = (WΣ′,W) is a Σ-complete basis. The following is
the Hankel matrix of A on this basis shown with three-digit precision entries:

H>
B =

 ε a b aa ab ba bb
ε 0.00 0.20 0.14 0.22 0.15 0.45 0.31
a 0.20 0.22 0.45 0.19 0.29 0.45 0.85
b 0.14 0.15 0.31 0.13 0.20 0.32 0.58

 .

By Theorem 1, the Hankel matrix of A has rank at most 2. Given HB, the spectral method described
in [19] can be used to recover a WFA Â equivalent to A, in the sense that A and Â compute the
same function. In general, one may be given a sample of strings labeled using some WFA that does
not contain enough information to fully specify a Hankel matrix over a complete basis. In that case,
Theorem 1 motivates the use of a low-rank matrix completion algorithm to fill in the missing entries
in HB prior to the application of the spectral method. This is the basis of the algorithm we describe
in the following section.

3 The HMC+SM Algorithm

In this section we describe our algorithm HMC+SM for learning weighted automata. As input,
the algorithm takes a sample Z = (z1, . . . , zm) containing m examples zi = (xi, yi) ∈ Σ? × R,

1The construction of an equivalent WFA with the minimal number of states from a given WFA was first
given by Schützenberger [29].
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1 ≤ i ≤ m, drawn i.i.d. from some distribution D over Σ? × R. There are three parameters a user
can specify to control the behavior of the algorithm: a basis B = (P,S) of Σ?, a regularization
parameter τ > 0, and the desired number of states n in the hypothesis. The output returned by
HMC+SM is a WFA AZ with n states that computes a function fAZ

: Σ? → R.

The algorithm works in two stages. In the first stage, a constrained matrix completion algorithm
with input Z and regularization parameter τ is used to return a Hankel matrix HZ ∈ HB. In the
second stage, the spectral method is applied to HZ to compute a WFA AZ with n states. These two
steps will be described in detail in the following sections.

As will soon become apparent, HMC+SM defines in fact a whole family of algorithms. In particular,
by combining the spectral method with any algorithm for solving the Hankel matrix completion
problem, one can derive a new algorithm for learning WFAs. For concreteness, in the following,
we will only consider the Hankel matrix completion algorithm described in Section 3.1. Through
its parametrization by a number 1 ≤ p ≤ ∞ and a convex loss ` : R × R → R+, this completion
algorithm already gives rise to a family of learning algorithms that we denote by HMCp,`+SM.
However, it is important to keep in mind that for each existing matrix completion algorithm that can
be modified to solve the Hankel matrix completion problem, a new algorithm for learning WFAs
can be obtained via the general scheme we describe below.

3.1 Hankel Matrix Completion

We now describe our Hankel matrix completion algorithm. Given a basis B = (P,S) of Σ? and a
sample Z over Σ? × R, the algorithm solves a convex optimization problem and returns a matrix
HZ ∈ HB. We give two equivalent descriptions of this optimization, one in terms of functions
h : PS → R, and another in terms of Hankel matrices H ∈ RP×S . While the former is perhaps
conceptually simpler, the latter is easier to implement within the existing frameworks of convex
optimization.

We will denote by Z̃ the subsample of Z formed by examples z = (x, y) with x ∈ PS and by m̃

its size |Z̃|. For any p ∈ [1,+∞] and a convex loss function ` : R × R → R+, we consider the
objective function FZ defined for any h ∈ H by

FZ(h) = τN(h) + R̂ eZ(h) = τ‖h‖2p +
1
m̃

∑
(x,y)∈eZ

`(h(x), y) ,

where τ > 0 is a regularization parameter. FZ is a convex function, by the convexity of ‖ · ‖p and `.
Our algorithm seeks to minimize this loss function over the finite-dimensional vector space H and
returns a function hZ satisfying

hZ ∈ argmin
h∈H

FZ(h) . (HMC-h)

To define an equivalent optimization over the matrix version of H, we introduce the following no-
tation. For each string x ∈ PS, fix a pair of coordinate vectors (ux,vx) ∈ RP × RS such that
u>x Hvx = H(x) for any H ∈ H. That is, ux and vx are coordinate vectors corresponding respec-
tively to a prefix u ∈ P and a suffix v ∈ S, and such that uv = x. Now, abusing our previous
notation, we define the following loss function over matrices:

FZ(H) = τN(H) + R̂ eZ(H) = τ‖H‖2p +
1
m̃

∑
(x,y)∈eZ

`(u>x Hvx, y) .

This is a convex function defined over the space of all |P| × |S| matrices. Optimizing FZ over the
convex set of Hankel matrices H leads to an algorithm equivalent to (HMC-h):

HZ ∈ argmin
H∈H

FZ(H) . (HMC-H)

We note here that our approach shares some common aspects with some previous work in matrix
completion. The fact that there may not be a true underlying Hankel matrix makes it somewhat close
to the agnostic setting in [18], where matrix completion is also applied under arbitrary distributions.
Nonetheless, it is also possible to consider other learning frameworks for WFAs where algorithms
for exact matrix completion [14, 27] or noisy matrix completion [13] may be useful. Furthermore,
since most algorithms in the literature of matrix completion are based on convex optimization prob-
lems, it is likely that most of them can be adapted to solve constrained matrix completions problems
such as the one we discuss here.
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3.2 Spectral Method for General WFA

Here, we describe how the spectral method can be applied to HZ to obtain a WFA. We use the
same notation as in [7] and a version of the spectral method working with an arbitrary basis (as in
[5, 4, 7]), in contrast to versions restricted to P = Σ≤2 and S = Σ like [19].

