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Abstract

We present a new boosting algorithm for the key scenario of binary classification
with abstention where the algorithm can abstain from predicting the label of a point,
at the price of a fixed cost. At each round, our algorithm selects a pair of functions,
a base predictor and a base abstention function. We define convex upper bounds
for the natural loss function associated to this problem, which we prove to be
calibrated with respect to the Bayes solution. Our algorithm benefits from general
margin-based learning guarantees which we derive for ensembles of pairs of base
predictor and abstention functions, in terms of the Rademacher complexities of the
corresponding function classes. We give convergence guarantees for our algorithm
along with a linear-time weak-learning algorithm for abstention stumps. We also
report the results of several experiments suggesting that our algorithm provides a
significant improvement in practice over two confidence-based algorithms.

1 Introduction

Classification with abstention is a key learning scenario where the algorithm can abstain from making
a prediction, at the price of incurring a fixed cost. This is the natural scenario in a variety of common
and important applications. An example is spoken-dialog applications where the system can redirect
a call to an operator to avoid the cost of incorrectly assigning a category to a spoken utterance and
misguiding the dialog manager. This requires the availability of an operator, which incurs a fixed and
predefined price. Other examples arise in the design of a search engine or an information extraction
system, where, rather than taking the risk of displaying an irrelevant document, the system can resort
to the help of a more sophisticated, but more time-consuming classifier. More generally, this learning
scenario arises in a wide range of applications including health, bioinformatics, astronomical event
detection, active learning, and many others, where abstention is an acceptable option with some cost.
Classification with abstention is thus a highly relevant problem.

The standard approach for tackling this problem is via confidence-based abstention: a real-valued
function h is learned for the classification problem and the points x for which its magnitude |h(x)| is
smaller than some threshold γ are rejected. Bartlett and Wegkamp [1] gave a theoretical analysis of
this approach based on consistency. They introduced a discontinuous loss function taking into account
the cost for rejection, upper-bounded that loss by a convex and continuous Double Hinge Loss (DHL)
surrogate, and derived an algorithm based on that convex surrogate loss. Their work inspired a series
of follow-up papers that developed both the theory and practice behind confidence-based abstention
[32, 15, 31]. Further related works can be found in Appendix A.

In this paper, we present a solution to the problem of classification with abstention that radically
departs from the confidence-based approach. We introduce a general model where a pair (h, r)
for a classifier h and rejection function r are learned simultaneously. Under this novel framework,
we present a Boosting-style algorithm with Abstention, BA, that learns accurately the classifier
and abstention functions. Note that the terminology of “boosting with abstention” was used by
Schapire and Singer [26] to refer to a scenario where a base classifier is allowed to abstain, but
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Figure 1: The best predictor h is defined by the threshold θ: h(x) = −x + θ. For c < 1
2 , the

region defined by X ≤ η should be rejected. But the corresponding abstention function r defined by
r(x) = x− η cannot be defined as |h(x)| ≤ γ for any γ > 0.

where the boosting algorithm itself has to commit to a prediction. This is therefore distinct from the
scenario of classification with abstention studied here. Nevertheless, we will introduce and examine
a confidence-based Two-Step Boosting algorithm, the TSB algorithm, that consists of first training
Adaboost and next searching for the best confidence-based abstention threshold.

The paper is organized as follows. Section 2 describes our general abstention model which consists
of learning a pair (h, r) simultaneously and compares it with confidence-based models. Section 3.2
presents a series of theoretical results for the problem of learning convex ensembles for classification
with abstention, including the introduction of calibrated convex surrogate losses and general data-
dependent learning guarantees. In Section 4, we use these learning bounds to design a regularized
boosting algorithm. We further prove the convergence of the algorithm and present a linear-time
weak-learning algorithm for a natural family of abstention stumps. Finally, in Section 5, we report
several experimental results comparing the BA algorithm with the DHL and the TSB algorithms.

2 Preliminaries

In this section, we first introduce a general model for learning with abstention [7] and then compare
it with confidence-based models.

2.1 General abstention model

We assume as in standard supervised learning that the training and test points are drawn i.i.d. according
to some fixed but unknown distribution D over X× {−1,+1}. We consider the learning scenario of
binary classification with abstention. Given an instance x ∈ X, the learner has the option of abstaining
from making a prediction for x at the price of incurring a non-negative loss c(x), or otherwise making
a prediction h(x) using a predictor h and incurring the standard zero-one loss 1yh(x)≤0 where the
true label is y. Since a random guess achieves an expected cost of at most 1

2 , rejection only makes
sense for c(x)< 1

2 .

We will model the learner by a pair (h, r) where the function r : X → R determines the points
x ∈ X to be rejected according to r(x) ≤ 0 and where the hypothesis h : X→ R predicts labels for
non-rejected points via its sign. Extending the loss function considered in Bartlett and Wegkamp [1],
the abstention loss for a pair (h, r) is defined as as follows for any (x, y) ∈ X× {−1,+1}:

L(h, r, x, y) = 1yh(x)≤01r(x)>0 + c(x)1r(x)≤0. (1)

The abstention cost c(x) is assumed known to the learner. In the following, we assume that c is a
constant function, but part of our analysis is applicable to the more general case.

We denote by H and R two families of functions mapping X to R and we assume the labeled sample
S = ((x1, y1), . . . , (xm, ym)) is drawn i.i.d. from Dm. The learning problem consists of determining
a pair (h, r) ∈ H × R that admits a small expected abstention loss R(h, r), defined as follows:

R(h, r) = E
(x,y)∼D

[
1yh(x)≤01r(x)>0 + c1r(x)≤0

]
. (2)

Similarly, we define the empirical loss of a pair (h, r) ∈ H × R over the sample S by: R̂S(h, r) =
E(x,y)∼S

[
1yh(x)≤01r(x)>0 + c1r(x)≤0

]
, where (x, y) ∼ S indicates that (x, y) is drawn according

to the empirical distribution defined by S.

2.2 Confidence-based abstention model

Confidence-based models are a special case of the general model for learning with rejection presented
in Section 2.1 corresponding to the pair (h(x), r(x)) = (h(x), |h(x)| − γ), where γ is a parameter
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that changes the threshold of rejection. This specific choice was based on consistency results
shown in [1]. In particular, the Bayes solution (h∗, r∗) of the learning problem, that is where the
distribution D is known, is given by h∗(x) = η(x) − 1

2 and r∗(x) = |h∗(x)| − ( 1
2 − c) where

η(x) =P[Y = +1|x] for any x ∈ X, but note that this is not a unique solution. The form of h∗(x)
follows by a similar reasoning as for the standard binary classification problem. It is straightforward
to see that the optimal rejection function r∗ is non-positive, meaning a point is rejected, if and only if
min{η(x), 1− η(x)} ≥ c. Equivalently, the following holds: max{η(x)− 1

2 ,
1
2 − η(x)} ≤ 1

2 − c if
and only if |η(x) − 1

2 | ≤ 1
2 − c and using the definition of h∗, we recover the optimal r∗. In light

of the Bayes solution, the specific choice of the abstention function r is natural; however, requiring
the abstention function r to be defined as r(x) = |h(x)| − γ, for some h ∈ H, is in general too
restrictive when predictors are selected out of a limited subset H of all measurable functions over X.
Consider the example shown in Figure 1 where H is a family of linear functions. For this simple case,
the optimal abstention region cannot be attained as a function of the best predictor h while it can
be achieved by allowing to learn a pair (h, r). Thus, the general model for learning with abstention
analyzed in Section 2.1 is both more flexible and more general.

3 Theoretical analysis

This section presents a theoretical analysis of the problem of learning convex ensembles for classifica-
tion with abstention. We first introduce general convex surrogate functions for the abstention loss and
prove a necessary and sufficient condition based on their parameters for them to be calibrated. Next
we define the ensemble family we consider and prove general data-dependent learning guarantees for
it based on the Rademacher complexities of the base predictor and base rejector sets.

3.1 Convex surrogates

We introduce two types of convex surrogate functions for the abstention loss. Ob-
serve that the abstention loss L(h, r, x, y) can be equivalently expressed as L(h, r, x, y) =
max

(
1yh(x)≤01−r(x)<0, c 1r(x)≤0

)
. In view of that, since for any f, g ∈ R, max(f, g) =

f+g+|g−f |
2 ≥ f+g

2 , the following inequalities hold for a > 0 and b > 0:

L(h, r, x, y) = max
(
1yh(x)≤01−r(x)<0, c 1r(x)≤0

)
≤ max

(
1max(yh(x),−r(x))≤0, c 1r(x)≤0

)
≤ max

(
1 yh(x)−r(x)

2 ≤0
, c 1r(x)≤0

)
= max

(
1a [yh(x)−r(x)]≤0, c1b r(x)≤0

)
≤ max

(
Φ1

(
a [r(x)− yh(x)]

)
, cΦ2

(
− b r(x)

))
,

where u → Φ1(−u) and u → Φ2(−u) are two non-increasing convex functions upper-bounding
u→ 1u≤0 over R. Let LMB be the convex surrogate defined by the last inequality above:

LMB(h, r, x, y) = max
(

Φ1

(
a [r(x)− yh(x)]

)
, cΦ2

(
−b r(x)

))
, (3)

Since LMB is not differentiable everywhere, we upper-bound the convex surrogate LMB as follows:
max

(
1a [yh(x)−r(x)]≤0, c 1b r(x)≤0

)
≤ Φ1

(
a [r(x)− yh(x)]

)
+ cΦ2

(
−b r(x)

)
. Similarly, we let

LSB denote this convex surrogate:
LSB(h, r, x, y) = Φ1

(
a [r(x)− yh(x)]

)
+ cΦ2

(
−b r(x)

)
. (4)

Figure 2 shows the plots of the convex surrogates LMB and LSB as well as that of the abstention loss.

