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Abstract. We introduce a novel framework for classification with a re-
jection option that consists of simultaneously learning two functions:
a classifier along with a rejection function. We present a full theoret-
ical analysis of this framework including new data-dependent learning
bounds in terms of the Rademacher complexities of the classifier and
rejection families as well as consistency and calibration results. These
theoretical guarantees guide us in designing new algorithms that can
exploit different kernel-based hypothesis sets for the classifier and rejec-
tion functions. We compare and contrast our general framework with the
special case of confidence-based rejection for which we devise alternative
loss functions and algorithms as well. We report the results of several ex-
periments showing that our kernel-based algorithms can yield a notable
improvement over the best existing confidence-based rejection algorithm.

1 Introduction

We consider a flexible binary classification scenario where the learner is given
the option to reject an instance instead of predicting its label, thereby incurring
some pre-specified cost, typically less than that of a random prediction. While
classification with a rejection option has received little attention in the past, it
is in fact a scenario of great significance that frequently arises in applications.
Incorrect predictions can be costly, especially in applications such as medical
diagnosis and bioinformatics. In comparison, the cost of abstaining from predic-
tion, which may be that of additional medical tests, or that of routing a call to
a customer representative in a spoken-dialog system, is often more acceptable.
From a learning perspective, abstaining from fitting systematic outliers can also
result in a more accurate predictor. Accurate algorithms for learning with re-
jection can further be useful to developing solutions for other learning problems
such as active learning [4].

Various problems related to the scenario of learning with a rejection option
have been studied in the past. The trade-off between error rate and rejection
rate was first studied by Chow [5, 6] who also provided an analysis of the Bayes
optimal decision for this setting. Later, several publications studied an optimal
rejection rule based on the ROC curve and a subset of the training data [16,
29, 26], while others used rejection options or punting to reduce misclassification
rate [15, 27, 2, 20, 24], though with no theoretical analysis or guarantee.

More generally, few studies have presented general error bounds in this area,
but some have given risk bounds for specific scenarios. Freund et al. [14] studied



an ensemble method and presented an algorithm that predicts with a weighted
average of the hypotheses while abstaining on some examples without incurring
a cost. Herbei and Wegkamp [18] considered classification with a rejection option
that incurs a cost and provided bounds for these ternary functions.

One of the most influential works in this area has been that of Bartlett
and Wegkamp [1] who studied a natural discontinuous loss function taking into
account the cost of a rejection. They used consistency results to define a convex
and continuous Double Hinge Loss (DHL) surrogate loss upper-bounding that
rejection loss, which they also used to derive an algorithm. A series of follow-up
articles further extended this publication, including [33] which used the same
convex surrogate while focusing on the l1 penalty. Grandvalet et al. [17] derived
a convex surrogate based on [1] that aims at estimating conditional probabilities
only in the vicinity of the threshold points of the optimal decision rule. They also
provided some preliminary experimental results comparing the DHL algorithm
and their variant with a naive rejection algorithm. Under the same rejection rule,
Yuan and Wegkamp [32] studied the infinite sample consistency for classification
with a reject option.

Using a different approach based on active learning, El-Yaniv and Wiener
[11] studied the trade-off between the coverage and accuracy of classifiers and,
in a subsequent paper ([12]) provided a strategy to learn a certain type of se-
lective classification, which they define as weakly optimal, that has diminishing
rejection rate under some Bernstein-type conditions. Finally, several papers have
discussed learning with rejection in the multi-class setting [28, 10, 3], reinforce-
ment learning [22], and in online learning [34].

There are also several learning scenarios tangentially related to the rejection
scenario we consider, though they are distinct and hence require a very different
approach. Sequential learning with budget constraints is a related framework
that admits two stages: first a classifier is learned, next the classifier is fixed
and a rejection function is learned [30, 31]. Since it assumes a fixed predictor
and only admits the rejection function as an argument, the corresponding loss
function is quite different from ours. Another somewhat similar approach is that
of cost-sensitive learning where a class-dependent cost can be used [13]. One
could think of adopting that framework here to account for the different costs
for rejection and incorrect prediction. However, the cost-sensitive framework
assumes a distribution over the classes or labels, which, here, would be the set
{−1, 1, R©}, with R© the rejection symbol. But, R© is not a class and there is no
natural distribution over that set in our scenario.

In this paper, we introduce a novel framework for classification with a re-
jection option that consists of simultaneously learning a pair of functions (h, r):
a predictor h along with a rejection function r, each selected from a different
hypothesis set. This is a more general framework than that the special case
of confidence-based rejection studied by Bartlett and Wegkamp [1] and oth-
ers, where the rejection function is constrained to be a thresholded function of
the predictor’s scores. Our novel framework opens up a new perspective on the
problem of learning with rejection for which we present a full theoretical analy-



sis, including new data-dependent learning bounds in terms of the Rademacher
complexities of the classifier and rejection families, as well as consistency and
calibration results. We derive convex surrogates for this framework that are real-
izable (H,R)-consistent. These guarantees in turn guide the design of a variety of
algorithms for learning with rejection. We describe in depth two different types
of algorithms: the first type uses kernel-based hypothesis classes, the second
type confidence-based rejection functions. We report the results of experiments
comparing the performance of these algorithms and that of the DHL algorithm.