We first need to partition HZ into k + 1 blocks as follows. Since B is a basis, P is Σ-complete
and admits a root P ′. We define a block Ha ∈ RP′×S for each a ∈ Σ′, whose entries are given by
Ha(u, v) = HZ(ua, v), for any u ∈ P ′ and v ∈ S. Thus, after suitably permuting the rows of HZ ,
we can write H>

Z = [H>
ε ,H>

a1
, . . . ,H>

ak
]. We will use the following specific notation to refer to the

rows and columns of Hε corresponding to ε ∈ P ′ ∩ S: hε,S ∈ RS with hε,S(v) = Hε(ε, v) and
hP′,ε(u) ∈ RP′

with hP′,ε(u) = Hε(u, ε).

Using this notation, the spectral method can be described as follows. Given the desired number
of states n, it consists of first computing the truncated SVD of Hε corresponding to the n largest
singular values: UnDnV>

n . Thus, matrix UnDnV>
n is the best rank n approximation to Hε with

respect to the Frobenius norm. Then, using the right singular vectors Vn of Hε, the next step
consists of computing a weighted automaton AZ = 〈α,β, {Aa}〉 as follows:

α> = h>ε,SVn β = (HεVn)+ hP′,ε Aa = (HεVn)+ HaVn . (SM)

The fact that the spectral method is based on a singular value decomposition justifies in part the use
of a Schatten p-norm as a regularizer in (HMC-H). In particular, two very natural choices are p = 1
and p = 2. The first one corresponds to a nuclear norm regularized optimization, which is known
to enforce a low rank constraint on HZ . In a sense, this choice can be justified in view of Theorem
1 when the target is known to be generated by some WFA. On the other hand, choosing p = 2 also
has some effect on the spread of singular values, while at the same time enforcing the coefficients
in HZ – especially those that are completely unknown – to be small. As our analysis suggests, this
last property is important for preventing errors from accumulating on the values assigned by AZ to
long strings.

4 Generalization Bound

In this section, we study the generalization properties of HMCp,`+SM. We give a stability analysis
for a special instance of this family of algorithms and use it to derive a generalization bound. We
study the specific case where p = 2 and `(y, y′) = |y − y′| for all (y, y′). But, much of our analysis
can be used to derive similar bounds for other instances of HMCp,`+SM. The proofs of the technical
results presented are given in the Appendix.

We first introduce some notation needed for the presentation of our main result. For any ν > 0, let
tν be the function defined by tν(x) = x for |x| ≤ ν and tν(x) = ν sign(x) for |x| > ν. For any
distributionD over Σ?×R, we denote byDΣ its marginal distribution over Σ?. The probability that
a string x ∼ DΣ belongs to PS is denoted by π = DΣ(PS).

We assume that the parameters B, n, and τ are fixed. Two parameters that depend on D will appear
in our bound. In order to define these parameters, we need to consider the output HZ of (HMC-H)
as a random variable that depends on the sample Z. Writing H>

Z = [H>
ε ,H>

a1
, . . . ,H>

ak
], as in

Section 3.2, we define:

σ = E
Z∼Dm

[σn(Hε)] ρ = E
Z∼Dm

[
σn(Hε)2 − σn+1(Hε)2

]
,

where σn(M) denotes the nth singular value of matrix M. Note that these parameters may vary
with m, n, τ and B.

In contrast to previous learning results based on the spectral method, our bound holds in an agnostic
setting. That is, we do not require that the data was generated from some (probabilistic) unknown
WFA. However, in order to prove our results we do need to make two assumptions about the tails of
the distribution. First, we need to assume that there exists a bound on the magnitude of the labels
generated by the distribution.

Assumption 1 There exists a constant ν > 0 such that if (x, y) ∼ D, then |y| ≤ ν almost surely.
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Second, we assume that the strings generated by the distribution will not be too long. In particular,
that the length of the strings generated byDΣ follows a distribution whose tail is slightly lighter than
sub-exponential.

Assumption 2 There exist constants c, η > 0 such that Px∼DΣ [|x| ≥ t] ≤ exp(−ct1+η) holds for
all t ≥ 0.

We note that in the present context both assumptions are quite reasonable. Assumption 1 is equiva-
lent to assumptions made in other contexts where a stability analysis is pursued, e.g., in the analysis
of support vector regression in [11]. Furthermore, in our context, this assumption can be relaxed
to require only that the distribution over labels be sub-Gaussian, at the expense of a more complex
proof.

Assumption 2 is required by the fact already pointed out in [19] that errors in the estimation of
operator models accumulate exponentially with the length of the string. Moreover, it is well known
that the tail of any probability distribution generated by a WFA is sub-exponential. Thus, though we
do not require DΣ to be generated by a WFA, we do need its distribution over lengths to have a tail
behavior similar to that of a distribution generated by a WFA. This seems to be a limitation common
to all known learnability proofs based on the spectral method.

We can now state our main result, which is a bound on the average loss R(f) = Ez∼D[`(f(x), y)]
in terms of the empirical loss R̂Z(f) = |Z|−1

∑
z∈Z `(f(x), y).

Theorem 2 Let Z be a sample formed by m i.i.d. examples generated from some distribution D
satisfying Assumptions 1 and 2. Let AZ be the WFA returned by algorithm HMCp,`+SM with p = 2
and loss function `(y, y′) = |y − y′|. Then, for any δ > 0, the following holds with probability at
least 1− δ for fZ = tν ◦ fAZ

:

R(fZ) ≤ R̂Z(fZ) + O

(
ν4|P|2|S|3/2

τσ3ρπ

lnm

m1/3

√
ln

1
δ

)
.

