
TR2007-902

N-Way Composition

of Weighted Finite-State Transducers

Cyril Allauzen1 and Mehryar Mohri1,2

1 Courant Institute of Mathematical Sciences,
251 Mercer Street, New York, NY 10012.

2 Google Research,
76 Ninth Avenue, New York, NY 10011.

Abstract. Composition of weighted transducers is a fundamental al-
gorithm used in many applications, including for computing complex
edit-distances between automata, or string kernels in machine learning,
or to combine different components of a speech recognition, speech syn-
thesis, or information extraction system. We present a generalization of
the composition of weighted transducers, n-way composition, which is
dramatically faster in practice than the standard composition algorithm
when combining more than two transducers. The expected worst-case
complexity of our algorithm for composing three transducers T1, T2, and
T3 is O(min(|T1|E |T2|Q|T3|E , |T1|Q|T2|E |T3|Q) + |T |), where T is the re-
sult of that composition and |Ti| = |Ti|Q + |Ti|E with |Ti|Q the number
of states and |Ti|E the number of transitions of Ti, i = 1, 2, 3. In many
cases, this significantly improves on the complexity of standard com-
position. Our algorithm also leads to a dramatically faster composition
in practice. Furthermore, standard composition can be obtained as a
special case of our algorithm. We report the results of several experi-
ments demonstrating this improvement. These theoretical and empirical
improvements significantly enhance performance in the applications al-
ready mentioned.

1 Introduction

Weighted finite-state transducers are widely used in text, speech, and image
processing applications and other related areas such as information extraction
[8, 10, 12, 11, 4]. They are finite automata in which each transition is augmented
with an output label and some weight, in addition to the familiar (input) label
[13, 5, 7]. The weights may represent probabilities, log-likelihoods, or they may
be some other costs used to rank alternatives. They are, more generally, elements
of a semiring [7].

Weighted transducers are used to represent models derived from large data
sets using various statistical learning techniques such as pronunciation dictionar-
ies, statistical grammars, string kernels, or complex edit-distance models [11, 6,
2, 3]. These models can be combined to create complex systems such as a speech

recognition or information extraction system using a fundamental transducer al-
gorithm, composition of weighted transducers [12, 11]. Weighted composition is
a generalization of the composition algorithm for unweighted finite-state trans-
ducers which consists of matching the output label of the transitions of one
transducer with the input label of the transitions of another transducer. The
weighted case is however more complex and requires the introduction of an ǫ-
filter to avoid the creation of redundant ǫ-paths and preserve the correct path
multiplicity [12, 11]. The result is a new weighted transducer representing the
relational composition of the two transducers.

Composition is widely used in computational biology, text and speech, and
machine learning applications. In many of these applications, the transducers
used are quite large, they may have as many as several hundred million states or
transitions. A critical problem is thus to devise efficient algorithms for combining
them.

This paper presents a generalization of the composition of weighted trans-
ducer, n-way composition, that is dramatically faster than the standard com-
position algorithm when combining more than two transducers. The worst-case
complexity of composing three transducer T1, T2, and T3, with the standard
composition algorithm is O(|T1||T2||T3|) [12, 11]. Using perfect hashing, the ex-
pected worst-case complexity is O(min(|T1 ◦ T2|Q|T3|E , |T1 ◦ T2|E |T3|Q) + |T1 ◦
T2 ◦ T3|+ min(|T1|Q|T2|E , |T1|E |T2|Q) + |T1 ◦ T2|), which may be prohibitive in
some cases, even when the size of the resulting transducer T is not large. Instead,
the expected worst-case complexity of our algorithm is

O(min(|T1|E |T2|Q|T3|E , |T1|Q|T2|E |T3|Q) + |T |). (1)

Furthermore, as we shall see later, standard composition can be obtained as a
special case of n-way composition.

Our algorithm also leads to a dramatically faster computation of the result
of composition in practice. We report the results of several experiments demon-
strating this improvement. These theoretical and empirical improvements signif-
icantly enhance performance in a series of applications: string kernel-based algo-
rithms in machine learning, the computation of complex edit-distances between
automata, speech recognition and speech synthesis, and information extraction.