The paper is organized as follows. Section 2 introduces our novel learning
framework and contrasts it with that of Bartlett and Wegkamp [1]. Section 3
provides generalization guarantees for learning with rejection. It also analyzes
two convex surrogates of the loss along with consistency results and provides
margin-based learning guarantees. In Section 4, we present an algorithm with
kernel-based hypothesis sets derived from our learning bounds. In Section 5, we
further examine the special case of confidence-based rejection by analyzing vari-
ous algorithmic alternatives. Lastly, we report the results of several experiments
comparing the performance of our algorithms with that of DHL (Section 6).

2 Learning problem

Let X denote the input space. We assume as in standard supervised learning that
training and test points are drawn i.i.d. according to some fixed yet unknown
distribution D over X ×{−1,+1}. We present a new general model for learning
with rejection, which includes the confidence-based models as a special case.

2.1 General rejection model

The learning scenario we consider is that of binary classification with rejection.
Let R© denote the rejection symbol. For any given instance x ∈ X , the learner
has the option of abstaining or rejecting that instance and returning the symbol
R©, or assigning to it a label ŷ ∈ {−1,+1}. If the learner rejects an instance, it
incurs some loss c(x) ∈ [0, 1]; if it does not reject but assigns an incorrect label,
it incurs a cost of one; otherwise, it suffers no loss. Thus, the learner’s output is
a pair (h, r) where h : X → R is the hypothesis used for predicting a label for
points not rejected using sign(h) and where r : X → R is a function determining
the points x ∈ X to be rejected according to r(x) ≤ 0.

The problem is distinct from a standard multi-class classification problem
since no point is inherently labeled with R©. Its natural loss function L is defined
by

L(h, r, x, y) = 1yh(x)≤01r(x)>0 + c(x)1r(x)≤0, (1)

for any pair of functions (h, r) and labeled sample (x, y) ∈ X × {−1,+1}, thus
extending the loss function considered by [1]. In what follows, we assume for
simplicity that c is a constant function, though part of our analysis is applicable
to the general case. Observe that for c ≥ 1

2 , on average, there is no incentive for
rejection since a random guess can never incur an expected cost of more than 1

2 .



h∗(x) = η(x)− 1
2

and
r∗(x) = |h∗(x)| − ( 1

2
− c).

⌘(x)

x

h⇤(x)>0
r⇤(x)<0

c

Fig. 1. Mathematical expression and illustration of the optimal classification and rejec-
tion function for the Bayes solution. Note, as c increases, the rejection region shrinks.

For biased distributions, one may further limit c to the fraction of the smallest
class. For c = 0, we obtain a trivial solution by rejecting all points, so we restrict
c to the case of c ∈]0, 12 [.

Let H and R denote two families of functions mapping X to R. The learning
problem consists of using a labeled sample S = ((x1, y1), . . . , (xm, ym)) drawn
i.i.d. from Dm to determine a pair (h, r) ∈ H×R with a small expected rejection
loss R(h, r)

R(h, r) = E
(x,y)∼D

[
1yh(x)≤01r(x)>0 + c1r(x)≤0

]
. (2)

We denote by R̂S(h, r) the empirical loss of a pair (h, r) ∈ H×R over the sample
S and use (x, y) ∼ S to denote the draw of (x, y) according to the empirical

distribution defined by S: R̂S(h, r) = E(x,y)∼S
[
1yh(x)≤01r(x)>0 + c1r(x)≤0

]
.

2.2 Confidence-based rejection model

Learning with rejection based on two independent yet jointly learned functions
h and r introduces a completely novel approach to this subject. However, our
new framework encompasses much of the previous work on this problem, e.g.
[1], is a special case where rejection is based on the magnitude of the value of
the predictor h, that is x ∈ X is rejected if |h(x)| ≤ γ for some γ ≥ 0. Thus, r
is implicitly defined in the terms of the predictor h by r(x) = |h(x)| − γ.

This specific choice of the rejection function r is natural when considering
the Bayes solution (h∗, r∗) of the learning problem, that is the one where the
distribution D is known. Indeed, for any x ∈ X , let η(x) be defined by η(x) =
P[Y = +1|x]. For a standard binary classification problem, it is known that
the predictor h∗ defined for any x ∈ X by h∗(x) = η(x) − 1

2 is optimal since
sign(h∗(x)) = max{η(x), 1 − η(x)}. For any x ∈ X , the misclassification loss
of h∗ is E[1yh(x)≤0|x] = min{η(x), 1 − η(x)}. The optimal rejection r∗ should
therefore be defined such that r∗(x) ≤ 0, meaning x is rejected, if and only if

min{η(x), 1− η(x)} ≥ c⇔1−max{η(x), 1− η(x)} ≥ c
⇔max{η(x), 1− η(x)} ≤ 1− c
⇔max{η(x)− 1

2 ,
1
2 − η(x)} ≤ 1

2 − c⇔ |h
∗(x)| ≤ 1

2 − c.