The proof of this theorem is based on an algorithmic stability analysis. Thus, we will consider
two samples of size m, Z ∼ Dm consisting of m i.i.d. examples drawn from D, and Z ′ differing
from Z by just one point: say zm in Z = (z1, . . . , zm) and z′m in Z ′ = (z1, . . . , zm−1, z

′
m). The

new example z′m is an arbitrary point the support of D. Throughout the analysis we use the shorter
notation H = HZ and H′ = HZ′ for the Hankel matrices obtained from (HMC-H) based on
samples Z and Z ′ respectively.

The first step in the analysis is to bound the stability of the matrix completion algorithm. This is
done in the following lemma, that gives a sample-dependent and a sample-independent bound for
the stability of H.

Lemma 3 Suppose D satisfies Assumption 1. Then, the following holds:

‖H−H′‖F ≤ min
{

2ν
√
|P||S|, 1

τ min{m̃, m̃′}

}
.

The standard method for deriving generalization bounds from algorithmic stability results could be
applied here to obtain a generalization bound for our Hankel matrix completion algorithm. However,
our goal is to give a generalization bound for the full HMC+SM algorithm.

Using the bound on the Frobenius norm ‖H−H′‖F , we are able to analyze the stability of σn(Hε),
σn(Hε)2 − σn+1(Hε)2, and Vn using well-known results on the stability of singular values and
singular vectors. These results are used to bound the difference between the operators of WFA AZ

and AZ′ . The following lemma can be proven by modifying and extending some of the arguments
of [19, 4], which were given in the specific case of WFAs representing a probability distribution.

Lemma 4 Let ε = ‖H−H′‖F , σ̂ = min{σn(Hε), σn(H′
ε)}, and ρ̂ = σn(Hε)2−σn+1(Hε)2. Sup-

pose ε ≤
√

ρ̂/4. Then, there exists some constant C > 0 such that the following three inequalities
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hold:

∀a ∈ Σ : ‖Aa −A′
a‖ ≤ Cεν3|P|3/2|S|1/2/ρ̂σ̂2;

‖α−α′‖ ≤ Cεν2|P|1/2|S|/ρ̂;

‖β − β′‖ ≤ Cεν3|P|3/2|S|1/2/ρ̂σ̂2.

The other half of the proof results from combining Lemmas 15 and 19 to obtain a bound for
|fZ(x)−fZ′(x)|. This is a delicate step, because some of the bounds given above involve quantities
that are defined in terms of Z. Therefore, all these parameters need to be controlled in order to
ensure that the bounds do not grow too large. Furthermore, to obtain the desired bounds we need to
extend the usual tools for analyzing spectral methods to the current setting. In particular, these tools
need to be adapted to the agnostic settings where there is no underlying true WFA. The analysis is
further complicated by the fact that now the functions we are trying to learn and the distribution that
generates the data are not necessarily related.

Once all this is achieved, it remains to combine these new tools to show an algorithmic stability
result for HMCp,`+SM. In the following lemma, we first define “bad” samples Z and show that bad
samples have a very low probability.

Lemma 5 Suppose D satisfies Assumptions 1 and 2. If Z is a large enough i.i.d. sample from
D, then with probability at least 1 − 1/m3 the following inequalities hold simultaneously: |xi| ≤
((1/c) ln(4m4))1/1+η for all i, ε ≤ 4/(τπm), σ̂ ≥ σ/2, and ρ̂ ≥ ρ/2.

After that we give two upper bounds for |fZ(x) − fZ′(x)|: a tighter bound that holds for “good”
samples Z and Z ′ and a another one that holds for all samples. These bounds are combined using
a variant of McDiarmid’s inequality for dealing with functions that do not satisfy the bounded dif-
ferences assumption almost surely [21]. The rest of the proof then follows the same scheme as the
standard one for deriving generalization bounds for stable algorithms [11, 25].

5 Conclusion

We described a new algorithmic solution for learning arbitrary weighted automata from a sam-
ple of labeled strings drawn from an unknown distribution. Our approach combines an algorithm
for constrained matrix completion with the recently developed spectral learning methods for learn-
ing probabilistic automata. Using our general scheme, a broad family of algorithms for learning
weighted automata can be obtained. We gave a stability analysis of a particular algorithm in that
family and used it to prove generalization bounds that hold for all distributions satisfying two rea-
sonable assumptions. The particular case of Schatten p-norm with p = 1, which corresponds to
a regularization with the nuclear norm, can be analyzed using similar techniques. Our results can
be further extended by deriving generalization guarantees for all algorithms in the family we intro-
duced. An extensive and rigorous empirical comparison of all these algorithms will be an important
complement to the research we presented. Finally, learning DFAs under an arbitrary distribution
using the algorithms we presented deserves a specific study since the problem is of interest in many
applications and since it may benefit from improved learning guarantees.
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A Perturbation and stability tools

In this section, we list a series of known perturbation results for singular values, pseudo-inverses,
and singular vectors, and other stability results needed for the proofs given in this appendix.

Lemma 6 ([32]) Let A,B ∈ Rd1×d2 . Then, for any n ∈ [1,min{d1, d2}], the following inequality
holds: |σn(A)− σn(B)| ≤ ‖A−B‖.