The remainder of the paper is structured as follows. Some preliminary defi-
nitions and terminology are introduced in the next section (Section 2). Section 3
will describe in detail our n-way algorithm, including the different options for
construction of ǫ-filters. Section 4 reports the results of experiments using the
n-way algorithm and compares them with the standard composition.

2 Preliminaries

This section gives the standard definition and specifies the notation used for
weighted transducers.

Finite-state transducers are finite automata in which each transition is aug-
mented with an output label in addition to the familiar input label [1, 5]. Output

labels are concatenated along a path to form an output sequence and similarly
with input labels. Weighted transducers are finite-state transducers in which
each transition carries some weight in addition to the input and output labels
[13, 7].

The weights are elements of a semiring, that is a ring that may lack negation
[7]. Some familiar semirings are the Boolean semiring, the tropical semiring (R+∪
{∞}, min, +,∞, 0) related to classical shortest-paths problems and algorithms,
and the probability semiring (R, +, ·, 0, 1). A semiring is idempotent if for all
a ∈ K, a⊕ a = a. It is commutative when ⊗ is commutative. We will assume in
this paper that the semiring used is commutative, which is a necessary condition
for composition to be an efficient algorithm [10].

The following gives a formal definition of weighted transducers.

Definition 1. A weighted finite-state transducer T over (K,⊕, ·, 0, 1) is an 8-
tuple T = (Σ, ∆, Q, I, F, E, λ, ρ) where Σ is the finite input alphabet of the trans-
ducer, ∆ is the finite output alphabet, Q is a finite set of states, I ⊆ Q the set of
initial states, F ⊆ Q the set of final states, E ⊆ Q×(Σ∪{ǫ})×(∆∪{ǫ})×K×Q

a finite set of transitions, λ : I → K the initial weight function, and ρ : F → K

the final weight function mapping F to K.

The weight of a path π is obtained by multiplying the weights of its constituent
transitions using the multiplication rule of the semiring and is denoted by w[π].
The weight of a pair of input and output strings (x, y) is obtained by ⊕-summing
the weights of the paths labeled with (x, y) from an initial state to a final state.

For a path π, we denote by p[π] its origin state and by n[π] its destination
state. We also denote by P (I, x, y, F) the set of paths from the initial states I to
the final states F labeled with input string x and output string y. A transducer
T is regulated if the output weight associated by T to any pair of strings (x, y):

T (x, y) =
⊕

π∈P (I,x,y,F)

λ(p[π]) · w[π] · ρ[n[π]] (2)

is well-defined and in K. T (x, y) = 0 when P (I, x, y, F) = ∅. If for all q ∈ Q⊕
π∈P (q,ǫ,ǫ,q) w[π] ∈ K, then T is regulated. In particular, when T does not admit

any ǫ-cycle, it is regulated. The weighted transducers we will be considering in
this paper will be regulated. Figure 1(a) shows an example.

The composition of two weighted transducers T1 and T2 with matching input
and output alphabets Σ, is a weighted transducer denoted by T1 ◦ T2 when the
sum:

(T1 ◦ T2)(x, y) =
⊕

z∈Σ∗

T1(x, z)⊗ T2(z, y) (3)

is well-defined and in K for all x, y ∈ Σ∗ [13, 7]. Weighted automata can be
defined as weighted transducers A with identical input and output labels, for
any transition. Thus, only pairs of the form (x, x) can have a non-zero weight
by A, which is why the weight associated by A to (x, x) is abusively denoted by
A(x) and identified with the weight associated by A to x. Similarly, in the graph
representation of weighted automata, the output (or input) label is omitted.