Thus, we can choose h∗ and r∗ as in Figure 1, which also provides an illustra-
tion of confidence-based rejection. However, when predictors are selected out of
a limited subset H of all measurable functions over X , requiring the rejection
function r to be defined as r(x) = |h(x)| − γ, for some h ∈ H, can be too re-
strictive. Consider, for example, the case where H is a family of linear functions.



���� +++++�+� ✓⌘

Fig. 2. The best predictor h is defined by the threshold θ: h(x) = x − θ. For c < 1
2
,

the region defined by X ≤ η should be rejected. Note that the corresponding rejection
function r defined by r(x) = x− η cannot be defined as |h(x)| ≤ γ for some γ > 0.

Figure 2 shows a simple case in dimension one where the optimal rejection region
cannot be defined simply as a function of the best predictor h. The model for
learning with rejection that we describe where a pair (h, r) is selected is more
general. In the next section, we study the problem of learning such a pair.

3 Theoretical analysis

We first give a generalization bound for the problem of learning with our rejec-
tion loss function as well as consistency results. Next, to devise efficient learning
algorithms, we give general convex upper bounds on the rejection loss. For sev-
eral of these convex surrogate losses, we prove margin-based guarantees that we
subsequently use to define our learning algorithms (Section 4).

3.1 Generalization bound

Theorem 1. Let H and R be families of functions taking values in {−1,+1}.
Then, for any δ > 0, with probability at least 1− δ over the draw of a sample S
of size m from D, the following holds for all (h, r) ∈ H × R:

R(h, r) ≤ R̂S(h, r) + Rm(H) + (1 + c)Rm(R) +

√
log 1

δ

2m
.

Proof. Let LH,R be the family of functions LH,R =
{

(x, y) 7→ L(h, r, x, y), h ∈
H, r ∈ R

}
. Since the loss function L takes values in [0, 1], by the general

Rademacher complexity bound [19], with probability at least 1−δ, the following

holds for all (h, r) ∈ H × R: R(h, r) ≤ R̂S(h, r) + 2Rm(LH,R) +
√

log 1/δ
2m . Now,

the Rademacher complexity can be bounded as follows:

Rm(LH,R) = E
σ

[
sup

(h,r)∈H×R

1

m

m∑
i=1

σi1yih(xi)≤01r(xi)>0+σic 1r(xi)≤0

]

≤ E
σ

[
sup

(h,r)∈H×R

1

m

m∑
i=1

σi1h(xi)6=yi1r(xi)=+1

]
+ cE

σ

[
sup
r∈R

1

m

m∑
i=1

σi1r(xi)=−1

]
.

By Lemma 1 (below), the Rademacher complexity of products of indicator func-
tions can be bounded by the sum of the Rademacher complexities of each indi-
cator function class, thus, Eσ

[
sup(h,r)∈H×R

1
m

∑m
i=1 σi1h(xi) 6=yi1r(xi)=+1

]
≤

Eσ
[

suph∈H
1
m

∑m
i=1 σi1h(xi)6=yi

]
+ Eσ

[
supr∈R

1
m

∑m
i=1 σi1r(xi)=+1

]
. The proof



can be completed by using the known fact that the Rademacher complexity of
indicator functions based on a family of functions taking values in {−1,+1} is
equal to one half the Rademacher complexity of that family. ut

To derive an explicit bound in terms of H and R in Theorem 1, we make use
of the following lemma relating the Rademacher complexity of a product of two
(or more) families of functions to the sum of the Rademacher complexity of each
family, whose proof can be found in [9].

Lemma 1. Let F1 and F2 be two families of functions mapping X to [−1,+1].
Let F = {f1f2 : f1 ∈ F1, f2 ∈ F2}. Then, the empirical Rademacher complexities

of F for any sample S of size m are bounded: R̂S(F) ≤ 2
(
R̂S(F1) + R̂S(F2)

)
.

The theorem gives generalization guarantees for learning with a family of predic-
tors H and rejection function R mapping to {−1,+1} that admit Rademacher
complexities in O(1/

√
m). For such families, it suggests to select the pair (h, r)

to minimize the right-hand side. As with the zero-one loss, minimizing R̂S(h, r)
is computationally hard for most families of functions. Thus, in the next section,
we study convex upper bounds that lead to more efficient optimization problems,
while admitting favorable learning guarantees as well as consistency results.