Let (h∗L, r
∗
L) denote the pair that attains the minimum of the expected loss Ex,y(LSB(h, r, x, y)) over

all measurable functions for Φ1(u) = Φ2(u) = exp(u). In Appendix F, we show that with η(x)=

P(Y =+1|X=x), the pair (h∗L, r
∗
L) where h∗L = 1

2a log
(

η
1−η
)

and r∗L = 1
a+b log

(
cb
2a

√
1

η(1−η)

)
makes LSB a calibrated loss, meaning that the sign of the (h∗L, r

∗
L) that minimizes the expected

surrogate loss matches the sign of the Bayes classifier (h∗, r∗). More precisely, the following holds.
Theorem 1 (Calibration of convex surrogate). For a > 0 and b > 0, the inf(h,r) E(x,y)[L(h, r, x, y)]
is attained at (h∗L, r

∗
L) such that sign(h∗) = sign(h∗L) and sign(r∗) = sign(r∗L) if and only if

b /a = 2
√

(1− c)/c.
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Figure 2: The left figure is a plot of the abstention loss. The middle figure is a plot of the surrogate
function LMB while the right figure is a plot of the surrogate loss LSB both for c = 0.45.

The theorem shows that the classification and rejection solution obtained by minimizing the surrogate
loss for that choice of (a, b) coincides with the one obtained using the original loss. In the following,
we make the explicit choice of a = 1 and b = 2

√
(1− c)/c for the loss LSB to be calibrated.

3.2 Learning guarantees for ensembles in classification with abstention

In the standard scenario of classification, it is often easy to come up with simple base classifiers that
may abstain. As an example, a simple rule could classify a message as spam based on the presence
of some word, as ham in the presence of some other word, and just abstain in the absence of both,
as in the boosting with abstention algorithm by Schapire and Singer [26]. Our objective is to learn
ensembles of such base hypotheses to create accurate solutions for classification with abstention.
Our ensemble functions are based on the framework described in Section 2.1. Let H and R be two
families of functions mapping X to [−1, 1]. The ensemble family F that we consider is then the
convex hull of H × R:

F =

{( T∑
t=1

αtht,

T∑
t=1

αtrt

)
: T ≥ 1, αt ≥ 0,

T∑
t=1

αt = 1, ht ∈ H, rt ∈ R

}
. (5)

Thus, (h, r) ∈ F abstains on input x ∈ X when r(x) ≤ 0 and predicts the label sign(h(x)) otherwise.

Let u→ Φ1(−u) and u→ Φ2(−u) be two strictly decreasing differentiable convex function upper-
bounding u→ 1u≤0 over R. For calibration constants a , b > 0, and cost c > 0, we assume that there
exist u and v such that Φ1(a u) < 1 and cΦ2(v) < 1, otherwise the surrogate would not be useful.
Let Φ−1

1 and Φ−1
2 be the inverse functions, which always exist since Φ1 and Φ2 are strictly monotone.

We will use the following definitions: CΦ1
= 2aΦ′1

(
Φ−1

1 (1)
)

and CΦ2
= 2cbΦ′2

(
Φ−1

2 (1/c)
)
.

Observe that for Φ1(u) = Φ2(u) = exp(u), we simply have CΦ1
= 2a and CΦ2

= 2b .
Theorem 2. Let H and R be two families of functions mapping X to R. Assume N > 1. Then, for
any δ > 0, with probability at least 1− δ over the draw of a sample S of size m from D, the following
holds for all (h, r) ∈ F:

R(h, r) ≤ E
(x,y)∼S

[LMB(h, r, x, y)] + CΦ1
Rm(H) + (CΦ1

+ CΦ2
)Rm(R) +

√
log 1/δ

2m
.

The proof is given in Appendix C. The theorem gives effective learning guarantees for ensemble
pairs (h, r) ∈ F when the base predictor and abstention functions admit favorable Rademacher
complexities. In earlier work [7], we present a learning bound for a different type of surrogate losses
which can also be extended to hold for ensembles.

Next, we derive margin-based guarantees in the case where Φ1(u) = Φ2(u) = exp(u). For any
ρ > 0, the margin-losses associated to LMB and LSB are denoted by LρMB and LρSB and defined for all
(h, r) ∈ F and (x, y) ∈ X× {−1,+1} by

LρMB(h, r, x, y) = LMB(h/ρ, r/ρ, x, y) and LρSB(h, r, x, y) = LSB(h/ρ, r/ρ, x, y).

Theorem 2 applied to this margin-based loss results in the following corollary.
Corollary 3. Assume N > 1 and fix ρ > 0. Then, for any δ > 0, with probability at least 1− δ over
the draw of an i.i.d. sample S of size m from D, the following holds for all f ∈ F:

R(h, r) ≤ E
(x,y)∼S

[LρMB(h, r, x, y)] +
2a

ρ
Rm(H) +

2(a + b )

ρ
Rm(R) +

√
log 1/δ

2m
.
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BA(S = ((x1, y1), . . . , (xm, ym)))

1 for i← 1 to m do
2 D1(i, 1)← 1

2m ;D1(i, 2)← 1
2m

3 for t← 1 to T do
4 Z1,t ←

∑m
i=1Dt(i, 1);Z2,t ←

∑m
i=1Dt(i, 2)

5 k ← argminj∈[1,N ] 2Z1,tεt,j + Z1,trj,1 − 2
√
c(1− c)Z2,trj,2 . Direction

6 Z ← Z1,t(εt,k +
rk,1

2 )− 2
√
c(1− c)Z2,t

rk,2
2

7 if (Z1,t − Z)eαt−1,k − Ze−αt−1,k < m
Zt
β then

8 ηt ← −αt−1,k . Step

9 else ηt ← log
[
− mβ

2ZtZ
+

√[
mβ

2ZtZ

]2
+

Z1,t

Z − 1
]
. Step

10 αt ← αt−1 + ηtek
11 rt ←

∑N
j=1 αjrj

12 ht ←
∑N
j=1 αjhj

13 Zt+1 ←
∑m
i=1 Φ′

(
rt(xi)− yiht(xi)

)
+ Φ′

(
−2
√

1−c
c rt(xi)

)
14 for i← 1 to m do

15 Dt+1(i, 1)← Φ′
(
rt(xi)−yiht(xi)

)
Zt+1

;Dt+1(i, 2)←
Φ′
(
−2

√
1−c
c rt(xi)

)
Zt+1

16 (h, r)←∑N
j=1 αT,j(hj , rj)

17 return (h, r)

Figure 3: Pseudocode of the BA algorithm for both the exponential loss with Φ1(u) = Φ2(u) =
exp(u) as well as for the logistic loss with Φ1(u) = Φ2(u) = log2(1 + eu). The parameters include
the cost of rejection c and β determining the strength of the the α-constraint for the L1 regularization.
The definition of the weighted errors εt,k as well as the expected rejections, rk,1 and rk,2, are given
in Equation 7. For other surrogate losses, the step size ηt is found via a line search or other numerical
methods by solving argminη F (αt−1 + ηek).

The bound of Corollary 3 applies similarly to LρSB since it is an upper bound on LρMB. It can further

be shown to hold uniformly for all ρ ∈ (0, 1) at the price of a term in O
(√

log log 1/ρ
m

)
using standard

techniques [16, 22] (see Appendix C).

4 Boosting algorithm

Here, we derive a boosting-style algorithm (BA algorithm) for learning an ensemble with the option
of abstention for both losses LMB and LSB. Below, we describe the algorithm for LSB and refer the
reader to Appendix H for the version using the loss LMB.

4.1 Objective function

The BA algorithm solves a convex optimization problem that is based on Corollary 3 for loss
LSB. Since the last three terms of the right-hand side of the bound of the corollary do not de-
pend on α, this suggests to select α as the solution of minα∈∆

1
m

∑m
i=1 L

ρ
SB(h, r, xi, yi). Via

a change of variable α ← α/ρ that does not affect the optimization problem, we can equiv-
alently search for minα≥0

1
m

∑m
i=1 LSB(h, r, xi, yi) such that

∑T
t=1 αt ≤ 1/ρ. Introducing the

Lagrange variable β associated to the constraint
∑T
t=1 αt ≤ 1/ρ, the problem can rewritten as:

minα≥0
1
m

∑m
i=1 LSB(h, r, xi, yi)+β

∑T
t=1 αt. Letting {(h1, r1), . . . , (hN , rN )} be the set of base

functions pairs for the classifier and rejection function, we can rewrite the optimization problem as

5



the minimization over α ≥ 0 of

1

m

m∑
i=1

Φ
( N∑
j=1

αjrj(xi)−yi
N∑
j=1

αjhj(xi)
)

+cΦ
(
−b

N∑
j=1

αjrj(xi)
)

+β

N∑
j=1

αj .

Thus, the following is the objective function of our optimization problem:

F (α) =
1

m

m∑
i=1

Φ
(
rt(xi)− yiht(xi)

)
+ cΦ

(
−b rt(xi)

)
+ β

N∑
j=1

αj . (6)

4.2 Projected coordinate descent

The problem minα≥0 F (α) is a convex optimization problem, which we solve via projected
coordinate descent. Let ek be the kth unit vector in RN and let F ′(α, ej) be the directional
derivative of F along the direction ej at α. The algorithm consists of the following three
steps. First, it determines the direction of maximal descent by k = argmaxj∈[1,N ] |F ′(αt−1, ej)|.
Second, it calculates the best step η along the direction that preserves non-negativity of α by
η = argminαt−1+ηek≥0 F (αt−1 + ηek). Third, it updates αt−1 to αt = αt−1 + ηek.

The pseudocode of the BA algorithm is given in Figure 3. The step and direction are based on
F ′(αt−1, ej). For any t ∈ [1, T ], define a distribution Dt over the pairs (i, n), with n in {1, 2}

Dt(i, 1) =
Φ′
(
rt−1(xi)− yiht−1(xi)

)
Zt

and Dt(i, 2) =
Φ′
(
−b rt−1(xi)

)
Zt

,

where Zt is the normalization factor given by Zt =
∑m
i=1 Φ′

(
rt−1(xi)− yiht−1(xi)

)
+

Φ′
(
−b rt−1(xi)

)
. In order to derive an explicit formulation of the descent direction that is based

on the weighted error of the classification function hj and the expected value of the rejection func-
tion rj , we use the distributions D1,t and D2,t defined by Dt(i, 1)/Z1,t and Dt(i, 1)/Z2,t where
Z1,t =

∑m
i=1Dt(i, 1) and Z2,t =

∑m
i=1Dt(i, 2) are the normalization factors. Now, for any

j ∈ [1, N ] and s ∈ [1, T ], we can define the weighted error εt,j and the expected value of the
rejection function, rj,1 and rj,2, over distribution D1,t and D2,t as follows:

εt,j = 1
2

[
1− E

i∼D1,t

[yihj(xi)]
]
, rj,1 = E

i∼D1,t

[rj(xi)], and rj,2 = E
i∼D2,t

[rj(xi)]. (7)

Using these definition, we show (see Appendix D) that the descent direction is given by

k = argmin
j∈[1,N ]

2Z1,tεt,j + Z1,trj,1 − 2
√
c(1− c)Z2,trj,2.