0 a:b/.1

1

a:b/.2

2/1
a:b/.4

3/.8

b:a/.6

b:a/.3

b:a/.5

0 a/.1

1

a/.2

2/1
a/.4

3/.8

b/.6

b/.3

b/.5

(a) (b)

Fig. 1. (a) Example of a weighted transducer T . (b) Example of a weighted automaton
A. [[T]](aab, bba) = [[A]](aab) = .1× .2× .6× .8+ .2× .4× .5× .8. A bold circle indicates
an initial state and a double-circle a final state. The final weight ρ[q] of a final state q

is indicated after the slash symbol representing q.

3 Algorithm

3.1 Standard Composition Algorithm

Let us start with a brief description of the standard composition algorithm for
weighted transducers [12, 11]. States in the composition T1 ◦ T2 of two weighted
transducers T1 and T2 are identified with pairs of a state of T1 and a state of T2.
Leaving aside transitions with ǫ inputs or outputs, the following rule specifies
how to compute a transition of T1 ◦ T2 from appropriate transitions of T1 and
T2:

(q1, a, b, w1, q2) and (q′1, b, c, w2, q
′

2) =⇒ ((q1, q
′

1), a, c, w1 ⊗ w2, (q2, q
′

2)). (4)

Figure 2 illustrates the algorithm. In the worst case, all transitions of T1 leaving
a state q1 match all those of T2 leaving state q′1, thus the space and time worst-
case complexity of composition is quadratic: O(|T1||T2|). However, using perfect
hashing on the input transducer with the highest number of transitions leads to
an expected worst-case complexity of O(min(|T1|Q|T2|E , |T1|E |T2|Q)+ |T1 ◦T2|).

The main problem with the standard composition algorithm is the following.
Assume that one wishes to compute T1 ◦ T2 ◦ T3, say for example by proceeding
left to right. Thus, first T1 and T2 are composed to compute T1 ◦ T2 and then
the result is composed with T3. The expected worst-case complexity of that
computation is:

O(min(|T1 ◦ T2|Q|T3|E , |T1 ◦ T2|E |T3|Q) + |T1 ◦ T2 ◦ T3|+

min(|T1|Q|T2|E , |T1|E |T2|Q) + |T1 ◦ T2|). (5)

But, in many cases, computing T1 ◦ T2 creates a very large number of transi-
tions that may never match any transition of T3. For example, T2 may represent a
complex edit-distance transducer, allowing all possible insertions, deletions, sub-
stitutions and perhaps other operations such as transpositions or more complex
edits in T1 all with different costs. Even when T1 is a simple non-deterministic

0 1a:b/0.1
a:b/0.2

2b:b/0.3
3/0.7b:b/0.4

a:b/0.5
a:a/0.6

0 1b:b/0.1
b:a/0.2 2a:b/0.3

3/0.6a:b/0.4

b:a/0.5
(0, 0) (1, 1)a:b/0.2

(0, 1)a:a/0.4

(2, 1)b:a/0.5 (3, 1)

b:a/0.6

a:a/0.3

a:a/0.7

(3, 2)a:b/0.9

(3, 3)/1.3

a:b/1

(a) (b) (c)

Fig. 2. Example of transducer composition. (a) Weighted transducer T1 and (b)
Weighted transducer T2 over the probability semiring (R, +, ·, 0, 1). (c) Result of the
composition of T1 and T2.

finite automaton with ǫ-transitions, which is often the case in the applications
already mentioned, T1 ◦ T2 will then have a very large number paths, most of
which will not match those of the non-deterministic automaton T3. In other ap-
plications in speech recognition, or for the computation of kernels in machine
learning, the central transducer T2 could be far more complex and the set of
transitions or paths of T1 ◦ T2 not matching those of T3 could be even larger.

3.2 N-Way Composition Algorithm

The key idea behind our algorithm is precisely to avoid creating these unnec-
essary transitions by directly constructing T1 ◦ T2 ◦ T3, which we refer to as a
3-way composition. Thus, our algorithm does not include the intermediate step
of creating T1 ◦T2 or T2 ◦T3. To do so, we can proceed following a lateral or side-
ways strategy: for each transition e1 in T1 and e3 in T3, we search for matching
transitions in T2. The following is the pseudocode of the algorithm.