3.2 Convex surrogate losses

We first present general convex upper bounds on the rejection loss. Let u 7→
Φ(−u) and u 7→ Ψ(−u) be convex functions upper-bounding 1u≤0. Since for any

a, b ∈ R, max(a, b) = a+b+|b−a|
2 ≥ a+b

2 , the following inequalities hold with α > 0
and β > 0:

L(h, r, x,y) = 1yh(x)≤01r(x)>0 + c 1r(x)≤0 = max
(

1yh(x)≤01−r(x)<0, c 1r(x)≤0
)

≤ max
(

1max(yh(x),−r(x))≤0, c 1r(x)≤0
)
≤ max

(
1 yh(x)−r(x)

2 ≤0, c 1r(x)≤0
)

≤ max
(

1
α
yh(x)−r(x)

2 ≤0, c 1βr(x)≤0
)

≤ max
(
Φ
(
α
2 (r(x)− yh(x))

)
, c Ψ(−βr(x))

)
(3)

≤ Φ
(
α
2 (r(x)− yh(x))

)
+ c Ψ(−βr(x)). (4)

Since Φ and Ψ are convex, their composition with an affine function of h
and r is also a convex function of h and r. Since the maximum of two convex
functions is convex, the right-hand side of (3) is a convex function of h and
r. Similarly, the right-hand side of (4) is a convex function of h and r. In the
specific case where the Hinge loss is used for both u 7→ Φ(−u) and u 7→ Ψ(−u),
we obtain the following two convex upper bounds, Max Hinge (MH) and Plus
Hinge (PH), also illustrated in Figure 3:

LMH(h, r, x, y) = max
(

1 + α
2 (r(x)− yh(x)), c (1− βr(x)), 0

)
LPH(h, r, x, y) = max

(
1 + α

2 (r(x)− yh(x)), 0
)

+ max
(
c (1− βr(x)), 0

)
.



Fig. 3. From the left, the figures show the rejection loss L, the convex surrogate loss
LMH, and the convex surrogate loss LPH as a function of yh(x) and r(x), for the cost
value c = 0.4. The convex surrogates have a steeper left surface reflecting the rejection
loss’s penalty of incorrectly classifying a point while their gentler right surface of the
surrogates reflects the lower cost c of abstaining. Also, the figures clearly show that
the surrogate loss LPH is an upper bound on LMH.

3.3 Consistency results

In this section, we present a series of theoretical results related to the consistency
of the convex surrogate losses introduced. We first prove the calibration and
consistency for specific choices of the parameters α and β. Next, we show that the
excess risk with respect to the rejection loss can be bounded by its counterpart
defined via our surrogate loss. We further prove a general realizable (H,R)-
consistency for our surrogate losses.

Calibration. The constants α > 0 and β > 0 are introduced in order to cal-
ibrate the surrogate loss with respect to the Bayes solution. Let (h∗M, r

∗
M) be a

pair attaining the infimum of the expected surrogate loss E(x,y)(LMH(h, r, x, y))
over all measurable functions. Recall from Section 2, the Bayes classifier is de-
noted by (h∗, r∗). The following lemma shows that for α = 1 and β = 1

1−2c , the
loss LMH is calibrated, that is the sign of (h∗M, r

∗
M) matches the sign of (h∗, r∗).

Theorem 2. Let (h∗M, r
∗
M) denote a pair attaining the infimum of the expected

surrogate loss, E(x,y)[LMH(h∗M, r
∗
M, x, y)] = inf(h,r)∈meas E(x,y)[LMH(h, r, x, y)].

Then, for β = 1
1−2c and α = 1,

1. the surrogate loss LMH is calibrated with respect to the Bayes classifier:
sign(h∗) = sign(h∗M) and sign(r∗) = sign(r∗M);

2. furthermore, the following equality holds for the infima over pairs of mea-
surable functions:

inf
(h,r)

E
(x,y)∼D

[LMH(h, r, x, y)] = (3− 2c) inf
(h,r)

E
(x,y)∼D

[L(h, r, x, y)].

Proof Sketch. The expected surrogate loss can be written in terms of η(x):
E(x,y)∼D[LMH(h, r, x, y)] = Ex[η(x)φ(−h(x), r(x))+(1−η(x))φ(h(x), r(x))], with

φ(−h(x), r(x)) = max(1 + 1
2 (r(x) − h(x)), c(1 − 1

1−2cr(x)), 0). Let the argu-
ment of the expectation, η(x)φ(−h(x), r(x))+(1−η(x))φ(h(x), r(x)), be denoted



by Lφ(η(x), h(x), r(x)). Since the infimum is over all measurable functions, to
determine (h∗M, r

∗
M) it suffices to determine, for any fixed x the minimizer of

(u, v) 7→ Lφ(η(x), u, v). For a fixed x, minimizing Lφ(η(x), u, v) with respect
to (u, v) is equivalent to minimizing seven LPs. One can check that the op-
timal points of these LPs are in the set (u, v) ∈ {(0, (2c − 2)(1 − 2c)), (3 −
2c, 1− 2c), (−3 + 2c, 1− 2c)}. Evaluating Lφ(η(x), u, v) at these points, we find
that Lφ(η(x), 3 − 2c, 1 − 2c) = (3 − 2c)(1 − η(x)), Lφ(η(x),−3 + 2c, 1 − 2c) =
(3− 2c)(η(x)), and Lφ(η(x), 0, (2c− 2)(1− 2c)) = (3− 2c)c. Thus, we can con-
clude that the minimum of Lφ(η(x), u, v) is attained at (3 − 2c)

[
η(x)1η(x)<c +

c1c≤η(x)≤1−c +
(
1− η(x)

)
1η(x)>1−c

]
, which completes the proof. ut

Excess risk bound. Here, we show upper bounds on the excess risk in terms of
the surrogate loss excess risk. Let R∗ denote the Bayes rejection loss, that is R∗ =
inf(h,r) E(x,y)∼D[L(h, r, x, y)], where the infimum is taken over all measurable
functions and similarly let R∗L denote inf(h,r) E(x,y)∼D[LMH(h, r, x, y)].