This equation shows that Z1,t and 2
√
c(1− c)Z2,t re-scale the weighted error and expected rejection.

Thus, finding the best descent direction by minimizing this equation is equivalent to finding the best
scaled trade-off between the misclassification error and the average rejection cost. The step size can
in general be found via line search or other numerical methods, but we have derived a closed-form
solution of the step size for both the exponential and logistic loss (see Appendix D.2). Further details
of the derivation of projected coordinate descent on F are also given in Appendix D.

Note that for rt → 0+ in Equation 6, that is when the rejection terms are dropped in the objective, we
retrieve the L1-regularized Adaboost. As for Adaboost, we can define a weak learning assumption
which requires that the directional derivative along at least one base pair be non-zero. For β = 0, it

does not hold when for all j: 2εs,j − 1 = −rj,1 +
2
√
c(1−c)Z2,t

Z1,t
rj,2, which corresponds to a balance

between the edge and rejection costs for all j. Observe that in the particular case when the rejection
functions are zero, it coincides with the standard weak learning assumption for Adaboost (εs,j = 1

2
for all j).

The following theorem provides the convergence of the projected coordinate descent algorithm for
our objective function, F (α). The proof is given in Appendix E.
Theorem 4. Assume that Φ is twice differentiable and that Φ′′(u) > 0 for all u ∈ R. Then, the
projected coordinate descent algorithm applied to F converges to the solution α∗ of the optimization
problem maxα≥0 F (α). If additionally Φ is strongly convex over the path of the iterates αt then
there exists τ > 0 and ν > 0 such that for all t > τ , F (αt+1)−F (α∗) ≤

(
1− 1

ν

)(
F (αt)−F (α∗)

)
.
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Figure 4: Illustration of the abstention stumps on a variable X .

Specifically, this theorem holds for the exponential loss Φ(u) = exp(u) and the logistic loss
Φ(−u) = log2(1 + e−u) since they are strongly convex over the compact set containing the αts.

4.3 Abstention stumps

We first define a family of base hypotheses, abstention stumps, that can be viewed as extensions of the
standard boosting stumps to the setting of classification with abstention. An abstention stump hθ1,θ2
over the feature X is defined by two thresholds θ1, θ2 ∈ R with θ1 ≤ θ2. There are 6 different such
stumps, Figure 4 illustrates two of them. For the left figure, points with variables X less than or equal
to θ1 are labeled negatively, those with X ≥ θ2 are labeled positively, and those with X between θ1

and θ2 are rejected. In general, an abstention stump is defined by the pair
(
hθ1,θ2(X), rθ1,θ2(X)

)
where, for Figure 4-left, hθ1,θ2(X) = −1X≤θ1 + 1X>θ2 and rθ1,θ2(X) = 1θ1<X≤θ2 .

Thus, our abstention stumps are pairs (h, r̂) with h taking values in {−1, 0, 1} and r̂ in {0, 1}, and
such that for any x either h(x) or r̂(x) is zero. For our formulation and algorithm, these stumps can
be used in combination with any γ > 0, to define a family of base predictor and base rejector pairs of
the form (h(x), γ− r̂(x)). Since αt is non-negative, the value γ is needed to correct for over-rejection
by previously selected abstention stumps. The γ can be automatically learned by adding to the set
of base pairs the constant functions (h0, r0) = (0,−1). An ensemble solution returned by the BA
algorithm is therefore of the form

(∑
t αtht(x),

∑
t αtrt(x)

)
where αts are the weights assigned to

each base pair.

Now, consider a sample of m points sorted by the value of X , which we denote by X1 ≤ · · · ≤ Xm.
For abstention stumps, the derivative of the objective, F , can be further simplified (see Appendix G)
such that the problem can be reduced to finding an abstention stump with the minimal expected
abstention loss l(θ1, θ2), that is

argmin
θ1,θ2

m∑
i=1

2Dt(i, 1)[1yi=+11Xi≤θ1 + 1yi=−11Xi>θ2 ] +
(
2Dt(i, 1)− cbDt(i, 2)

)
1θ1<Xi≤θ2 .

Notice that given m points, at most (m+ 1) thresholds need to be considered for θ1 and θ2. Hence, a
straightforward algorithm inspects all possible O(m2) pairs (θ1, θ2) with θ1 ≤ θ2 in time O(m2).
However, Lemma 5 below and further derivations in Appendix G, allows for an O(m)-time algorithm
for finding optimal abstention stumps when the problem is solved without the constraint θ1 ≤ θ2.
Note that while we state the lemma for the abstention stump in Figure 4-left, similar results hold for
any of the 6 types of stumps.
Lemma 5. The optimization problem without the constraint (θ1 < θ2) can be decomposed as
follows:

argmin
θ1,θ2

l(θ1, θ2) = argmin
θ1

m∑
i=1

2Dt(i, 1)1yi=+11Xi≤θ1 +
(
2Dt(i, 1)− cbDt(i, 2)

)
1θ1<Xi (8)

+ argmin
θ2

m∑
i=1

2Dt(i, 1)1yi=−11Xi>θ2 +
(
2Dt(i, 1)− cbDt(i, 2)

)
1Xi≤θ2 . (9)

The optimization Problems (8) and (9) can be solved in linear time, via a method similar to that
of finding the optimal threshold for a standard zero-one loss boosting stump. When the condition
θ1 < θ2 does not hold, we can simply revert to finding the minimum of l(θ1, θ2) in the naive way. In
practice, we find most often that the optimal solution of Problem 8 and Problem 9 satisfies θ1 < θ2.

5 Experiments

In this section, we present the results of experiments with our abstention stump BA algorithm based
on LSB for several datasets. We compare the BA algorithm with the DHL algorithm [1], as well as a
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Figure 5: Average rejection loss on the test set as a function of the abstention cost c for the TSB
Algorithm (in orange), the DHL Algorithm (in red) and the BA Algorithm (in blue) based on LSB.

confidence-based boosting algorithm TSB. Both of these algorithms are described in further detail
in Appendix B. We tested the algorithms on six data sets from UCI’s data repository, specifically
australian, cod, skin, banknote, haberman, and pima. For more information about the data sets,
see Appendix I. For each data set, we implemented the standard 5-fold cross-validation where we
randomly divided the data into training, validation and test set with the ratio 3:1:1. Using a different
random partition, we repeated the experiments five times. For all three algorithms, the cost values
ranged over c ∈ {0.05, 0.1, . . . , 0.5} while threshold γ ranged over γ ∈ {0.08, 0.16, . . . , 0.96}. For
the BA algorithm, the β regularization parameter ranged over β ∈ {0, 0.05, . . . , 0.95}. All experi-
ments for BA were based on T = 200 boosting rounds. The DHL algorithm used polynomial kernels
with degree d ∈ {1, 2, 3} and it was implemented in CVX [8]. For each cost c, the hyperparameter
configuration was chosen to be the set of parameters that attained the smallest average rejection loss
on the validation set. For that set of parameters we report the results on the test set.

We first compared the confidence-based TSB algorithm with the BA and DHL algorithms (first row
of Figure 5). The experiments show that, while TSB can sometimes perform better than DHL, in
a number of cases its performance is dramatically worse as a function of c and, in all cases it is
outperformed by BA. In Appendix J, we give the full set of results for the TSB algorithm.

In view of that, our next series of results focus on the BA and DHL algorithms, directly designed to
optimize the rejection loss, for 3 other datasets (second row of Figure 5). Overall, the figures show
that BA outperforms the state-of-the-art DHL algorithm for most values of c, thereby indicating that
BA yields a significant improvement in practice. We have also successfully run BA on the CIFAR-10
data set (boat and horse images) which contains 10,000 instances and we believe that our algorithm
can scale to much larger datasets. In contrast, training DHL on such larger samples did not terminate
as it is based on a costly QCQP. In Appendix J, we present tables that report the average and standard
deviation of the abstention loss as well as the fraction of rejected points and the classification error
on non-rejected points.

6 Conclusion

We introduced a general framework for classification with abstention where the predictor and
abstention functions are learned simultaneously. We gave a detailed study of ensemble learning
within this framework including: new surrogate loss functions proven to be calibrated, Rademacher
complexity margin bounds for ensemble learning of the pair of predictor and abstention functions,
a new boosting-style algorithm, the analysis of a natural family of base predictor and abstention
functions, and the results of several experiments showing that BA algorithm yield a significant
improvement over the confidence-based algorithms DHL and TSB. Our algorithm can be further
extended by considering more complex base pairs such as more general ternary decision trees with
rejection leaves. Moreover, our theory and algorithm can be generalized to the scenario of multi-class
classification with abstention, which we have already initiated.
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A Extended Related Work

Initial work in learning with abstention has focused on the optimal trade-off between the error
and abstention rate [5, 6] as well as finding the optimal abstention rule based on the ROC curve
[14, 28, 25]. Another series of papers used rejection options to reduce misclassification rate, but
theoretical learning guarantees were not given [13, 24, 2, 17, 21]. More recently, El-Yaniv and Wiener
[10, 11] study the trade-off between the coverage and the accuracy of classifiers by using an approach
related to active learning.

A seemingly connected framework is that of cost-sensitive learning where the cost of misclassifying
class y1 as class y2 may depend on the pair (y1, y2) [12]. It would be tempting to view classification
with abstention as a special instance of cost-sensitive learning with the set of classes {−1,+1, R©},
with R© standing for abstention and where a different cost would be assigned to abstention. However,
in our problem, R© is not an intrinsic class: training or test samples bear no R© label. Instead, the
distribution over that set will depend on the algorithm. Thus, classification with abstention cannot be
cast as a special case of cost-sensitive learning. Sequential learning with a budget is also a marginally
related task where abstention functions are learned. But, unlike our approach, it is done in a two-step
process where the classifier function is fixed [29, 30]. Lastly, the option of abstaining has been
analyzed in related topics including the multi-class setting [27, 9, 3], reinforcement learning [19],
online learning [33] and active learning [4].