N-Way-Composition(T1, T2, T3)

1 Q← I1 × I2 × I3

2 S ← I1 × I2 × I3

3 while S 6= ∅ do

4 (q1, q2, q3)← Head(S)
5 Dequeue(S)
6 if (q1, q2, q3) ∈ I1 × I2 × I3 then

7 I ← I ∪ {(q1, q2, q3)}
8 λ(q1, q2, q3)← λ1(q1)⊗ λ2(q2)⊗ λ3(q3)
9 if (q1, q2, q3) ∈ F1 × F2 × F3 then

10 F ← F ∪ {(q1, q2, q3)}
11 ρ(q1, q2, q3)← ρ1(q1)⊗ ρ2(q2)⊗ ρ3(q3)
12 for each (e1, e3) ∈ E[q1]× E[q3] do

13 G← {e ∈ E[q2] : i[e] = o[e1] ∧ o[e] = i[e3]}
14 for each e2 ∈ G do

15 if (n[e1], n[e2], n[e3]) 6∈ Q then

16 Q← Q ∪ {(n[e1], n[e2], n[e3])}
17 Enqueue(S, (n[e1], n[e2], n[e3]))
18 E ← E ∪ {((q1, q2, q3), i[e1], o[e3], w[e1]⊗ w[e2]⊗ w[e3], (n[e1], n[e2], n[e3]))}
19 return T

The pseudocode is given in the simple case where no ǫ transition is present.
The algorithm computes T , the result of the composition T1 ◦ T2 ◦ T3. It uses
a queue S containing the set of pairs of states yet to be examined. The queue
discipline of S can be arbitrarily chosen and does not affect the termination
of the algorithm. Using a FIFO or LIFO discipline, the queue operations can
be performed in constant time. We can pre-process the transducers T1, T2, and
T3 in linear time and use perfect hashing so that the transitions G (line 13)
can be found in expected worst-case linear time O(|G|). Thus, the expected
worst-case running time complexity of the n-way composition algorithm is in
O(|T1|E |T2|Q|T3|E + |T |), where T is transducer returned by the algorithm.

Alternatively, depending on the size of the three transducers, it may be ad-
vantageous to direct the 3-way composition from the center, i.e., ask for each
transition e2 in T2 if there are matching transitions e1 in T1 and e3 in T3.
We refer to this as the central strategy for our n-way composition algorithm.
Pre-processing the three transducers and creating hash tables for the transi-
tions leaving each state, this strategy leads to a expected worst-case running
time complexity of O(|T1|Q|T2|E |T3|Q + |T |). The lateral and central strate-
gies can be combined by using, at a state (q1, q2, q3), the lateral strategy if
|E[q1]| · |E[q3]| ≤ |E[q2] and the central strategy otherwise. The algorithm leads
to a natural lazy or on-demand implementation in which the transitions of the
resulting transducer T are generated only as needed by other operations on T .
The standard composition coincides with the n-way algorithm when using the
central strategy with either T1 or T2 equal to the identity transducer.

3.3 Epsilon filtering

The algorithm described thus far cannot be readily used in most cases found in
practice. In general, a transducer T1 may have transitions with output label ǫ and
T2 transitions with input ǫ. A straightforward generalization of the ǫ-free case
would generate redundant ǫ-paths and, in the case of non-idempotent semirings,
would lead to an incorrect result, even just for composing two transducers. The
weight of two matching ǫ-paths of the original transducers would be counted as
many times as the number of redundant ǫ-paths generated in the result, instead
of one. Thus, a crucial component of our algorithm consists of coping with this
problem.

Figure 3(a) illustrates the problem just mentioned in the simpler case of two
transducers. To match ǫ-paths leaving q1 and those leaving q2, a generalization
of the ǫ-free composition can make the following moves: (1) first move forward
on a transition of q1 with output ǫ, or even a path with output ǫ, and stay at
the same state q2 in T2, with the hope of later finding a transition whose output
label is some label a 6= ǫ matching a transition of q2 with the same input label;
(2) proceed similarly by following a transition or path leaving q2 with input label
ǫ while staying at the same state q1 in T1; or, (3) match a transition of q1 with
output label ǫ with a transition of q2 with input label ǫ.