Theorem 3. Let RL(h, r) = E(x,y)∼D[LMH(h, r, x, y)] denote the expected sur-
rogate loss of a pair (h, r). Then, the surrogate excess of (h, r) is upper bounded
by its surrogate excess error as follows:

R(h, r)−R∗ ≤ 1
(1−c)(1−2c)

(
RL(h, r)−R∗L

)
.

Proof Sketch. Let L∗(η(x)) denote the expected loss of the Bayes solution condi-
tioned on x, L∗(η(x)) = η(x)1η(x)<c + c1c≤η(x)≤1−c + (1− η(x))1η(x)>1−c. Then

R(h, r)−R(h∗, r∗) = E
x

[
(η(x)− L∗(η(x)))1h(x)<0,r>(x)0 (5)

+ (1− η(x)− L∗(η(x)))1h(x)≥0,r(x)>0 + (c− L∗(η(x)))1r(x)≤0].

Since L∗(η(x)) admits three values, we can distinguish three cases and give a
proof for each. When c ≤ η(x) ≤ 1− c, L∗(η(x)) = c, that is r∗ ≤ 0 and r∗L ≤ 0,
by calibration. In that case, Equation 5 can be written as R(h, r)−R(h∗, r∗) =
Ex
(
(η(x)−c)1h(x)<0,r(x)>0+(1−η(x)−c)1h(x)≥0,r(x)>0

)
. Note that the indicator

functions on the right-hand side are mutually exclusive, thus, it suffices to show
that each component is bounded. ut

(H,R)-consistency. The standard notion of loss consistency does not take
into account the hypothesis set H used since it assumes an optimization car-
ried out over the set of all measurable functions. Long and Servedio [23] pro-
posed instead a notion of H-consistency precisely meant to take the hypothesis
set used into consideration. They showed empirically that using loss functions
that are H-consistent can lead to significantly better performances than us-
ing a loss function known to be consistent. Here, we prove that our surrogate
losses are realizable (H,R)-consistent, a hypothesis-set-specific notion of con-
sistency under our framework. The realizable setting in learning with rejection
means that there exists a function that never rejects and correctly classifies



all points. A loss l is realizable (H,R)-consistent if for any distribution D over
X × Y and any ε > 0, there exists δ > 0 such that if

∣∣E(x,y)∼D [l(h, r, x, y)] −
inf(h,r)∈(H,R) E(x,y)∼D[l(h, r, x, y)]

∣∣ ≤ δ, then E(x,y)∼D[L(h, r, x, y)] ≤ ε.
Theorem 4. Let (u, v) 7→ Φ(−u,−v) be a non-increasing function upper-bounding
(u, v) 7→ 1u≤01v>0+c1v≤0 such that for any fixed v, limu→+∞ Φ(−u,−v) = 0 and
for any fixed v, u 7→ Φ(−u,−v) is bounded over R+. Let (H,R) be pair of families
of functions mapping X to R where H is closed under multiplication by a positive
scalar (H is a cone). Then, the loss function (h, r, x, y) 7→ Φ(−yh(x),−r(x)) is
realizable (H,R)-consistent.

Proof. Let D be a distribution for which (h∗, r∗) ∈ (H,R) achieves zero error,
thus yh∗(x) > 0 and r∗(x) > 0 for all x in the support of D. Fix ε > 0 and
assume that

∣∣E [Φ(− yh(x),−r(x)
)]
− inf(h,r)∈(H,R) E

[
Φ
(
− yh(x),−r(x)

)]∣∣ ≤ ε
for some (h, r) ∈ (H,R) . Then, since 1u≤01v>0 + c1v≤0 ≤ Φ(−u,−v) and since
µh∗ is in H for any µ > 0, the following holds for any µ > 0:

E [L(h, r, x, y)] ≤ E
[
Φ
(
− yh(x),−r(x)

)]
≤ E

[
Φ
(
− µyh∗(x),−r∗(x)

)]
+ ε

≤ E
[
Φ
(
− µyh∗(x),−r∗(x)

)
|r∗(x) > 0

]
P[r∗(x) > 0] + ε.