B Confidence-based abstention model

In this appendix, we describe two confidence-based abstention algorithms: the DHL algorithm and
the TSB algorithm.

B.1 DHL algorithm

The DHL algorithm found in [1] is based on a double hinge loss, which is a hinge-type convex
surrogate, with favorable consistency results. The optimization problem solved by the DHL algorithm
minimizes this surrogate loss along with the constraint that the norm of the classifier is bounded by
1− c. More precisely, let H be a hypotheses sets defined in terms of PSD kernels K over X where
Φ is the feature mapping associated to K, then the DHL solves the following QCQP optimization
problem

min
α,ξ,β

m∑
i=1

ξi +
1− 2c

c
βi

subject to
m∑

i,j=1

αiαjK(xi, xj) ≤ (1− c)2

ξi ≥ 1− yi
( m∑
i=1

αiK(xi, x)

)
∧ ξi ≥ 0,

βi ≥ −yi
( m∑
i=1

αiK(xi, x)

)
∧ βi ≥ 0, i ∈ [1,m].

B.2 Two-step Adaboost (TSB)

The TSB algorithm is a confidence-based algorithm that proceeds in two steps. The first step consists
of training a vanilla Adaboost algorithm which returns a classifier h. Then, given classifier h, the
second step is to search for the best threshold γ that minimizes the empirical abstention loss. More
precisely, we pick the parameter γ via cross-validation, by choosing the threshold that minimizes the
empirical abstention loss on the validation set. This is a natural confidence-based boosting algorithm
and since the BA algorithm is based on boosting, it provides a useful baseline for our experiments.
We implemented this algorithm using scikit-learn [23].

C Theoretical guarantees

In this appendix, we provide the proof of the theoretical guarantees presented in Section 3.2.
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Let u→ Φ1(−u) and u→ Φ2(−u) be two strictly non-increasing differentiable convex functions
upper-bounding u→ 1u≤0 over R. We assume that a , b > 0, and c > 0. We will use the quantity
min(Φ1(a u), 1) and so we assume that there exists u such that Φ1(a u) < 1 and similarly, we need
to analyze min(cΦ2(u), 1) and so we assume there exists a u such that cΦ2(u) < 1. Note that if
these two assumptions did not hold, then the surrogate would not be useful. Let Φ−1

1 and Φ−1
2 be the

inverse functions, which always exist since Φ1 and Φ2 are strictly monotone functions. For simplicity,
we define CΦ1

= 2aΦ′1
(
Φ−1

1 (1)
)

and CΦ2
= 2cbΦ′2

(
Φ−1

2 (1/c)
)
.

Theorem 2. Let H and R be family of functions mapping X to R. Assume N > 1. Then, for any
δ > 0, with probability at least 1− δ over the draw of a sample S of size m from D, the following
holds for all (h, r) ∈ F:

R(h, r) ≤ E
(x,y)∼S

[LMB(h, r, x, y)] + CΦ1
Rm(H) + (CΦ1

+ CΦ2
)Rm(R) +

√
log 1

δ

2m
.

Proof. Let LMB,F be the family of functions defined by LMB,F =
{

(x, y) 7→
min(LMB(h, r, x, y), 1), (h, r) ∈ F

}
. Since min(LMB, 1) is bounded by one, by the general

Rademacher complexity generalization bound [16], with probability at least 1− δ over the draw of a
sample S, the following holds:

R(h, r) ≤ E
(x,y)∼D

[min(LMB(h, r, x, y), 1)]

≤ E
(x,y)∼S

[min(LMB(h, r, x, y), 1)] + 2Rm(LMB,F) +

√
log 1

δ

2m

≤ E
(x,y)∼S

[LMB(h, r, x, y)] + 2Rm(LMB,F) +

√
log 1

δ

2m
.

Since for any a, b ∈ R, min
(

max(a, b), 1
)

= max
(

min(a, 1),min(b, 1)
)
, we can write

min(LMB(h, r, x, y), 1)

= max
(

min
(

Φ1

(
a [r(x)− yh(x)]

)
, 1
)
,min

(
cΦ2

(
−b r(x)

)
, 1
))

≤ min
(

Φ1

(
b [r(x)− yh(x)]

)
, 1
)

+ min
(
cΦ2

(
−b r(x)

)
, 1
)
.

The function Φ1

(
a u) has a non-negative increasing derivative because it is a strictly increasing

convex function. Since min
(
Φ1

(
a u
)
, 1
)

= Φ1

(
a u
)

for a u ≤ Φ−1
1 (1), the Lipschitz constant

of u 7→ min
(
Φ1

(
a u
)
, 1
)

is given by aΦ′1(Φ−1
1 (1)). Similarly, u 7→ min

(
cΦ2

(
b u
)
, 1
)

is also
cbΦ′2(Φ−1

2 (1/c))-Lipschitz. Then, by Talagrand’s lemma [18],

Rm(LMB,F) ≤ aΦ′1
(
Φ−1

1 (1)
)
Rm

(
(x, y) 7→ r(x)− yh(x) : (h, r) ∈ F

)
+ c b Φ′2

(
Φ−1

2 (1/c)
)
Rm

(
(x, y) 7→ −r(x) : (h, r) ∈ F

)
. (10)

We examine each of the terms in the right-hand side of the inequality:

Rm

(
(x, y) 7→ r(x)− yh(x) : (h, r) ∈ F

)
= E

σ

[
sup

(h,r)∈F

1

m

m∑
i=1

σi(r(xi)− yih(xi))

]

≤ E
σ

[
sup

(h,r)∈F

1

m

m∑
i=1

σir(xi)

]
+ E

σ

[
sup

(h,r)∈F

1

m

m∑
i=1

−σi(yih(xi))

]

= E
σ

[
sup

(h,r)∈F

1

m

m∑
i=1

σir(xi)

]
+ E

σ

[
sup

(h,r)∈F

1

m

m∑
i=1

σih(xi)

]
= Rm(R) + Rm(H),

since −yiσi and σi are distributed in the same way, we effectively can absorb −yi into the def-
inition of σi. Lastly, since the α does not affect the Rademacher complexity, we have that
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Eσ

[
sup(h,r)∈F

1
m

∑m
i=1 σih(xi)

]
= Rm(H) and similarly Eσ

[
sup(h,r)∈F

1
m

∑m
i=1 σir(xi)

]
=

Rm(R). By a similar reasoning, we also have that

Rm

(
(x, y) 7→ −r(x) : (h, r) ∈ F

)
=E

σ

[
sup

(h,r)∈F

1

m

m∑
i=1

σir(xi)

]
= Rm(R).

Combining the above, we have that the right-hand side of Inequality 10 is bounded as follows

Rm(LMB,F) ≤ a Φ′1(Φ−1
1 (1))Rm(H) + (c b Φ′2

(
Φ−1

2 (1/c)
)

+ a Φ′1(Φ−1
1 (1)))Rm(R),

which completes the proof.

By taking Φ1(u) = Φ2(u) = exp(u), we have the following theorem since in this case, we simply
have that CΦ1

= 2a and CΦ2
= 2b .

Theorem 6. Let H and R be family of functions mapping X to R. Assume N > 1. Then, for any
δ > 0, with probability at least 1− δ over the draw of a sample S of size m from D, the following
holds for all (h, r) ∈ F:

R(h, r) ≤ E
(x,y)∼S

[LMB(h, r, x, y)] + 2aRm(H) + 2(a + b )Rm(R) +

√
log 1/δ

2m
.

The corollary below is a direct consequence of the above Theorem 6 and it presents margin-based
guarantees that are subsequently used to derive the BA algorithm.

Corollary 3. Assume N > 1 and fix ρ > 0. Then, for any δ > 0, with probability at least 1− δ over
the draw of an i.i.d. sample S of size m from D, the following holds for all (h, r) ∈ F:

R(h, r) ≤ E
(x,y)∼S

[LρMB(h, r, x, y)] +
2a

ρ
Rm(H) +

2(a + b )

ρ
Rm(R) +

√
log 1/δ

2m
.

D Direction and step of projected coordinate descent

In this appendix, we provide the details of the projected coordinate descent, projected CD, algorithm
by first deriving the direction and then the optimal step. We give a closed form solution of the step
size for exponential loss Φ(u) = exp(u) and logistic loss Φ(u) = log2(1 + eu).

D.1 Direction

At each iteration t−1, the direction ek selected by projected CD is k = argmaxj∈[1,N ] |F ′(αt−1, ej)|
where the derivative is given by the following

F ′(αt−1, ej) =
1

m

m∑
i=1

(
[rj(xi)− yihj(xi)]Φ′

(
rt−1(xi)− yiht−1(xi)

)
− cb rj(xi)Φ′

(
−b rt−1(xi)

))
+ β.

Using the definition of D(i, 1) and D(i, 2), we re-write the derivative as follows:

F ′(αt−1, ej) =
Zt
m

m∑
i=1

(
[rj(xi)− yihj(xi)]Dt(i, 1)− cb rj(xi)Dt(i, 2)

)
+ β

=
Zt
m

(
2Z1,tεs,j − Z1,t + Z1,trj,1 − cbZ2,trj,2

)
+ β.

Hence, we have that the descent direction is k = argminj∈[1,N ] 2Z1,tεt,j + Z1,trj,1 − cbZ2,trj,2.
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D.2 Step

The optimal step values η for direction ek is given by argminη+αt−1,k≥0 F (αt−1 +ηek). The values
η may be found via line search or other numerical methods, but below we derive a closed-form
solution by minimizing an upper bound of F (αt−1 + ηek).