Lemma 7 ([32]) Let A,B ∈ Rd1×d2 . Then the following upper bound holds for the norm of the
difference of the pseudo-inverses of matrices A and B:

‖A+ −B+‖ ≤ 1 +
√

5
2

max
{
‖A+‖2, ‖B+‖2

}
‖A−B‖

Lemma 8 ([33]) Let A ∈ Rd×d be symmetric positive semidefinite matrix and E ∈ Rd×d a sym-
metric matrix such that B = A + E is positive semidefinite. Fix n ≤ rank(A) and suppose that
‖E‖F ≤ (λn(A) − λn+1(A))/4. Then, writing Vn for the top n eigenvectors of A and Wn for
the top n eigenvectors of B, we have

‖Vn −Wn‖F ≤ 4‖E‖F

λn(A)− λn+1(A)
. (1)

This last lemma will be most useful to us in the form given in this next corollary.

Corollary 9 Let A,E ∈ Rd1×d2 and write B = A + E. Suppose n ≤ rank(A) and ‖E‖F ≤√
σn(A)2 − σn+1(A)2/4. If Vn,Wn contain the first n right singular vectors of A and B respec-

tively, then

‖Vn −Wn‖F ≤ 8‖A‖F ‖E‖F + 4‖E‖2F
σn(A)2 − σn+1(A)2

.

Proof. Using that ‖A>A −B>B‖F ≤ 2‖A‖F ‖E‖F + ‖E‖2F and λn(A>A) = σn(A)2, we can
apply Lemma 8 to get the bound on ‖Vn −Wn‖F under the condition that ‖A>A −B>B‖F ≤
(σn(A)2 − σn+1(A)2)/4. To see that this last condition is satisfied, observe that for all x, y ≥ 0
one has

√
1 +

√
2
√

x + y ≥
√

x +
√

y. Thus, we get

‖E‖F ≤
√

σn(A)2 − σn+1(A)2

4

≤
√

σn(A)2 − σn+1(A)2 +
√

4‖A‖2F − 2‖A‖F

2
√

1 +
√

2

≤
√

4‖A‖2F + σn(A)2 − σn+1(A)2 − 2‖A‖F

2
,

and this last inequality implies 2‖A‖F ‖E‖F + ‖E‖2F ≤ (σn(A)2 − σn+1(A)2)/4. 2

The next two results give useful extensions of McDiarmid’s inequality to deal with functions that do
not satisfy the bounded difference assumption almost surely [21].

Definition 10 Let X = (X1, . . . , Xm) be a random variable on a probability space Ωm. We say
that a function Φ: Ωm → R is strongly difference-bounded by (b, c, δ) if the following holds: there
exists a measurable subset E ⊆ Ωm with P[E] ≤ δ, such that

• if X and X ′ differ only by one coordinate and X /∈ E, then |Φ(X)− Φ(X ′)| ≤ c;

• for all X, X ′ that differ only by one coordinate |Φ(X)− Φ(X ′)| ≤ b.

10



Theorem 11 Let Φ be a function over a probability space Ωm that is strongly difference-bounded
by (b, c, δ) with b ≥ c > 0. Then, for any t > 0,

P [Φ− E[Φ] ≥ t] ≤ exp
(
−t2

8mc2

)
+

mbδ

c
.

Furthermore, the same upper bound holds for P[E[Φ]− Φ ≥ t].

Corollary 12 Let Φ be a function over a probability space Ωm that is strongly difference-bounded
by (b, θ/m, exp(−Km)). Then, for any 0 < t ≤ 2θ

√
K and m ≥ max{b/θ, (9 + 18/K) ln(3 +

6/K)},

P [Φ− E[Φ] ≥ t] ≤ 2 exp
(
−t2m

8θ2

)
.

Furthermore, the same upper bound holds for P[E[Φ]− Φ ≥ t].

The following is another useful form of the previous Corollary.

Corollary 13 Let Φ be a function over a probability space Ωm that is strongly difference-bounded
by (b, θ/m, exp(−Km)). Then, for any δ > 0 and any m ≥ max{b/θ, (9 + 18/K) ln(3 +
6/K), (2/K) ln(2/δ)}, each of the following holds with probability at least 1− δ:

Φ ≥ E[Φ]−

√
8θ2

m
ln
(

2
δ

)
,

Φ ≤ E[Φ] +

√
8θ2

m
ln
(

2
δ

)
.

B Proof of Theorem 2

To analyze the stability of our algorithm, we consider a sample Z ′ = (z1, . . . , zm−1, z
′
m) that differs

from Z only by the last point (z′m instead of zm). Example z′m is an arbitrary point in the domain of
D. Throughout the analysis, h = hZ and h′ = hZ′ denote the functions in H obtained by solving
(HMC-h) respectively with training samples Z and Z ′ respectively. We also denote by H = HZ

and H′ = HZ′ their corresponding Hankel matrices.

The following technical lemma will be used to study the algorithmic stability of the optimization
problem (HMC-h).

Lemma 14 The following inequality holds for all samples Z and Z ′ differing by only one point:

2τ‖h− h′‖22 ≤ R̂ eZ(h′)− R̂ eZ(h) + R̂ eZ′(h)− R̂ eZ′(h′) .

Proof. The argument is the same as the one presented in [25] to bound the stability of kernel ridge
regression. The following inequality is first shown using the expansion of ‖h− h′‖22 in terms of the
corresponding inner product:

2τ‖h− h′‖22 ≤ τ(BN (h′‖h) + BN (h‖h′)) ≤ BFZ
(h′‖h) + BFZ′ (h‖h′) ,

where BF denotes the Bregman divergence associated to F . Next, using the optimality of h and
h′, which implies ∇FZ(h) = 0 and ∇FZ′(h′) = 0, we can write BFZ

(h′‖h) + BFZ′ (h‖h′) =
R̂ eZ(h′)− R̂ eZ(h) + R̂ eZ′(h)− R̂ eZ′(h′). 2

Our next lemma bounds the stability of the first stage of the algorithm using Lemma 14.