Let us rename existing output ǫ-labels of T1 as ǫ2, and existing input ǫ-labels
of T2 ǫ1, and let us augment T1 with a self-loop labeled with ǫ1 at all states and

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

ǫ1:ǫ1

ǫ1:ǫ1

ǫ1:ǫ1

ǫ1:ǫ1

ǫ1:ǫ1

ǫ1:ǫ1

ǫ2:ǫ2

ǫ2:ǫ2

ǫ2:ǫ2

ǫ2:ǫ2

ǫ2:ǫ2

ǫ2:ǫ2

ǫ2:ǫ1

ǫ2:ǫ1

ǫ2:ǫ1

ǫ2:ǫ1

0

ε2:ε1
x:x

1ε1:ε1

2

ε2:ε2

x:x

ε1:ε1

x:x

ε2:ε2

(a) (b)

Fig. 3. (a) Redundant ǫ-paths. A straightforward generalization of the ǫ-free case could
generate all the paths from (0, 0) to (2, 2) for example, even when composing just two
simple transducers. (b) Filter transducer M allowing a unique ǫ-path.

similarly, augment T2 with a self-loop labeled with ǫ2 at all states, as illustrated
by Figures 5(a) and (c). These self-loops correspond to staying at the same state
in that machine while consuming an ǫ-label of the other transition. The three
moves just described now correspond to the matches (1) (ǫ2 :ǫ2), (2) (ǫ1 :ǫ1),
and (3) (ǫ2:ǫ1). The grid of Figure 3(a) shows all the possible ǫ-paths between
composition states. We will denote by T̃1 and T̃2 the transducers obtained after
application of these changes.

For the result of composition to be correct, between any two of these states,
all but one path must be disallowed. There are many possible ways of selecting
that path. One natural way is to opt for the shortest path with the diagonal
transitions (ǫ-matching transitions) taken first. Figure 3(a) illustrates in bold-
face the path just described from state (0, 0) to state (1, 2). Remarkably, this
filtering mechanism itself can be encoded as a finite-state transducer such as the
transducer M of Figure 3(b). We denote by (p, q) � (r, s) to indicate that (r, s)
can be reached from (p, q) in the grid.

Proposition 1. Let M be the transducer of Figure 3(b). M allows a unique
path between any two states (p, q) and (r, s), with (p, q) � (r, s).

Proof. Let a denote (ǫ1:ǫ1), b denote (ǫ2:ǫ2), c denote (ǫ2:ǫ1), and let x stand for
any (x:x), with x ∈ Σ. The following sequences must be disallowed by a shortest-
path filter with matching transitions first: ab, ba, ac, bc. This is because, from any
state, instead of the moves ab or ba, the matching or diagonal transition c can
be taken. Similarly, instead of ac or bc, ca and cb can be taken for an earlier
match. Conversely, it is clear from the grid or an immediate recursion that a
filter disallowing these sequences accepts a unique path between two connected
states of the grid.

Let L be the set of sequences over σ = {a, b, c, x} that contain one of the
disallowed sequence just mentioned as a substring that is L = σ∗(ab + ba + ac +
bc)σ∗. Then L represents exactly the set of paths allowed by that filter and is

0

a
b
c
x

1a

2
b 3

b

c

a
c

a
b
c
x

{0}

c
x

{0,1}a

{0,2}

b

x

a

{0,3}

b

c

x

b c

a

a
b
c
x

0

c
x 1a

2

b

x

a

3

b

c

x

b c

a

a
b
c
x

(a) (b) (c)

Fig. 4. (a) Finite automaton A representing the set of disallowed sequences. (b) Au-
tomaton B, result of the determinization of A. Subsets are indicated at each state. (c)
Automaton C obtained from B by complementation, state 3 is not coaccessible.

thus a regular language. Let A be an automaton representing L (Figure 4(a)).
An automaton representing L can be constructed from A by determinization and
complementation (Figures 4(a)-(c)). The resulting automaton C is equivalent to
the transducer M after removal of the state 3, which does not admit a path to
a final state. ⊓⊔

Thus, to compose two transducers T1 and T2 with ǫ-transitions, it suffices to
compute T̃1 ◦M ◦ T̃2, using the rules of composition in the ǫ-free case.