Since Φ is convex and since for all i ∈ [1,m]

−yihk(xi) + rk(xi) =
1 + yihk(xi)− rk(xi)

2
· (−1) +

1− yihk(xi) + rk(xi)

2
· (1),

we have that the following holds for all η ∈ R
Φ
(
rt−1(xi)− yiht−1(xi)− ηyihk(xi) + ηrk(xi)

)
≤ 1 + yihk(xi)− rk(xi)

2
Φ
(
rt−1(xi)− yiht−1(xi)− η

)
+

1− yihk(xi) + rk(xi)

2
Φ
(
rt−1(xi)− yiht−1(xi) + η

)
.

Similarly, we have that −b rk(xi) = −b rk(xi)
2 · (1) + b rk(xi)

2 · (−1)

Φ
(
−b rt−1(xi)− b ηrk(xi)

)
≤ −b rk(xi)

2
Φ
(
−b rt−1(xi) + η

)
+
b rk(xi)

2
Φ
(
−b rt−1(xi)− η

)
Thus, we can upper-bound F as follows:

F (αt−1 + ηek) ≤ 1

m

m∑
i=1

1 + yihk(xi)− rk(xi)

2
Φ
(
rt−1(xi)− yiht−1(xi)− η

)
+

1

m

m∑
i=1

1− yihk(xi) + rk(xi)

2
Φ
(
rt−1(xi)− yiht−1(xi) + η

)
+

1

m

m∑
i=1

−b rk(xi)

2
cΦ
(
−b rt−1(xi) + η

)
+

1

m

m∑
i=1

b rk(xi)

2
cΦ
(
−b rt−1(xi)− η

)
+

N∑
j=1

αt−1β + βη

We define J(η) to be the right-hand side of the inequality above. We will select η as the solution of
minη+αt−1,k≥0 J(η), which is a convex optimization problem since J is convex.

D.2.1 Exponential loss

When Φ(u) = exp(u), the J function is given by

J(η) =
1

m

m∑
i=1

1 + yihk(xi)− rk(xi)

2
ert−1(xi)−yiht−1(xi)e−η

+
1

m

m∑
i=1

1− yihk(xi) + rk(xi)

2
ert−1(xi)−yiht−1(xi)eη

+
1

m

m∑
i=1

−b rk(xi)

2
ce−b rt−1(xi)eη

+
1

m

m∑
i=1

b rk(xi)

2
ce−b rt−1(xi)e−η +

N∑
j=1

αt−1β + βη.
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Since ert−1(xi)−yiht−1(xi) = Φ′
(
rt−1(xi) − yiht−1(xi)

)
= ZtDt(i, 1) and e−b rt−1(xi) =

Φ′
(
−b rt−1(xi)

)
= ZtDt(i, 2), it implies that

J(η) =
Zt
m

(
(1− εt,k −

rk,1
2

)Z1,te
−η + (εt,k +

rk,1
2

)Z1,te
η

+
−b rk,2

2
cZ2,te

η +
b rk,2

2
cZ2,te

−η
)

+

N∑
j=1

αt−1β + βη.

For simplicity below, we define A = Z1,t(1− εt,k − rk,1
2 ) + cZ2,t

b rk,2
2 and Z = Z1,t(εt,k +

rk,1
2 ) +

cZ2,t
−b rk,2

2 so that J can be written as

J(η) =
Zt
m

(
Ae−η + Zeη

)
+

N∑
j=1

αt−1β + βη.

Introducing a Lagrange variable λ ≥ 0, the optimization problem then becomes

L(η, λ) = J(η)− λ(η + αt−1,k) with∇ηL(η, λ) = J ′(η)− λ.
By the KKT conditions, at the solution (η∗, λ∗), J ′(η∗) = λ∗ and λ∗(η∗ + αt−1,k) = 0. Thus, we
can fall in one of the two following cases:

1. (λ∗ > 0)⇔ (J ′(η∗) > 0) and η∗ = −αt−1,k

2. λ∗ = 0 and η∗ is a solution of the equation J(η∗) = 0

The first case can be written as
Zt
m

(
−Aeαt−1,k + Ze−αt−1,k

)
+ β > 0⇔ Aeαt−1,k − Ze−αt−1,k <

m

Zt
β.

For the second case we have to solve J ′(η) = 0 which can be written as e2η + mβ
ZtZ

eη − A
Z . The

solution is given by

eη = − mβ

2ZtZ
+

√( mβ

2ZtZ

)2

+
A

Z
⇔ η = log

[
− mβ

2ZtZ
+

√( mβ

2ZtZ

)2

+
A

Z

]
.

Noting that A = Z1,t − Z, the above can be simplified to

η = log
[
− mβ

2ZtZ
+

√( mβ

2ZtZ

)2

+
Z1,t

Z
− 1
]
. (11)

D.2.2 Logistic loss

For the logistic loss, we have that for any u ∈ R,Φ(−u) = log2(1+e−u) and Φ′(−u) = 1
log 2(1+eu) .

We have the following upper bound

Φ(−u− v)− Φ(−u) = log2

(1 + e−u + e−u−v − e−u
1 + e−u

)
= log2

(
1 +

e−v − 1

e−u + 1

)
≤ e−v − 1

log 2(1 + eu)
= Φ′(−u)(e−v − 1),

which allows us to write

F (αt−1 + ηek)− F (αt−1) ≤ 1

m

m∑
i=1

Φ′(rt−1(xi)− yiht−1(xi))(e
−ηyihk(xi)+ηrk(xi) − 1)

+ cΦ′(−b rt−1(xi))(e
−b ηrk(xi) − 1) + βη.

From here, we can use a very similar reasoning as the exponential loss which results in a similar
expression for the step size.
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E Convergence analysis of algorithm

In the section, we prove the convergence of the projected CD algorithm for F (α) =
1
m

∑m
i=1 Φ

(
rt(xi)− yiht(xi)

)
+ cΦ

(
−b rt(xi)) + β

∑N
j=1 αj .

Theorem 4. Assume that Φ is twice differentiable and that Φ′′(u) > 0 for all u ∈ R. Then, the
projected CD algorithm applied to F converges to the solution α∗ of the optimization problem
maxα≥0 F (α). If additionally Φ is strongly convex over the path of the iterates αt then there exists
τ > 0 and ν > 0 such that for all t > τ ,

F (αt+1)− F (α∗) ≤ (1− 1

ν
)(F (αt)− F (α∗)). (12)

Proof. Let H be the matrix in R2m×N defined by H(i,1),j = yihj(xi) − rj(xi) and H(i,2),j =

b rj(xi) for all i ∈ [1,m] and for all j ∈ [1, N ], and let e(i,1) and e(i,2) be unit vectors in R2m. Then
for any α, we have that eTi,1Hα =

∑N
j=1 αj(yihj(xi)− rj(xi)) and eTi,2Hα = b

∑N
j=1 αjrj(xi).

Thus, we can write for any α ∈ RN ,

F (α) = G(Hα) + ΛTα, (13)

where Λ = (Λ1, . . . ,ΛN )T and where G is the function defined by

G(u) =
1

m

m∑
i=1

Φ(−eTi,1u) + cΦ(−eTi,2u) =
1

m

m∑
i=1

Φ(−ui,1) + cΦ(−ui,2) (14)

for all u ∈ R2m with ui,1 its (i, 1)th coordinate and ui,2 its (i, 2)th coordinate. Since Φ is differ-
entiable, the function G is differentiable and ∇2G(u) is a diagonal matrix with diagonal entries
1
mΦ′′(−ui,1) > 0 or c

mΦ′′(−ui,2) > 0 for all i ∈ [1,m]. Thus, ∇2G(Hα) is positive definite for
all α. The conditions of Theorem 2.1 of [20] are therefore satisfied for the optimization problem

min
α≥0

G(Hα) + ΛTα, (15)

thereby guaranteeing the convergence of the projected CD method applied to F . If additionally F is
strongly convex over the sequence of αts, the by the result of [20][page 26], the Inequality 12 holds
for the projected coordinate method that we are using which selects the best direction at each round,
as with the Gauss-Southwell method.

F Calibration

In this section, we show thatLSB(h, r, x, y) = ea (r(x)−yh(x))+ce−b r(x) is a calibrated loss whenever
b
a = 2

√
1−c
c . Below, let L := LSB(h, r, x, y) and define η(x) = P(Y = +1|X = x).

Theorem 1. For a > 0 and b > 0, the inf(h,r) E(x,y)[L(h, r, x, y)] is attained at (h∗L, r
∗
L) such that

sign(h∗) = sign(h∗L) and sign(r∗) = sign(r∗L) if and only if ba = 2
√

1−c
c .

Proof. Conditioning on the label y, we can write the generalization error for the L(h, r, x, y) as
follows

E
(x,y)

[L(h, r, x, y)] = E
x

[η(x)Ψ(−h(x), r(x)) + (1− η(x))Ψ(h(x), r(x))],

where Ψ(−h(x), r(x)) = ea (r(x)−h(x)) + ce−b r(x). For simplicity, we also let LΨ(h(x), r(x)) =
η(x)Ψ(−h(x), r(x)) + (1−η(x))Ψ(h(x), r(x)). Since the infimum is over all measurable functions
(h(x), r(x)), we have that inf(h,r) Ex LΨ(h(x), r(x)) = Ex inf(h(x),r(x)) LΨ(h(x), r(x)). Thus, we
need to find the optimal (u, v) for a fixed x that minimizes LΨ(u, v) over all measurable functions,
which is a convex optimization problem. When η(x) = 0, the sign of the minimizers of LΨ(u, v)
are u∗ < 0 and v∗ > 0 while when η(x) = 1, the the sign of the minimizers are u∗ > 0 and v∗ > 0,
which matches the sign of h∗ and r∗ in both cases respectively. Now for η(x) ∈]0, 1[, we take the
derivative of LΨ(u, v) with respect to u

∂LΨ(u,v)
∂u = −η(x)a ea (v−u) + (1− η(x))a ea (u+v).
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Setting it to zero and solving for u, we have that u∗ = 1
2a log( η(x)

1−η(x) ). We can now see that u∗ > 0

if η(x) > 1
2 and u∗ ≤ 0 if η(x) ≤ 1

2 . Recalling that h∗ = η(x)− 1
2 , we can conclude that the sign

of u∗ matches the sign of h∗.

We now take the derivative of LΨ(u∗, v) with respect to v
∂LΨ(u∗,v)

∂v = η(x)ea (v−u∗) + (1− η(x))ea (v+u∗) + c(−b )e−b v.