Lemma 15 Assume that D satisfies Assumption 1. Then, the following holds:

‖H−H′‖F ≤ min
{

2ν
√
|P||S|, 1

τ min{m̃, m̃′}

}
.
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Proof. Note that by Assumption 1, for all (x, y) in Z̃, or Z̃ ′, we have |y| ≤ ν. Therefore, we must
have |H(u, v)| ≤ ν for all u ∈ P and v ∈ S, otherwise the value of FZ(H) is not minimal because
decreasing the absolute value of an entry |H(u, v)| > ν decreases the value of FZ(H). The same
holds for H′. Thus, the first bound follows from ‖H−H′‖F ≤ ‖H‖F + ‖H′‖F ≤ 2ν

√
|P||S|.

Now we proceed to show the second bound. Since by definition ‖H − H′‖F = ‖h − h′‖2, it is
sufficient to bound this second quantity. By Lemma 14, we have

2τ‖h− h′‖22 ≤ R̂ eZ(h′)− R̂ eZ(h) + R̂ eZ′(h)− R̂ eZ′(h′) . (2)

We can consider four different situations for the right-hand side of this expression, depending on the
membership of xm and x′m in the set PS.

If xm, x′m /∈ PS, then Z̃ = Z̃ ′. Therefore, R̂ eZ(h) = R̂ eZ′(h), R̂ eZ(h′) = R̂ eZ′(h′), and ‖h−h′‖2 =
0.

If xm, x′m ∈ PS, then m̃ = m̃′, and the following equalities hold:

R̂ eZ′(h)− R̂ eZ(h) =
|h(x′m)− y′m| − |h(xm)− ym|

m̃
,

R̂ eZ(h′)− R̂ eZ′(h′) =
|h′(xm)− ym| − |h′(x′m)− y′m|

m̃
.

Thus, in view of (2), we can write

2τ‖h− h′‖22 ≤
|h(xm)− h′(xm)|+ |h(x′m)− h′(x′m)|

m̃
≤ 2

m̃
‖h− h′‖2 ,

where the first inequality follows from ||h(x)− y| − |h′(x)− y|| ≤ |h(x)− h′(x)|, and the second
from |h(x)− h′(x)| ≤ ‖h− h′‖2.

If xm ∈ PS and x′m /∈ PS, the right-hand side of (2) equals∑
z∈eZ′

(
|h′(x)− y|

m̃
− |h′(x)− y|

m̃′ +
|h(x)− y|

m̃′ − |h(x)− y|
m̃

)
+
|h′(xm)− ym|

m̃
−|h(xm)− ym|

m̃
.

Now, since m̃ = m̃′ + 1 we can write

2τ‖h− h′‖22 ≤
∑
z∈eZ′

|h(x)− h′(x)|
m̃ m̃′ +

|h(xm)− h′(xm)|
m̃

≤ 2
m̃
‖h− h′‖2 .

By symmetry, a similar bound holds in the case where xm /∈ PS and x′m ∈ PS. Combining these
four bounds yields the desired inequality. 2

The next three lemmas contain the main technical tools needed to bound the difference |fAZ
(x) −

fAZ′ (x)| in our agnostic setting.

Lemma 16 Let A = 〈α,β, {Aa}〉 and A′ =
〈
α′,β′, {A′

a}
〉

be two weighted automata with n
states. Let γ be such that both A and A′ are γ-bounded. Then, the following inequality holds for
any string x ∈ Σ?:

|fA(x)− fA′(x)| ≤ γ|x|+1
(
‖α−α′‖+ ‖β − β′‖+

|x|∑
i=1

‖Axi −A′
xi
‖
)

.

Proof. Follows by induction on |x| using techniques similar to those used to prove Lemmas 11 and
12 in [19]. 2

Lemma 17 Let γ = ν
√
|P||S|/σn(Hε). The weighted automaton AZ is γ-bounded.

Proof. Since ‖Ha‖ ≤ ‖Ha‖F ≤ ν
√
|P||S|, simple calculations show that ‖α>‖ ≤ ν

√
|S|,

‖β‖ ≤ ν
√
|P|/σn(Hε), and ‖Aa‖ ≤ ν

√
|P||S|/σn(Hε). 2
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Let us define the following quantities in terms of the vectors and matrices that define A and A′:

εε = ‖Hε −H′
ε‖ ,

εa = ‖Ha −H′
a‖ ,

εV = ‖V −V′‖ ,

εS = ‖hλ,S − h′λ,S‖ ,

εP = ‖hP,λ − h′P,λ‖ .

Now we state a result that will be used in the proof of Lemma 19.

Lemma 18 The following three bounds hold:

‖Aa −A′
a‖ ≤

εa + εV ‖H′
a‖

σn(HεV)
+

1 +
√

5
2

‖H′
a‖(εε + εV ‖H′

ε‖)
min{σn(HεV)2, σn(H′

εV′)2}
,

‖α−α′‖ ≤ εS + εV ‖hλ,S‖ ,

‖β − β′‖ ≤ εP
σn(HεV)

+
1 +

√
5

2
‖h′P,λ‖(εε + εV ‖H′

ε‖)
min{σn(HεV)2, σn(H′

εV′)2}
.