The problem of avoiding the creation of redundant ǫ-paths is more complex
in 3-way composition since the ǫ-transitions of all three transducers must be
taken into account. We describe two solutions for this problem, one based on
two filters, another based on a single filter.

2-way ǫ-Filters. One way to deal with this problem is to use the 2-way filter
M , by first dealing with matching ǫ-paths in U = (T1 ◦ T2), and then U ◦ T3.
However, in 3-way composition, it is possible to remain at the same state of T1

and the same state of T2, and move on an ǫ-transition of T3, which previously was
not an option. This corresponds to staying at the same state of U , while moving
on a transition of T3 with input ǫ. To account for this move, we introduce a new
symbol ǫ0 matching ǫ1 in T3. But, we must also ensure the existence of a self-loop
with output label ǫ0 at all states of U . To do so, we augment the filter M with
self-loops (ǫ1:ǫ0) and the transducer T2 with self-loops (ǫ0:ǫ1) (see Figure 5(b)).
Figure 5(d) shows the resulting filter transducer M1. From Figures 5(a)-(c), it
is clear that T̃1 ◦M1 ◦ T̃2 will have precisely a self-loop labeled with (ǫ1:ǫ1) at all
states.

In the same way, we must allow for moving forward on a transition of T1

with output ǫ, that is consuming ǫ2, while remaining at the same states of T2

and T3. To do so, we introduce again a new symbol ǫ0 this time only relevant
for matching T2 with T3, add self-loops (ǫ2:ǫ0) to T2, and augment the filter M

by adding a transition labeled with (ǫ0:ǫ2) (resp. (ǫ0:ǫ1)) wherever there used to
be one labeled with (ǫ2:ǫ2) (resp. (ǫ2:ǫ1)). Figure 5(e) shows the resulting filter
transducer M2.

ε1
ε2

a

ε :ε2 0
ε :ε0 1

a:ε 2

bε :1

ε :ε1 2

ε2
ε1

b

0

x:x

ε1:ε0
ε2:ε1 1ε1:ε1

2

ε2:ε2

x:x

ε1:ε0
ε1:ε1

x:x

ε1:ε0
ε2:ε2 0

x:x

ε0:ε1
ε2:ε1 1ε1:ε1

2

ε0:ε2
ε2:ε2

x:x

ε1:ε1

x:x

ε0:ε2
ε2:ε2

(a) (b) (c) (d) (e)

Fig. 5. Marking of transducers and 2-way filters. (a) T̃1. Self-loop labeled with ǫ1 added
at all states of T1, regular output ǫs renamed to ǫ2. (b) T̃2. Self-loops with labels (ǫ0:ǫ1)
and (ǫ2:ǫ0) added at all states of T2. Input ǫs are replaced by ǫ1, output ǫs by ǫ2. (c)
T̃3. Self-loop labeled with ǫ2 added at all states of T3, regular input ǫs renamed to ǫ1.
(d) Left-to-right filter M1. (e) Left-to-right filter M2.

Thus, the composition T̃1 ◦ M1 ◦ T̃2 ◦ M2 ◦ T̃3 ensures the uniqueness of
matching ǫ-paths. In practice, the modifications of the transducers T1, T2, and
T3 to generate T̃1, T̃2, and T̃3, as well as the filters M1 and M2 can be directly
simulated or encoded in the 3-way composition algorithm for greater efficiency.
The states in T become quintuples (q1, q2, q3, f1, f2) with f1 and f2 are states
of the filters M1 and M2. The introduction of self-loops and marking of ǫs can
be simulated (line 12-13) and the filter states f1 and f2 taken into account to
compute the set G of the transition matches allowed (line 13).