Setting it equal to zero and using the fact that η(x)e−a u
∗

+ (1− η(x))ea u
∗

= 2
√
η(x)(1− η(x)),

we have that
v∗ = 1

a+b log
(
cb
2a

√
1

η(x)(1−η(x))

)
.

Now, we know that the Bayes classifiers (h∗, r∗) satisfy h∗ = η(x)− 1
2 and r∗ = |h∗| − 1

2 + c so
that the following holds

η(x)(1− η(x)) = 1
4 − (h∗)2 = 1

4 − (r∗ + 1
2 − c)2.

Thus, we can replace η(x)(1− η(x)) in the definition of v∗ to arrive at this equation

v∗ = 1
a+b log

(
cb
2a

√
1

1
4−(r∗+

1
2−c)

2

)
.

We now analyze when v∗ > 0 which is equivalent to

1
a+b log

(
cb
2a

√
1

1
4−(r∗+

1
2−c)

2

)
> 0⇔ cb

2a

√
1

1
4−(r∗+

1
2−c)

2
> 1

⇔ cb
2a >

√
1
4 − (r∗ + 1

2 − c)2.

Since
√

1
4 − ( 1

2 − c)2 >
√

1
4 − (r∗ + 1

2 − c)2 for r∗ > 0 and using the fact that c(1 − c) =
1
4 − ( 1

2 − c)2, we need that cb
2a ≥

√
c(1− c) . By similar reasoning for v∗ ≤ 0 , we need that

cb
2a ≤

√
c(1− c). Thus, we can conclude that the sign of v∗ matches the sign of r∗ if and only if

cb
2a =

√
c(1− c).

G Abstention stumps

Under the assumptions of Section 4.3, the derivative of F can be simplified as follows

F ′(αt−1, ej) =
Zt
m

(
−

∑
i:yihj(xi)=+1

Dt(i, 1) +
∑

i:yihj(xi)=−1

Dt(i, 1) +
∑

i:rj(xi)=1

Dt(i, 1)

− cb
∑

i:rj(xi)=1

Dt(i, 2)
)

+ β (16)

From the definition of D(i, 1) and the assumptions on h(x) and r(x), the following holds
m∑
i=1

Dt(i, 1) =
∑

i:yihj(xi)=+1

Dt(i, 1) +
∑

i:yihj(xi)=−1

Dt(i, 1) +
∑

i:rj(xi)=1

Dt(i, 1)

Solving for
∑
i:yihj(xi)=+1Dt(i, 1) and plugging it in Equation 16, we can simplify the derivative

F ′(αt−1, ej) =
Zt
m

(
2

∑
i:yihj(xi)=−1

Dt(i, 1) + 2
∑

i:rj(xi)=1

Dt(i, 1)−
m∑
i=1

Dt(i, 1)− cb
∑

i:rj(xi)=1

Dt(i, 2)
)

+ β

=
Zt
m

(
2Z1,tεt,j + 2Z1,trj,1 − cbZ2,trj,2 − Z1,t

)
+ β

Thus, the optimal descent direction is k = argminj∈[1,N ] 2Z1,tεt,j + 2Z1,trj,1 − cbZ2,trj,2

Below, we provide the proof of the lemma that was needed to decouple the optimization problem for
the abstention stumps.
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Lemma 5. The optimization problem without the constraint (θ1 < θ2) can be decomposed as
follows:

argmin
θ1,θ2

m∑
i=1

2Dt(i, 1)[1yi=+11Xi≤θ1 + 1yi=−11Xi>θ2 ] +
(
2Dt(i, 1)− cbDt(i, 2)

)
1θ1<Xi≤θ2 .

= argmin
θ1

m∑
i=1

2Dt(i, 1)1yi=+11Xi≤θ1 +
(
2Dt(i, 1)− cbDt(i, 2)

)
1θ1<Xi

+ argmin
θ2

m∑
i=1

2Dt(i, 1)1yi=−11Xi>θ2 +
(
2Dt(i, 1)− cbDt(i, 2)

)
1Xi≤θ2 .

Proof. For simplicity below, let κ =
(
2Dt(i, 1)−cbDt(i, 2)

)
and observe that the following identity

holds:
1θ1<Xi≤θ2 = 1θ1<Xi + 1Xi≤θ2 − 1

In view of that, we can write

argmin
θ1,θ2

m∑
i=1

2Dt(i, 1)[1yi=+11Xi≤θ1 + 1yi=−11Xi>θ2 ] + κ1θ1<Xi≤θ2

= argmin
θ1,θ2

m∑
i=1

2Dt(i, 1)[1yi=+11Xi≤θ1 + 1yi=−11Xi>θ2 ] + κ[1θ1<Xi + 1Xi≤θ2 − 1]

= argmin
θ1,θ2

m∑
i=1

2Dt(i, 1)[1yi=+11Xi≤θ1 + 1yi=−11Xi>θ2 ] + κ1θ1<Xi

+ κ1Xi≤θ2 − κ

= argmin
θ1,θ2

m∑
i=1

2Dt(i, 1)[1yi=+11Xi≤θ1 + 1yi=−11Xi>θ2 ] + κ1θ1<Xi

+ κ1Xi≤θ2

= argmin
θ1

m∑
i=1

2Dt(i, 1)1yi=+11Xi≤θ1 + κ1θ1<Xi

+ argmin
θ2

m∑
i=1

2Dt(i, 1)1yi=−11Xi>θ2 + κ1Xi≤θ2 .

H Alternative surrogate, LMB

In this section, we derive the boosting algorithm for the surrogate loss

LMB(h, r, x, y) = max
(

Φ1

(
a [r(x)− yh(x)]

)
, cΦ2

(
−b r(x)

))
. (17)

By a similar reasoning as Section 4, the objective function F (α) of our optimization problem is given
by the following

F (α) =
1

m

m∑
i=1

max
(
ea [rt(xi)−yiht(xi)], cb e−b rt(xi)

)
+ β

N∑
j=1

αj .

For simplicity, we define ut(i) = ea [rt(xi)−yiht(xi)], vt(i) = cb e−b rt(xi) and wt(i) =
max(ut(i), vt(i)). We also let 1ut(i) be the indicator functions that equals 1 if ut(i) ≥ vt(i)
and similarly 1vt(i) be the indicator functions that equals 1 if vt(i) > ut(i). For any t ∈ [1, T ], we
also define the distribution

Dt(i) =
wt−1(i)

Zt
, (18)
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where Zt is the normalization factor given by Zt =
∑m
i=1 wt−1(i).

We then apply projected coordinate descent to this objective function. Notice that our objective F
is differentiable everywhere except when ut(i) = vt(i). A true maximum descent algorithm would
choose the element of the subgradient that is closest to 0 as the descent direction. However, since this
event is rare in our case, we arbitrarily a pick descent direction that is an element of the subgradient.
For simplicity below, we will use the symbol F ′(αt−1, ej) to denote the directional derivative with
the added condition that for the non-differentiable point, we choose the direction that is an element of
the subgradient.

H.0.3 Direction and step

At each iteration t−1, the direction ek selected by projected CD is k = argmaxj∈[1,N ] |F ′(αt−1, ej)|
where

F ′(αt−1, ej)

=
1

m

m∑
i=1

(
a [−yihj(xi) + rj(xi)]1ut−1(i) − cb rj(xi)1vt−1(i)

)
wt−1(i) + β

=
1

m

m∑
i=1

(
− a yihj(xi)1ut−1(i) − [−(a + cb )1ut−1(i) + cb ]rj(xi)

)
wt−1(i) + β

=
1

m

m∑
i=1

(
− a yihj(xi)1ut−1(i) − [−(a + cb )1ut−1(i) + cb ]rj(xi)

)
Dt(i)Zt + β. (19)

The step can simply be found via line search or other numerical methods.

H.1 Abstention stumps

We focus in on a special case where the base classifiers have a specific form defined as follows: h(x)
takes values in {−1, 0, 1} and r(x) take values in {0, 1}. We also have the added the condition that
for each sample point x, only one of the two components of (h(x), r(x)) is non-zero. Under this
setting, Equation 19 can be simplified as follows. The derivative of F is given by

F ′(αt−1, ej) =
1

m

m∑
i=1

(
a [−yihj(xi) + rj(xi)]1ut−1(i) − cb rj(xi)1vt−1(i)

)
Dt(i)Zt + β,

which can be rewritten as

=
Zt
m

(
a [

∑
i:yihj(xi)=−1

1ut−1(i)Dt(i)−
∑

i:yihj(xi)=+1

1ut−1(i)Dt(i) +
∑

i:rj(xi)=1

1ut−1(i)Dt(i)]

− cb
∑

i:rj(xi)=1

Dt(i)1vt−1(i)

)
+ β. (20)

From the assumptions on h(x) and r(x), the relation below holds:

m∑
i=1

Dt(i)1ut−1(i) =
∑

i:yihj(xi)=+1

Dt(i)1ut−1(i)+
∑

i:yihj(xi)=−1

Dt(i)1ut−1(i)+
∑

i:rj(xi)=1

Dt(i)1ut−1(i),

which is equivalent to the following

−
∑

i:yihj(xi)=+1

Dt(i)1ut−1(i) =
∑

i:yihj(xi)=−1

Dt(i)1ut−1(i)+
∑

i:rj(xi)=1

Dt(i)1ut−1(i)−
m∑
i=1

Dt(i)1ut−1(i).
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Table 1: For each data set, we report the sample size and the number of features.
Data Sets Sample Size Feature
australian 690 14
cod 369 8
skin 400 3
banknote 1,372 4
haberman 306 3
pima 768 8

Plugging this into equation 20, we have that

F ′(αt−1, ej)

=
Zt
m

(
a [2

∑
i:yihj(xi)=−1

1ut−1(i)Dt(i) + 2
∑

i:rj(xi)=1

1ut−1(i)Dt(i)−
m∑
i=1

1ut−1(i)Dt(i)] (21)

− cb
∑

i:rj(xi)=1

Dt(i)1vt−1(i)

)
+ β.