Proof. Using the triangle inequality, the submultiplicativity of the operator norm, and the properties
of the pseudo-inverse, we can write

‖Aa −A′
a‖ = ‖(HεV)+(HaV −H′

aV
′) + ((H′

εV
′)+ − (HεV)+)H′

aV
′‖

≤ ‖(HεV)+‖‖HaV −H′
aV

′‖+ ‖(HεV)+ − (H′
εV

′)+‖‖H′
aV

′‖
≤ σn(HεV)−1‖HaV −H′

aV
′‖+ ‖H′

a‖‖(HεV)+ − (H′
εV

′)+‖ ,

where we used that ‖(HεV)+‖ = σn(HεV) by the properties of pseudo-inverse and operator norm,
and ‖H′

aV
′‖ ≤ ‖H′

a‖ by sub-multiplactivity and ‖V′‖ = 1. Now note that we also have

‖HaV −H′
aV

′‖ ≤ ‖V‖‖Ha −H′
a‖+ ‖H′

a‖‖V −V′‖ ≤ εa + εV ‖H′
a‖ .

Furthermore, using Lemma 7 we obtain

‖(HεV)+ − (H′
εV

′)+‖ ≤ 1 +
√

5
2

‖HεV −H′
εV

′‖max{‖(HεV)+‖2, ‖(H′
εV

′)+‖2}

≤ 1 +
√

5
2

‖Hε −Hε‖‖V‖+ ‖H′
ε‖‖V −V′‖

min{σn(HεV)2, σn(H′
εV′)2}

=
1 +

√
5

2
εε + εV ‖H′

ε‖
min{σn(HεV)2, σn(H′

εV′)2}
.

Thus we get the first of the bounds. The second bound follows straightforwardly from

‖V>hλ,S −V′>h′λ,S‖ ≤ ‖V> −V′>‖‖hλ,S‖+ ‖V′>‖‖hλ,S − h′λ,S‖ = εS + εV ‖hλ,S‖ ,

which uses that ‖M>‖ = ‖M‖ holds for the operator norm.

Finally, the last bound follows from the following inequalities, where we use Lemma 7 again:

‖β − β′‖ ≤ ‖(HεV)+‖‖hP,λ − h′P,λ‖+ ‖h′P,λ‖‖(HεV)+ − (H′
εV

′)+‖

≤
‖hP,λ − h′P,λ‖

σn(HεV)
+

1 +
√

5
2

‖h′P,λ‖‖HεV −H′
εV

′‖
min{σn(HεV)2, σn(H′

εV′)2}

≤ εP
σn(HεV)

+
1 +

√
5

2
‖h′P,λ‖(εε + εV ‖H′

ε‖)
min{σn(HεV)2, σn(H′

εV′)2}
.

2
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Lemma 19 Let ε = ‖H −H′‖F , σ̂ = min{σn(Hε), σn(H′
ε)}, and ρ̂ = σn(Hε)2 − σn+1(Hε)2.

Suppose ε ≤
√

ρ̂/4. There exists a universal constant c1 > 0 such that the following inequalities
hold for all a ∈ Σ:

‖Aa −A′
a‖ ≤ c1

εν3|P|3/2|S|1/2

ρ̂σ̂2
,

‖α−α′‖ ≤ c1
εν2|P|1/2|S|

ρ̂
,

‖β − β′‖ ≤ c1
εν3|P|3/2|S|1/2

ρ̂σ̂2
.

Proof. We begin with a few observations that will help us apply Lemma 18. First note that ‖Ha −
H′

a‖ ≤ ‖Ha −H′
a‖F ≤ ε for all a ∈ Σ′, as well as ‖hP,λ − h′P,λ‖ ≤ ε and ‖hλ,S − h′λ,S‖ ≤ ε.

Furthermore, ‖Ha‖ ≤ ‖Ha‖F ≤ ν
√
|P||S| and ‖H′

a‖ ≤ ν
√
|P||S| for all a ∈ Σ′. In addition, we

have ‖hλ,S‖ ≤ ν
√
|S| and ‖h′P,λ‖ ≤ ν

√
|P|. Finally, by construction we also have σn(HεV) =

σn(Hε) and σn(H′
εV

′) = σn(H′
ε). Therefore, it only remains to bound ‖V − V′‖, which by

Corollary 9 is

‖V −V′‖ ≤ 4ε

ρ̂
(2ν
√
|P||S|+ ε) ≤

16εν
√
|P||S|

ρ̂
,

where the last inequality follows from Lemma 15.

Plugging all the bounds above in Lemma 18 yields the following inequalities:

‖Aa −A′
a‖ ≤

ε

σ̂

(
1 +

16ν|P|1/2|S|1/2

ρ̂

)
+

1 +
√

5
2

εν|P|1/2|S|1/2

σ̂2

(
1 +

16ν2|P||S|
ρ̂

)
,

‖α−α′‖ ≤ ε

(
1 +

16ν2|P|1/2|S|
ρ̂

)
,

‖β − β′‖ ≤ ε

σ̂
+

1 +
√

5
2

εν|P|1/2

σ̂2

(
1 +

16ν2|P||S|
ρ̂

)
.

The result now follows from an adequate choice of c1. 2

We now define the properties that make Z a good sample and show that for large enough m they are
satisfied with high probability.

Definition 20 We say that a sample Z of m i.i.d. examples fromD is good if the following conditions
are satisfied for any z′m = (x′m, y′m) ∈ supp(D):

• |xi| ≤ ((1/c) ln(4m4))1/(1+η) for all 1 ≤ i ≤ m;

• ‖H−H′‖F ≤ 4/(τπm);

• min{σn(Hε), σn(H′
ε)} ≥ σ/2;

• σn(Hε)2 − σn+1(Hε)2 ≥ ρ/2.