Now, u 7→ Φ(−µyh∗(x),−r∗(x)) is bounded for yh∗(x) > 0 and r∗(x) > 0; since
limµ→+∞ Φ(−µyh∗(x),−r∗(x)) = 0, by Lebesgue’s dominated convergence the-
orem limµ→+∞ E[Φ(−µyh∗(x),−r∗(x))|r∗(x) > 0] = 0. Thus, E[L(h, r, x, y)] ≤ ε
for all ε > 0, which concludes the proof. ut

The conditions of the theorem hold in particular for the exponential and the
logistic functions as well as hinge-type losses. Thus, the theorem shows that the
general convex surrogate losses we defined are realizable (H,R)-consistent when
the functions Φ or Ψ are exponential or logistic functions.

3.4 Margin bounds

In this section, we give margin-based learning guarantees for the loss function
LMH. Since LPH is a simple upper bound on LMH, its margin-based learning
bound can be derived similarly. In fact, the same technique can be used to derive
margin-based guarantees for the subsequent convex surrogate loss functions we
present.

For any ρ, ρ′ > 0, the margin-loss associated to LMH is given by Lρ,ρ
′

MH(h, r, x, y)

= max
(

max
(
1+α

2

( r(x)
ρ′ −

yh(x)
ρ

)
, 0
)
,max

(
c
(
1−β r(x)ρ′

)
, 0
))

. The theorem enables
us to derive margin-based learning guarantees. The proof requires dealing with
this max-based surrogate loss, which is a non-standard derivation.

Theorem 5. Let H and R be families of functions mapping X to R. Then, for
any δ > 0, with probability at least 1− δ over the draw of a sample S of size m
from D, the following holds for all (h, r) ∈ H × R:

R(h, r) ≤ E
(x,y)∼S

[LMH(h, r, x, y)] + αRm(H) + (2βc+ α)Rm(R) +

√
log 1

δ

2m
.



Proof. Let LMH,H,R be the family of functions defined by LH,R =
{

(x, y) 7→
min

(
LMH(h, r, x, y), 1

)
, h ∈ H, r ∈ R

}
. Since min(LMH, 1) is bounded by one, by

the general Rademacher complexity generalization bound [19], with probability
at least 1− δ over the draw of a sample S, the following holds:

R(h, r) ≤ E
(x,y)∼D

[min(LMH(h, r, x, y), 1)] ≤ E
(x,y)∼S

[min(LMH(h, r, x, y), 1)]+

2Rm(LMH,H,R)+

√
log 1/δ

2m
≤ E
(x,y)∼S

[LMH(h, r, x, y)]+2Rm(LMH,H,R)+

√
log 1/δ

2m
.

Observe that we can express LMH as follows: max
(

max
(
1+ α

2 (r(x)−yh(x)), 0
)
,

max
(
c (1− βr(x)), 0

))
. Therefore, since for any a, b ∈ R, min

(
max(a, b), 1

)
=

max
(

min(a, 1),min(b, 1)
)
, we can re-write min(LMH, 1) as:

max
(

min
(

max(1 + α
2 (r(x)− yh(x)), 0), 1

)
,min

(
max(c (1− βr(x)), 0), 1

))
≤ min

(
max(1 + α

2 (r(x)− yh(x)), 0), 1
)

+ min
(

max(c (1− βr(x)), 0), 1
)
.

Since u 7→ min
(

max(1 + αu
2 , 0), 1

)
is α

2 -Lipschitz and u 7→ min
(

max(c (1 −
βu), 0), 1

)
is cβ-Lipschitz, by Talagrand’s contraction lemma [21],

Rm(LMH,H,R) ≤ α
2Rm

({
(x, y) 7→ r(x)− yh(x)

})
+ βcRm

({
(x, y) 7→ r(x)

})
≤ α

2

(
Rm(R) + Rm(H)

)
+ βcRm(R) =

α

2
Rm(H) +

(
βc+ α

2

)
Rm(R),

which completes the proof. ut

The following corollary is then a direct consequence of the theorem above.

Corollary 1. Let H and R be families of functions mapping X to R. Fix ρ, ρ′ >
0. Then, for any δ > 0, with probability at least 1− δ over the draw of an i.i.d.
sample S of size m from D, the following holds for all (h, r) ∈ H × R:

R(h, r) ≤ E
(x,y)∼S

[Lρ,ρ
′

MH(h, r, x, y)] +
α

ρ
Rm(H) +

2βc+ α

ρ′
Rm(R) +

√
log 1

δ

2m
.

Then, via [19], the bound of Corollary 1 can be shown to hold uniformly for all

ρ, ρ′ ∈ (0, 1), at the price of a term in O
(√

log log 1/ρ
m +

√
log log 1/ρ′

m

)
.

4 Algorithms for kernel-based hypotheses

In this section, we devise new algorithms for learning with a rejection option
when H and R are kernel-based hypotheses. We use Corollary 1 to guide the
optimization problems for our algorithms.