Note that while N-way composition is symmetric, the analysis of ǫ-paths
just presented is left-to-right and the filters M1 and M2 are not symmetric. In
fact, we could similarly define right-to-left filters M ′

1 and M ′

2. The advantage of
the filters presented in this section is however that they can help modify easily
an existing implementation of composition into 3-way composition. The filters
needed for the 3-way case are also straightforward generalizations of the ǫ-filter
used in standard composition.

3-way ǫ-Filter. There exists however a direct and symmetric method for deal-
ing with ǫ-paths in 3-way composition. Remarkably, this can be done using a
single filter automaton whose labels are 3-dimensional vectors. Figure 6 shows
a filter W that can be used for that purpose. Each transition is labeled with
a triplet. The ith element of the triplet corresponding to the move on the ith
transducer. 0 indicates staying at the same state or not moving, 1 that a move
is made reading an ǫ-transition, and x a move along a matching transition with
a non-empty symbol (i.e., non-ǫ output in T1, non-ǫ input or output in T2 and
non-ǫ input in T3).

Matching ǫ-paths now correspond to a three-dimensional grid. As in the two-
dimensional case, (p, q, r) � (s, t, u) indicates that (s, t, u) can be reached from
(p, q, r) in the grid. Several filters are possible, here we will again favor the
matching of ǫ-transitions (i.e. the diagonals on the grid).

0(1,1,1)
(1,x,x) (x,x,1)

(x,x,x)

1

(0,0,1)

2

(0,1,1)
(0,x,x)3

(0,1,0)

4

(1,1,0)
(x,x,0)

5

(1,0,0)

6

(1,0,1)

(x,x,x)

(0,0,1)

(0,x,x)

(x,x,1)
(x,x,x)

(0,0,1)

(0,1,1)
(0,x,x)

(0,1,0)

(x,x,0)

(x,x,x)

(0,x,x)

(0,1,0)

(x,x,0)
(x,x,x)
(1,x,x)

(0,x,x)

(0,1,0)

(1,1,0)
(x,x,0)

(1,0,0)

(x,x,x)

(x,x,0)

(1,0,0)

(1,x,x)
(x,x,1)
(x,x,x)

(0,0,1)

(0,x,x)

(x,x,0)

(1,0,0)

(1,0,1)

Fig. 6. 3-way matching ǫ-filter W .

Proposition 2. The filter automaton W allows a unique path between any two
states (p, q, r) and (s, t, u) of a three-dimensional grid, with (p, q, r) � (s, t, u).

Proof. We give a sketch of the proof, which is similar to that of Proposition 1.
As in that proof, we can enumerate disallowed sequences of triplets. The triplet
(0, 0, 0) is always forbidden since it corresponds to remaining at the same state
in all three transducers. Observe that in two consecutive triplets, for i ∈ [1, 3],
0 in the ith machine of the first triplet cannot be followed by 1 in the second.
Indeed, as in the 2-way case, if we stay at a state, then we must remain at
that state until a match with a non-empty symbol is made. Also, two 0s in
adjacent transducers (T1 and T2, or T2 and T3), cannot become both xs unless all
components become xs. For example, the sequence (0, 0, 1)(x, x, 1) is disallowed
since instead (x, x, 1)(0, 0, 1) with an earlier match can be followed. Similarly, the
sequence (0, 0, 1)(x, x, 0) is disallowed since instead the single and shorter move
(x, x, 1) can be taken. Conversely, it is not hard to see that a filter disallowing
these sequences accepts a unique path between two connected states of the grid.