Lemma 21 Suppose D satisfies Assumptions 1 and 2. There exists a quantity M =
poly(ν, π, σ, ρ, τ, |P|, |S|) such that if m ≥ M , then Z is good with probability at least 1− 1/m3.

Proof. First note that by Assumption 2, writing L = ((1/c) ln(4m4))1/(1+η) a union bound yields

P

[
m∨

i=1

|xi| > L

]
≤ m exp(−cL1+η) =

1
4m3

.

Now let m̄ = (x1, . . . , xm−1)∩(PS). Note that we have min{m̃, m̃′} ≥ m̄ and EZ [m̄] = π(m−1).
Thus, for any ∆ ∈ (0, 1) the Chernoff bound gives

P[m̄ < π(m− 1)(1−∆)] ≤ exp
(
− (m− 1)π∆2

2

)
≤ exp

(
−mπ∆2

4

)
,

14



where we have used that (m− 1)/m ≥ 1/2 for m ≥ 2.

Taking ∆ =
√

(4/mπ) ln(4m3) above we see that min{m̃, m̃′} ≥ (m − 1)π(1 −∆) ≥ mπ(1 −
∆)/2 holds with probability at least 1 − 1/(4m3). Now note that m ≥ (16/π) ln(4m3) implies
∆ ≤ 1/2. Therefore, by Lemma 15 we have that m ≥ max{2, (16/π) ln(4m3), 2/(τπν

√
|P||S|)}

implies that ‖H−H′‖F ≤ 4/(τπm) holds with probability at least 1− 1/(4m3).

For the third claim note that by Lemma 6 we have |σn(Hε)−σn(H′
ε)| ≤ ‖Hε−H′

ε‖F ≤ ‖H−H′‖F .
Thus, from the argument we just used in the previous bound we can see that when m ≥ 2 the
function Φ(Z) = σn(Hε) is strongly difference-bounded by (bσ, θσ/m, exp(−Kσm)) with bσ =
2ν
√
|P||S|, θσ = 2/(τπ(1 − ∆)), and Kσ = π∆2/4 for any ∆ ∈ (0, 1). Now note that by

Lemma 6 and the previous goodness condition on ‖H −H′‖F we have min{σn(Hε), σn(H′
ε)} ≥

σn(Hε)− ‖H−H′‖F ≥ σn(Hε)− 4/(νπm). Furthermore, taking ∆ = 1/2 and assuming that

m ≥ max

{
ντπ

√
|P||S|
2

,

(
9 +

288
π

)
ln
(

3 +
96
π

)
,
32
π

ln(8m3)

}
,

we can apply Corollary 13 with δ = 1/(4m3) to see that

σn(Hε)−
4

νπm
≥ σ −

√
128

τ2π2m
ln(8m3)− 4

νπm

holds with probability at least 1 − 1/(4m3). Hence, for any sample size such that m ≥
max{16/(νπσ), (2048/τ2π2σ2) ln(8m3)}, we get

min{σn(Hε), σn(H′
ε)} ≥ σ −

√
128

τ2π2m
ln(8m3)− 4

νπm
≥ σ − σ

4
− σ

4
=

σ

2
.

To prove the fourth bound we shall study the stability of Φ(Z) = σn(Hε)2−σn+1(Hε)2. We begin
with the following chain of inequalities, which follows from Lemma 6 and σn(Hε) ≥ σn+1(Hε):

|Φ(Z)− Φ(Z ′)| =
∣∣(σn(Hε)2 − σn+1(Hε)2)− (σn(H′

ε)
2 − σn+1(H′

ε)
2)
∣∣

≤ |σn(Hε)2 − σn(H′
ε)

2|+ |σn+1(Hε)2 − σn+1(H′
ε)

2|
= |σn(Hε) + σn(H′

ε)||σn(Hε)− σn(H′
ε)|+ |σn+1(Hε) + σn+1(H′

ε)||σn+1(Hε)− σn+1(H′
ε)|

≤ (2σn(Hε) + ‖Hε −H′
ε‖) ‖Hε −H′

ε‖+ (2σn+1(Hε) + ‖Hε −H′
ε‖) ‖Hε −H′

ε‖
≤ 4σn(Hε)‖H−H′‖F + 2‖H−H′‖2F .

Now we can use this last bound to show that Φ(Z) is strongly difference-bounded by
(bρ, θρ/m, exp(−Kρm)) with the definitions: bρ = 16ν2|P||S|, θρ = 64σ/(τπ) and Kρ =
min{σ2τ2π2/256, π/64}. For bρ just observe that from Lemma 15 and σn(Hσ) ≤ ‖Hσ‖F ≤
ν
√
|P||S| we get

4σn(Hε)‖H−H′‖F + 2‖H−H′‖2F ≤ 16ν2|P||S| .

By the same arguments used above, if m is large enough we have ‖H − H′‖F ≤ 4/(τπm) with
probability at least 1 − exp(−mπ/16). Furthermore, by taking ∆ = 1/2 in the stability argument
given above for σn(Hε), and invoking Corollary 13 with δ = 2 exp(−Km) for some 0 < K ≤
Kσ/2 = π/32, we get

σn(Hε) ≤ σ +

√
128K

τ2π2
,

with probability at least 1 − 2 exp(−Km). Thus, taking K = min{π/32, σ2τ2π2/128} we get
σn(Hε) ≤ 2σ. If we now combine the bounds for ‖H−H′‖F and σn(Hε), we get

4σn(Hε)‖H−H′‖F + 2‖H−H′‖2F ≤ 32σ

τπm
+

32
τ2π2m2

≤ 64σ

τπm
=

θρ

m
,

where have assumed that m ≥ 1/(τπσ). To get Kρ note that the above bound holds with probability
at least