This in turn implies that our weak learning algorithm is given by the following:

l(θ1, θ2) = E
i∼D

[2a 1u(i)[1yi=+11hθ1,θ2 (x)=−1 + 1yi=−11hθ1,θ2 (x)=1] + [2a 1u(i) − cb 1v(i)] 1rθ1,θ2 (x)=1].

The following lemma allows us to decouple the optimization problem into two optimization problems
with respect to θ1 and θ2 that can be solved in linear time.
Lemma 7. The optimization problem without the constraint (θ1 < θ2) can be decomposed as
follows:

argmin
θ1,θ2

E
i∼D

(
2a 1u(i)[1yi=+11Xi≤θ1 + 1yi=−11Xi>θ2 ] + [2a 1u(i) − cb 1v(i)]1θ1<Xi≤θ2

)
= argmin

θ1

E
i∼D

(
2a 1u(i)1yi=+11Xi≤θ1 + [2a 1u(i) − cb 1v(i)]1θ1<Xi

)
+ argmin

θ2

E
i∼D

(
2a 1u(i)1yi=−11Xi>θ2 + [2a 1u(i) − cb 1v(i)]1Xi≤θ2

)
.

Proof. For simplicity, let κ = 2a 1u(i) − cb 1v(i) and observe that the following identity holds:

1θ1<Xi≤θ2 = 1θ1<Xi + 1Xi≤θ2 − 1

In view of that, we can write

argmin
θ1,θ2

E
i∼D

[2a 1u(i)[1yi=+11Xi≤θ1 + 1yi=−11Xi>θ2 ] + κ1θ1<Xi≤θ2 ]

= argmin
θ1,θ2

E
i∼D

[2a 1u(i)[1yi=+11Xi≤θ1 + 1yi=−11Xi>θ2 ] + κ(1θ1<Xi + 1Xi≤θ2 − 1)]

= argmin
θ1,θ2

E
i∼D

[2a 1u(i)1yi=+11Xi≤θ1 + κ1θ1<Xi + 2a 1u(i)1yi=−11Xi>θ2

+ κ1Xi≤θ2 − κ]

= argmin
θ1,θ2

E
i∼D

[2a 1u(i)1yi=+11Xi≤θ1 + κ1θ1<Xi ]

+ argmin
θ1,θ2

E
i∼D

[2a 1u(i)1yi=−11Xi>θ2 + κ1Xi≤θ2 ]

which completes the proof.

I Data sets

Table 1 shows the sample size and number of features for each data set used in our experiments.

19



J Experiments

In this appendix, we report the results of several experiments by presenting different tables in order to
compare the three algorithms studied in this paper: TSB, DHL, and BA. In each table, we provide the
average and standard deviation on the test set for the hyper parameter configurations that admitted the
smallest abstention loss on the validation set. Overall, these results reveal that BA yields a significant
improvement in practice for all the data sets across different values of cost c.

Table 2 gives the average abstention loss on the test set for TSB, DHL, and BA algorithms. Across
almost all the different values of cost c, the BA algorithm attains the smallest abstention loss
compared with the TSB and DHL algorithms. On some datasets, the TSB performs better than the
DHL algorithm, but on other datasets, its performance largely deteriorates. We also see that the
effects of changing the cost c of rejection for some datasets is much stronger than for other datasets.
For example, the pima dataset has a large change in abstention loss as c increases while for banknote
dataset the difference in abstention loss is very small. These changes reflect the changes in the
fraction of points rejected by the algorithms, see Table 3. Note that this effect also depends on the
algorithm as seen in the cod dataset where BA algorithm’s abstention loss changes only slightly while
for the other two algorithms the difference is much higher as c increases.

Table 3 shows the fraction of points that are rejected on the test set. For all three algorithms, the
fraction of points rejected decreases as the cost c of rejection increases. Moreover, the fraction of
points rejected is much higher for some datasets. For most values of c, the DHL algorithm appears
to reject less frequently, but its abstention loss is also higher. For haberman, australian, and pima
datasets, the TSB algorithm rejection rates is quite high, which reinforces our claim that DHL and
BA algorithms are better algorithms. Finally, Table 4, presents the classification loss on non-rejected
points for different values of c. As c increases, we see that more points are classified incorrectly,
which is in accordance with the previous table since it shows that we are also rejecting less points.
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Table 2: Average abstention loss along with the standard deviations on the test set for the TSB
Algorithm, DHL Algorithm and BA Algorithm

skin skin skin cod cod cod
Cost TSB DHL BA TSB DHL BA
0.05 0.0482 ± 0.0156 0.024 ± 0.016 0.0258 ± 0.0157 0.0384 ± 0.00926 0.044 ± 0.034 0.0386 ± 0.0152
0.1 0.059 ± 0.0345 0.061 ± 0.031 0.0373 ± 0.0166 0.0784 ± 0.0176 0.077 ± 0.028 0.0624 ± 0.00367
0.15 0.0822 ± 0.0141 0.091 ± 0.031 0.0595 ± 0.0174 0.0807 ± 0.0138 0.123 ± 0.030 0.0593 ± 0.0279
0.2 0.052 ± 0.0262 0.128 ± 0.036 0.04 ± 0.0185 0.0903 ± 0.0245 0.175 ± 0.031 0.0654 ± 0.0274
0.25 0.0667 ± 0.0304 0.158 ± 0.041 0.0425 ± 0.0174 0.0831 ± 0.00896 0.204 ± 0.026 0.0676 ± 0.0304
0.3 0.037 ± 0.0226 0.177 ± 0.044 0.0403 ± 0.0162 0.117 ± 0.0151 0.230 ± 0.022 0.0659 ± 0.0285
0.35 0.0593 ± 0.0272 0.204 ± 0.056 0.0477 ± 0.0144 0.11 ± 0.0182 0.259 ± 0.029 0.0581 ± 0.0313
0.4 0.0907 ± 0.0125 0.231 ± 0.067 0.0567 ± 0.0181 0.106 ± 0.0271 0.273 ± 0.026 0.0692 ± 0.0372
0.45 0.0693 ± 0.033 0.215 ± 0.066 0.0525 ± 0.0186 0.12 ± 0.0246 0.276 ± 0.025 0.065 ± 0.0364

haberman haberman haberman pima pima pima
Cost TSB DHL BA TSB DHL BA
0.05 0.05 ± 0.0 0.050 ± 0.000 0.05 ± 0.0 0.0512 ± 0.00247 0.068 ± 0.039 0.05 ± 0.0
0.1 0.103 ± 0.00581 0.143 ± 0.027 0.1 ± 0.0 0.106 ± 0.00787 0.176 ± 0.009 0.1 ± 0.0
0.15 0.15 ± 0.000968 0.213 ± 0.037 0.173 ± 0.0458 0.146 ± 0.00567 0.218 ± 0.023 0.157 ± 0.0221
0.2 0.204 ± 0.0101 0.233 ± 0.036 0.214 ± 0.0256 0.195 ± 0.00489 0.238 ± 0.021 0.172 ± 0.00859
0.25 0.25 ± 0.0 0.256 ± 0.027 0.234 ± 0.0238 0.235 ± 0.00669 0.241 ± 0.025 0.19 ± 0.0211
0.3 0.303 ± 0.0147 0.264 ± 0.019 0.244 ± 0.0196 0.285 ± 0.00428 0.247 ± 0.026 0.201 ± 0.0114
0.35 0.34 ± 0.0123 0.261 ± 0.024 0.265 ± 0.0325 0.327 ± 0.00874 0.250 ± 0.027 0.22 ± 0.016
0.4 0.383 ± 0.0192 0.262 ± 0.028 0.272 ± 0.033 0.374 ± 0.0079 0.255 ± 0.028 0.234 ± 0.0134
0.45 0.441 ± 0.0235 0.258 ± 0.022 0.275 ± 0.0301 0.422 ± 0.0114 0.260 ± 0.034 0.249 ± 0.0171

australian australian australian banknote banknote banknote
Cost TSB DHL BA TSB DHL BA
0.05 0.0499 ± 0.000145 0.112 ± 0.033 0.0564 ± 0.0117 0.000873 ± 0.00139 0.091 ± 0.059 0.00247 ± 0.00195
0.1 0.0867 ± 0.00455 0.120 ± 0.024 0.0777 ± 0.016 0.00284 ± 0.00299 0.082 ± 0.070 0.00705 ± 0.00632
0.15 0.13 ± 0.00615 0.128 ± 0.025 0.093 ± 0.0155 0.00411 ± 0.00108 0.081 ± 0.076 0.0044 ± 0.00411
0.2 0.168 ± 0.00612 0.130 ± 0.036 0.111 ± 0.0215 0.00131 ± 0.00197 0.049 ± 0.020 0.00611 ± 0.00509
0.25 0.209 ± 0.00898 0.134 ± 0.038 0.12 ± 0.0171 0.000727 ± 0.00068 0.061 ± 0.022 0.00636 ± 0.00381
0.3 0.244 ± 0.0126 0.137 ± 0.038 0.137 ± 0.0252 0.00371 ± 0.00239 0.083 ± 0.025 0.00735 ± 0.00397
0.35 0.294 ± 0.0141 0.141 ± 0.039 0.144 ± 0.0263 0.0096 ± 0.00426 0.087 ± 0.052 0.00833 ± 0.00465
0.4 0.335 ± 0.0254 0.148 ± 0.042 0.151 ± 0.0273 0.00422 ± 0.00281 0.119 ± 0.028 0.00785 ± 0.00492
0.45 0.365 ± 0.0223 0.150 ± 0.046 0.145 ± 0.0337 0.00447 ± 0.0038 0.136 ± 0.027 0.00738 ± 0.00399
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Table 3: Average fraction of points rejected along with the standard deviations on the test set for the
TSB Algorithm, DHL Algorithm and BA Algorithm