Let H and R be hypotheses sets defined in terms of PSD kernels K and K ′

over X :

H = {x→ w ·Φ(x) : ‖w‖ ≤ Λ} and R = {x→ u ·Φ′(x) : ‖u‖ ≤ Λ′},



where Φ is the feature mapping associated to K and Φ′ the feature mapping as-
sociated to K ′ and where Λ,Λ′ ≥ 0 are hyperparameters. One key advantage of
this formulation is that different kernels can be used to define H and R, thereby
providing a greater flexibility for the learning algorithm. In particular, when us-
ing a second-degree polynomial for the feature vector Φ′, the rejection function
corresponds to abstaining on an ellipsoidal region, which covers confidence-based
rejection. For example, the Bartlett and Wegkamp [1] solution consists of choos-
ing Φ′(x) = Φ(x), u = w, and the rejection function, r(x) = |h(x)| − γ.

Corollary 2. Let H and R be the hypothesis spaces as defined above. Then, for
any δ > 0, with probability at least 1− δ over the draw of a sample S of size m
from D, the following holds for all (h, r) ∈ H × R:

R(h, r) ≤ E
(x,y)∼S

[Lρ,ρ
′

MH(h, r, x, y)]+α

√
(κΛ/ρ)2

m + (2βc+ α)

√
(κ′Λ′/ρ′)2

m +

√
log 1

δ

2m

where κ2 = supx∈X K(x, x) and κ′2 = supx∈X K
′(x, x).

Proof. By standard kernel-based bounds on Rademacher complexity [25], we

have that Rm(H) ≤ Λ
√

Tr[K]
m ≤

√
(κΛ)2

m and similarly Rm(R) ≤ Λ′
√

Tr[K′]
m ≤√

(κ′Λ′)2

m . Applying this bounds to Corollary 1 completes the proof. ut

This learning bound guides directly the definition of our first algorithm based on
the LMH (see full version [7] for details) resulting in the following optimization:

min
w,u,ξ

λ

2
‖w‖2 +

λ′

2
‖u‖2 +

m∑
i=1

ξi subject to: ξi ≥ c(1− β(u ·Φ′(xi) + b′)),

and ξi ≥ 1 +
α

2

(
u ·Φ′(xi) + b′ − yiw ·Φ(xi)− b

)
, ξi ≥ 0,

where λ, λ′ ≥ 0 are parameters and b and b′ are explicit offsets for the linear
functions h and r. Similarly, we use the learning bound to derive a second al-
gorithm based on the loss LPH (see full paper [7]). We have implemented and
tested the dual of both algorithms, which we will refer to as CHR algorithms
(short for convex algorithms using H and R families). Both the primal and dual
optimization are standard QP problems whose solution can be readily found via
both general-purpose and specialized QP solvers. The flexibility of the kernel
choice and the QP formulation for both primal and dual are key advantages
of the CHR algorithms. In Section 6 we report experimental results with these
algorithms as well as the details of our implementation.

5 Confidence-based rejection algorithms

In this section, we explore different algorithms for the confidence-based rejection
model (Section 2.2). We thus consider a rejection function r(x) = |h(x)|−γ that
abstains on points classified with confidence less than a given threshold γ.



Table 1. For the DHL algorithm and the CHR algorithm of LMH with cost values
c = 0.25, we report the mean and standard deviations on the test set of the following
quantities: the left two columns contain the rejection loss, the next two columns the
fraction of points rejected, followed by two columns with the classification error on
the non-rejected points. The rightmost column provides the error on the non-rejected
points of the DHL algorithm if its rejection threshold is changed so it rejects the same
fraction of points as the CHR algorithm.

Rejection Rejection Fraction Fraction Non-rejected Non-rejected Non-rejected
loss loss rejected rejected error error err (incr. thrh.)

Data Sets DHL CHR DHL CHR DHL CHR DHL

cod 0.176± .030 0.098± .037 0.186± .055 0.024± .028 0.130± .043 0.092± .039 0.186± .033
skin 0.158± .041 0.043± .020 0.093± .033 0.052± .027 0.135± .037 0.030± .024 0.135± .041
bank 0.061± .022 0.030± .006 0.066± .016 0.036± .022 0.045± .018 0.021± .008 0.044± .016
haber 0.261± .033 0.211± .037 0.875± .132 0.439± .148 0.043± .027 0.102± .048 0.252± .110
pima 0.241± .025 0.171± .017 0.055± .007 0.700± .055 0.227± .025 0.043± .023 0.112± .060
australian 0.115± .026 0.111± .021 0.136± .008 0.172± .024 0.081± .025 0.068± .023 0.349± .100
liver 0.236± .040 0.248± .005 0.397± .047 0.980± .019 0.136± .044 0.003± .006 0.292± .120

The most standard algorithm in this setting is the DHL algorithm, which is
based on a double hinge loss, a hinge-type convex surrogate that has favorable
consistency properties. The double hinge loss, LDHinge, is an upper bound of
the rejection loss only when 0 ≤ γ ≤ 1 − c, making DHL algorithm only valid
for these restricted γ values. Moreover, it is important to note that the hinge
loss is in fact a tighter convex upper bound than the double hinge loss for
these possible values of γ. We have Lγ(h) ≤ LHinge(h) ≤ LDHinge(h) where
Lγ(h) = 1yh(x)≤01|h(x)|>γ + c(x)1|h(x)|≤γ is the rejection loss in this setting.
Thus, a natural alternative to the DHL algorithm is simply minimizing the
hinge loss. The DHL solves a QCQP optimization problem while the natural
alternative solve a standard SVM-type dual.