Thus, a filter can be obtained by taking the complement of the automaton
accepting the sequences admitting such forbidden substrings. The resulting de-
terministic and minimal automaton is exactly the filter W shown in Figure 6. ⊓⊔

4 Experiments

This section reports the results of experiments carried out in two different ap-
plications: the computation of a complex edit-distance between two automata,
as motivated by applications in text and speech processing [9], and the compu-
tation of kernels between automata needed in spoken-dialog classification and
other machine learning tasks.

Table 1. Comparison of N-way composition with standard composition. The com-
putation times are reported in seconds, the size of T2 in number of transitions. These
experiments were performed on a dual-core AMD Opteron 2.2GHz with 16GB of mem-
ory, using the same software library and basic infrastructure.

n-gram Kernel Edit distance
≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 standard +transpositions

Standard 65.3 68.3 71.0 73.5 76.3 78.3 586.1 913.5
N-way 8.0 8.1 8.2 8.2 8.2 8.2 3.8 5.9

Size of T2 70K 100K 130K 160K 190K 220K 25M 75M

In the edit-distance case, the standard transducer T2 used was one based
on all insertions, deletions, and substitutions with different costs [9]. A more
realistic transducer T2 was one augmented with all transpositions, e.g., ab→ ba,
with different costs. In the kernel case, n-gram kernels with varying n-gram order
were used [3].

Table 4 shows the results of these experiments. The finite automata T1 and
T3 used were extracted from real text and speech processing tasks. The results
show that in all cases, N-way composition is orders of magnitude faster than
standard composition.

5 Conclusion

We presented a general algorithm for the composition of weighted finite-state
transducers. In many instances, N-way composition benefits from a significantly
better time and space complexity. Our experiments with both complex edit-
distance computations arising in a number of applications in text and speech
processing, and with kernel computations, crucial to many machine learning
algorithms applied to sequence prediction, show that our algorithm is also sub-
stantially faster than standard composition in practice. We expect N-way com-
position to further improve efficiency in a variety of other areas and applications
in which weighted composition of transducers is used.

Acknowledgments

The research of Cyril Allauzen and Mehryar Mohri was partially supported by the

New York State Office of Science Technology and Academic Research (NYSTAR).

This project was also sponsored in part by the Department of the Army Award Num-

ber W81XWH-04-1-0307. The U.S. Army Medical Research Acquisition Activity, 820

Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering ac-

quisition office. The content of this material does not necessarily reflect the position or

the policy of the Government and no official endorsement should be inferred.

References

1. Jean Berstel. Transductions and Context-Free Languages. Teubner, 1979.

2. Stanley Chen and Joshua Goodman. An empirical study of smoothing techniques
for language modeling. Technical Report, TR-10-98, Harvard University, 1998.

3. Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational Kernels: Theory
and Algorithms. Journal of Machine Learning Research, 5:1035–1062, 2004.

4. Karel Culik II and Jarkko Kari. Digital Images and Formal Languages. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 599–616. Springer, 1997.

5. Samuel Eilenberg. Automata, Languages and Machines. Academic Press, 1974–76.
6. Slava M. Katz. Estimation of probabilities from sparse data for the language model

component of a speech recogniser. IEEE Transactions on Acoustic, Speech, and
Signal Processing, 35(3):400–401, 1987.

7. Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Number 5 in
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1986.

8. Mehryar Mohri. Finite-State Transducers in Language and Speech Processing.
Computational Linguistics, 23(2), 1997.

9. Mehryar Mohri. Edit-Distance of Weighted Automata: General Definitions and
Algorithms. International Journal of Foundations of Computer Science, 14(6):957–
982, 2003.

10. Mehryar Mohri. Statistical Natural Language Processing. In M. Lothaire, editor,
Applied Combinatorics on Words. Cambridge University Press, 2005.

11. Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted Automata
in Text and Speech Processing. In Proceedings of the 12th biennial European Con-
ference on Artificial Intelligence (ECAI-96). John Wiley and Sons, 1996.

12. Fernando Pereira and Michael Riley. Finite State Language Processing, chapter
Speech Recognition by Composition of Weighted Finite Automata. The MIT Press,
1997.

13. Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power
Series. Springer-Verlag, 1978.