skin skin skin cod cod cod
Cost TSB DHL BA TSB DHL BA
0.05 0.497 ± 0.207 0.180 ± 0.044 0.317 ± 0.111 0.605 ± 0.0523 0.170 ± 0.045 0.557 ± 0.0972
0.1 0.0567 ± 0.0226 0.158 ± 0.047 0.173 ± 0.0374 0.189 ± 0.074 0.146 ± 0.049 0.543 ± 0.0785
0.15 0.237 ± 0.13 0.125 ± 0.032 0.13 ± 0.0476 0.376 ± 0.0563 0.132 ± 0.039 0.197 ± 0.0488
0.2 0.0267 ± 0.0271 0.100 ± 0.025 0.0667 ± 0.0279 0.168 ± 0.0236 0.065 ± 0.026 0.0568 ± 0.0447
0.25 0.0267 ± 0.0271 0.092 ± 0.033 0.0633 ± 0.0287 0.127 ± 0.0202 0.038 ± 0.018 0.0432 ± 0.0313
0.3 0.0233 ± 0.0309 0.090 ± 0.051 0.0567 ± 0.0226 0.146 ± 0.0335 0.027 ± 0.021 0.0486 ± 0.0303
0.35 0.0267 ± 0.0309 0.075 ± 0.051 0.06 ± 0.0309 0.168 ± 0.0303 0.014 ± 0.010 0.027 ± 0.0242
0.4 0.06 ± 0.0501 0.032 ± 0.011 0.05 ± 0.035 0.151 ± 0.0405 0.000 ± 0.000 0.0378 ± 0.0262
0.45 0.08 ± 0.0323 0.005 ± 0.007 0.05 ± 0.035 0.159 ± 0.0563 0.000 ± 0.000 0.0243 ± 0.0262

haberman haberman haberman pima pima pima
Cost TSB DHL BA TSB DHL BA
0.05 1.0 ± 0.0 1.000 ± 0.000 1.0 ± 0.0 0.999 ± 0.0026 0.884 ± 0.258 1.0 ± 0.0
0.1 0.997 ± 0.00645 0.738 ± 0.183 1.0 ± 0.0 0.927 ± 0.0311 0.304 ± 0.072 1.0 ± 0.0
0.15 0.997 ± 0.00645 0.348 ± 0.123 0.852 ± 0.297 0.925 ± 0.0408 0.143 ± 0.031 0.321 ± 0.0364
0.2 0.939 ± 0.0313 0.148 ± 0.053 0.216 ± 0.0546 0.901 ± 0.043 0.078 ± 0.024 0.33 ± 0.0405
0.25 1.0 ± 0.0 0.039 ± 0.015 0.187 ± 0.0582 0.894 ± 0.038 0.055 ± 0.007 0.249 ± 0.0359
0.3 0.935 ± 0.0177 0.016 ± 0.028 0.255 ± 0.131 0.923 ± 0.0258 0.039 ± 0.015 0.262 ± 0.0343
0.35 0.945 ± 0.0718 0.007 ± 0.015 0.0581 ± 0.06 0.93 ± 0.023 0.038 ± 0.024 0.238 ± 0.0416
0.4 0.9 ± 0.0664 0.007 ± 0.009 0.0516 ± 0.064 0.918 ± 0.0292 0.034 ± 0.014 0.23 ± 0.0404
0.45 0.923 ± 0.0373 0.013 ± 0.014 0.0516 ± 0.064 0.919 ± 0.0369 0.026 ± 0.009 0.219 ± 0.0414

australian australian australian banknote banknote banknote
Cost TSB DHL BA TSB DHL BA
0.05 0.999 ± 0.0029 0.151 ± 0.037 0.346 ± 0.0416 0.00291 ± 0.00356 0.799 ± 0.119 0.00582 ± 0.00493
0.1 0.809 ± 0.0566 0.068 ± 0.017 0.328 ± 0.0452 0.00655 ± 0.00424 0.075 ± 0.021 0.00509 ± 0.00291
0.15 0.772 ± 0.0745 0.049 ± 0.019 0.262 ± 0.0436 0.0225 ± 0.00842 0.060 ± 0.006 0.00509 ± 0.00291
0.2 0.765 ± 0.0597 0.036 ± 0.013 0.177 ± 0.027 0.00291 ± 0.00356 0.072 ± 0.014 0.00509 ± 0.00291
0.25 0.794 ± 0.0245 0.030 ± 0.006 0.142 ± 0.046 0.00291 ± 0.00272 0.066 ± 0.016 0.00509 ± 0.00291
0.3 0.793 ± 0.0469 0.030 ± 0.008 0.142 ± 0.0254 0.00509 ± 0.00291 0.058 ± 0.017 0.00509 ± 0.00291
0.35 0.816 ± 0.036 0.025 ± 0.011 0.114 ± 0.0312 0.0233 ± 0.0109 0.041 ± 0.025 0.00509 ± 0.00291
0.4 0.801 ± 0.0899 0.010 ± 0.006 0.0145 ± 0.0152 0.00509 ± 0.00436 0.048 ± 0.005 0.00509 ± 0.00291
0.45 0.801 ± 0.0551 0.004 ± 0.006 0.0812 ± 0.0288 0.00509 ± 0.00291 0.052 ± 0.012 0.00509 ± 0.00291
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Table 4: Average classification error on non-rejected points along with the standard deviation for the
TSB Algorithm, DHL Algorithm and BA Algorithm

skin skin skin cod cod cod
Cost TSB DHL BA TSB DHL BA
0.05 0.0233 ± 0.0249 0.015 ± 0.016 0.01 ± 0.0133 0.00811 ± 0.0108 0.035 ± 0.034 0.0108 ± 0.0132
0.1 0.0533 ± 0.0356 0.045 ± 0.033 0.02 ± 0.0163 0.0595 ± 0.0202 0.062 ± 0.030 0.00811 ± 0.00662
0.15 0.0467 ± 0.0306 0.073 ± 0.031 0.04 ± 0.0133 0.0243 ± 0.0132 0.103 ± 0.031 0.0297 ± 0.0216
0.2 0.0467 ± 0.0245 0.108 ± 0.034 0.0267 ± 0.0226 0.0568 ± 0.0248 0.162 ± 0.030 0.0541 ± 0.0256
0.25 0.06 ± 0.0327 0.135 ± 0.037 0.0267 ± 0.0226 0.0514 ± 0.0101 0.195 ± 0.026 0.0568 ± 0.0262
0.3 0.03 ± 0.0194 0.150 ± 0.035 0.0233 ± 0.0226 0.073 ± 0.0108 0.222 ± 0.023 0.0514 ± 0.0232
0.35 0.05 ± 0.0279 0.178 ± 0.045 0.0267 ± 0.0226 0.0514 ± 0.0232 0.254 ± 0.028 0.0486 ± 0.0265
0.4 0.0667 ± 0.0279 0.218 ± 0.063 0.0367 ± 0.0267 0.0459 ± 0.0251 0.273 ± 0.026 0.0541 ± 0.0308
0.45 0.0333 ± 0.0279 0.212 ± 0.068 0.03 ± 0.0245 0.0486 ± 0.0369 0.276 ± 0.025 0.0541 ± 0.032

haberman haberman haberman pima pima pima
Cost TSB DHL BA TSB DHL BA
0.05 0.0 ± 0.0 0.000 ± 0.000 0.0 ± 0.0 0.0013 ± 0.0026 0.023 ± 0.052 0.0 ± 0.0
0.1 0.00323 ± 0.00645 0.069 ± 0.042 0.0 ± 0.0 0.013 ± 0.0109 0.145 ± 0.016 0.0 ± 0.0
0.15 0.0 ± 0.0 0.161 ± 0.054 0.0452 ± 0.0903 0.00779 ± 0.00486 0.196 ± 0.026 0.109 ± 0.0267
0.2 0.0161 ± 0.0144 0.203 ± 0.041 0.171 ± 0.0332 0.0143 ± 0.00954 0.222 ± 0.023 0.106 ± 0.0106
0.25 0.0 ± 0.0 0.246 ± 0.026 0.187 ± 0.0347 0.0117 ± 0.00757 0.227 ± 0.025 0.127 ± 0.0286
0.3 0.0226 ± 0.0194 0.259 ± 0.021 0.168 ± 0.0416 0.00779 ± 0.00636 0.235 ± 0.023 0.122 ± 0.0161
0.35 0.00968 ± 0.0129 0.259 ± 0.027 0.245 ± 0.0524 0.0013 ± 0.0026 0.236 ± 0.024 0.136 ± 0.025
0.4 0.0226 ± 0.0219 0.259 ± 0.027 0.252 ± 0.0573 0.00649 ± 0.0101 0.242 ± 0.029 0.142 ± 0.0199
0.45 0.0258 ± 0.0079 0.252 ± 0.025 0.252 ± 0.0573 0.00779 ± 0.00636 0.248 ± 0.036 0.151 ± 0.0226

australian australian australian banknote banknote banknote
Cost TSB DHL BA TSB DHL BA
0.05 0.0 ± 0.0 0.104 ± 0.033 0.0391 ± 0.00983 0.000727 ± 0.00145 0.051 ± 0.061 0.00218 ± 0.00178
0.1 0.0058 ± 0.00542 0.113 ± 0.023 0.0449 ± 0.0141 0.00218 ± 0.00291 0.074 ± 0.070 0.00655 ± 0.00626
0.15 0.0145 ± 0.00648 0.120 ± 0.023 0.0536 ± 0.0126 0.000727 ± 0.00145 0.072 ± 0.076 0.00364 ± 0.00398
0.2 0.0145 ± 0.0102 0.123 ± 0.037 0.0754 ± 0.0208 0.000727 ± 0.00145 0.034 ± 0.017 0.00509 ± 0.00493
0.25 0.0101 ± 0.0058 0.126 ± 0.037 0.0841 ± 0.0087 0.0 ± 0.0 0.045 ± 0.018 0.00509 ± 0.00371
0.3 0.0058 ± 0.0029 0.128 ± 0.036 0.0942 ± 0.02 0.00218 ± 0.00291 0.066 ± 0.021 0.00582 ± 0.00371
0.35 0.0087 ± 0.0029 0.132 ± 0.036 0.104 ± 0.0187 0.00145 ± 0.00178 0.072 ± 0.044 0.00655 ± 0.00424
0.4 0.0145 ± 0.0112 0.143 ± 0.041 0.145 ± 0.0271 0.00218 ± 0.00178 0.100 ± 0.028 0.00582 ± 0.00436
0.45 0.00435 ± 0.0058 0.148 ± 0.044 0.109 ± 0.0314 0.00218 ± 0.00291 0.112 ± 0.024 0.00509 ± 0.00371
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