The aforementioned confidence based algorithms only apply for γ ∈ [0, 1− c]
but a robust surrogate should majorate the rejection loss Lγ for all possible val-
ues. In [7] we present an algorithm that upper-bounds the rejection error for all
values of γ ∈ [0, 1]. We provide further details of all these confidence-based algo-
rithm as well as report several experimental results in [7]. While the alternative
algorithms we described are based on tighter surrogate losses for the rejection
loss than that of DHL, empirical evidence suggests that DHL outperforms these
alternatives. Thus, in the experiments with our CHR algorithm, we will use DHL
as the baseline for comparison (Section 6).

6 Experiments

In this section, we present the results of several experiments comparing our
CHR algorithms with the DHL algorithm. All algorithms were implemented
using CVX [8]. We tested the algorithms on seven data sets from the UCI data
repository, specifically australian, cod, skin, liver, banknote, haberman,
and pima. For each data set, we performed standard 5-fold cross-validation. We
randomly divided the data into training, validation and test set in the ratio 3:1:1.
We then repeated the experiments five times where each time we used a different
random partition.
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Fig. 4. Average rejection loss on the test set as a function of cost c for the DHL
algorithm and the CHR algorithm for six datasets and polynomial kernels. The blue
line is the DHL algorithm while the red line is the CHR algorithm based on LMH.
The figures on the top starting from the left are for the cod, skin, and haberman data
set while the figures on the bottom are for banknote, australian and pima data sets.
These figures show that the CHR algorithm outperforms the DHL algorithm for most
values of cost, c, across all data sets.

The cost values ranged over c ∈ {0.05, 0.1, . . . , 0.5} and the kernels for both
algorithms were polynomial kernels of degree d ∈ {1, 2, 3} and Gaussian kernels
with widths in the set {1, 10, 100}. The regularization parameters λ, λ′ for the
CHR algorithms varied over λ, λ′ ∈ {10i : i = −5, . . . , 5} and the threshold γ for
DHL ranged over γ ∈ {0.08, 0.16, . . . , 0.96}.

For each fixed value of c, we chose the parameters with the smallest average
rejection loss on the validation set. For these parameter values, Table 1 shows
the corresponding rejection loss on the test set for the CHR algorithm based
on LMH and the DHL algorithm both with cost c = 0.25. The table also shows
the fraction of points rejected by each algorithm and the classification error
on non-rejected points (see full paper version [7] for similar tables for all cost
values). The rejection loss results of Table 1 show that the CHR algorithm yields
an improvement in the rejection loss over the DHL algorithm. These findings
are statistically significant at the 1% level or higher with one-sided paired t–
test for all data sets except for the liver and australian data sets. Table 1
also reveals that the DHL algorithm rejects at a different rate than the CHR
algorithm and often predicts the wrong label on the non-rejected points at a
much higher rate. In order to level the playing field for the two algorithms, for
the optimal settings of the DHL algorithm, we changed the rejection threshold
till the fraction rejected by the DHL algorithm matched the fraction rejected by
the CHR algorithm and recorded the error on the remaining non-rejected points.
These results are included in the right-most column of Table 1 and demonstrate
that the CHR algorithm rejects the hard cases and obtains a significantly better
error rate on the remaining ones. In Figure 4, we show the rejection loss as a
function of the cost for six of our data sets. These plots demonstrate that the



Fig. 5. The left figure shows CHR’s classification of sample test points from the skin

dataset with respect to different feature vectors. The right figure shows their classifi-
cation by DHL and demonstrates how DHL rejects in areas of low confidence.

difference in accuracy between the two algorithms holds consistently for almost
all values of c across all the data sets.

We also analyzed the rejection regions of the two algorithms. Unlike the DHL
algorithm, we found that the CHR algorithms do not restrict their rejection
regions to only areas of low confidence. On the other hand, the DHL algorithm
only rejects around the boundary of the classification surface, see Figure 5. In [7],
we further analyze the difference between the rejection functions found by the
two algorithms. We also provide more results for the CHR algorithm including
results for the CHR algorithm based on LPH. We find that on average the CHR
with LMH performs slightly better than the CHR with LPH as is expected since
the loss LPH is an upper bound of the loss LMH.

7 Conclusion

We presented a detailed study of the problem of learning with rejection, which
is a key question in a number of applications. We gave a general formulation of
the problem for which we provided a theoretical analysis, including generaliza-
tion guarantees, the derivation of different convex surrogates that are calibrated
and consistent, and margin bounds that helped us devise new algorithms. The
empirical results we reported demonstrate the effectiveness of our algorithms in
several datasets. Our general formulation can further inspire the design of other
algorithms as well as new theoretical insights and studies, one such a potential
area being active learning. Furthermore, a natural extension of our framework is
to include a constraint on the maximum fraction of points that can be rejected.
Such an additional constraint will require new algorithms and generalization
bounds.
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