1− e−mπ/16 − 2e−Km ≥ 1− 3e−Km ≥ 1− e−Km/2 = 1− e−Kρm ,
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where we have used that K ≤ π/16 and assumed that m ≥ 2 ln(3)/K. Finally, applying Corol-
lary 13 to Φ(Z) we see that with probability at least 1− 1/(4m3) one has

σn(Hε)2 − σn+1(Hε)2 ≥ ρ−
√

215σ2

τ2π2m
ln(8m3) ≥ ρ

2
,

whenever m ≥ max{(217σ2/τ2π2ρ2) ln(8m3), ν2τπ|P||S|/(4σ), (9 + 18/Kρ) ln(3 +
6/Kρ), (2/Kρ) ln(8m3)}. 2

We can now analyze how the change of one sample point in Z can affect the difference R(fZ) −
R̂Z(fZ). Our main result will be obtained by applying Theorem 11 to this difference.

Lemma 22 Let γ1 = 64ν4|P|2|S|3/2/(τσ3ρπ) and γ2 = 2ν|P|1/2|S|1/2/σ. If m ≥
max{M, 16

√
2/(τπ

√
ρ), exp(6 ln γ2(1.2c ln γ2)1/η)}, then the function Φ(Z) = R(fZ)− R̂Z(fZ)

is strongly difference-bounded by (4ν + 2ν/m, c2γ1m
−5/6 lnm, 1/m3) for some constant c2 > 0.

Proof. We will write for short f = fZ and f ′ = fZ′ . Let β1 = Ex∼DΣ [|f(x) − f ′(x)|] and
β2 = max1≤i≤m−1 |f(xi) − f ′(xi)|. We first show that |Φ(Z) − Φ(Z ′)| ≤ β1 + β2 + 2ν/m. By
definition of Φ we can write

|Φ(Z)− Φ(Z ′)| ≤ |R(f)−R(f ′)|+ |R̂Z(f)− R̂Z′(f ′)| .

By Jensen’s inequality, the first term can be upper bounded by E(x,y)∼D[||f(x)−y|−|f ′(x)−y||] ≤
β1. Now, using the triangle inequality and |f(xm)− ym|, |f ′(x′m)− y′m| ≤ 2ν, the second term can
be bounded as follows:

|R̂Z(f)− R̂Z′(f ′)| ≤ 2ν

m
+

1
m

m−1∑
i=1

|f(xi)− f ′(xi)| ≤
2ν

m
+ β2

m− 1
m

.

Observe that for any samples Z and Z ′ we have β1, β2 ≤ 2ν. This provides an almost-sure upper
bound needed in the definition of strongly difference-boundedness. We use this bound when the
sample Z is not good. By Lemma 21, when m is large enough this event will occur with probability
at most 1/m3.

It remains to bound β1 and β2 assuming that Z is good. Note that by Lemma 21, m ≥
max{M, 16

√
2/(τπ

√
ρ)} implies ‖H − H′‖F ≤

√
ρ̂/4. Thus, by combining Lemmas 16, 17,

19, and 21, we see that the following holds for any x ∈ Σ?:

|f(x)− f ′(x)| ≤
(

2ν|P|1/2|S|1/2

σ

)|x|+1
32c1(|x|+ 2)ν3|P|3/2|S|

mτπσ2ρ

=
c1γ1

m
exp(|x| ln γ2 + ln(|x|+ 2)) .

In particular, for |x| ≤ L = ((1/c) ln(4m4))1/(1+η) and m ≥ exp(6 ln γ2(1.2c ln γ2)1/η), a simple
calculation shows that |f(x)− f ′(x)| ≤ Cγ1m

−5/6 lnm for some constant C. Thus, we can write

β1 ≤ E
x∼DΣ

[|f(x)− f ′(x)| | |x| ≤ L] + 2νPx∼DΣ [|x| ≥ L] ≤ Cγ1m
−5/6 lnm + ν/2m3

and β2 ≤ Cγ1m
−5/6 lnm, where the last bound follows from the goodness of Z. Combining these

bounds yields the desired result. 2

The following is the proof of our main result.

Proof.[of Theorem 2] The result follows from an application of Theorem 11 to Φ(Z), defined as in
Lemma 22. In particular, for large enough m, the following holds with probability at least 1− δ:

R(fZ) ≤ R̂Z(fZ) + E
Z∼Dm

[Φ(Z)] +

√√√√Cγ2
1

ln2 m

m2/3
ln

(
1

δ − 6ν
C′γ1

1
m7/6 ln m

)
,

for some constants C,C ′ and γ1 = ν4|P|2|S|3/2/τσ3ρπ. Thus, it remains to bound EZ∼Dm [Φ(Z)].
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First note that we have EZ∼Dm [R(fZ)] = EZ,z∼Dm+1 [|fZ(x)− y|]. On the other hand, we can also
write EZ∼Dm [R̂Z(fZ)] = EZ,z∼Dm+1 [|fZ′(x) − y|], where Z ′ is a sample of size m containing z
and m− 1 other points in Z chosen at random. Thus, by Jensen’s inequality we can write

| E
Z∼Dm

[Φ(Z)]| ≤ E
Z,z∼Dm+1

[|fZ(x)− fZ′(x)|] .

Now an argument similar to the one used in Lemma 22 for bounding β1 can be used to show that,
for large enough m, the following inequality holds:∣∣∣ E

Z∼Dm
[Φ(Z)]

∣∣∣ ≤ Cγ1
lnm

m5/6
+

2ν

m3
,

which completes the proof. 2
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