
Efficient Computation of the Relative Entropy of
Probabilistic Automata

Corinna Cortes1, Mehryar Mohri2,1 ?, Ashish Rastogi2, and Michael D. Riley1

1 Google Research, New York, NY, USA.
2 Courant Institute of Mathematical Sciences,

New York University,
New York, NY, USA.

Abstract. The problem of the efficient computation of the relative en-
tropy of two distributions represented by deterministic weighted au-
tomata arises in several machine learning problems. We show that this
problem can be naturally formulated as a shortest-distance problem over
an intersection automaton defined on an appropriate semiring. We de-
scribe simple and efficient novel algorithms for its computation and re-
port the results of experiments demonstrating the practicality of our al-
gorithms for very large weighted automata. Our algorithms apply to un-
ambiguous weighted automata, a class of weighted automata that strictly
includes deterministic weighted automata. These are also the first al-
gorithms extending the computation of entropy or of relative entropy
beyond the class of deterministic weighted automata.

1 Introduction

The relative entropy, or Kullback-Leibler divergence, is used in a variety of con-
texts as a measure of the discrepancy of two distributions p and q [5]. It is an
asymmetric difference that, from the point of view of coding theory, measures
the number of additional bits needed to encode p, when using an optimal code
for q in place of an optimal code for p.

The problem of the efficient computation of the relative entropy of two dis-
tributions represented by weighted automata arises in several machine learn-
ing problems. Weighted automata are used extensively in text and speech pro-
cessing to model different aspects of language such as morphology, phonology,
or syntax [12]. The output of a large-vocabulary speech recognition system or
that of a complex information extraction system is typically represented as a
weighted automaton compactly representing a large set of alternative sequences
[17]. Weighted automata are also used in other applications such as image pro-
cessing [6].

When a weighted automaton is obtained as a result of training on a large
data set, the quality of the learning algorithm can be measured by computing
the relative entropy of the automaton inferred and that of the target automaton.
Similarly, in some grammar inference applications, the convergence of an itera-
tive algorithm relies on the magnitude of the relative entropy of two consecutive
weighted automata. The relative entropy is also often used for clustering large
sets of automata, such as those output by a speech recognition or information
extraction system.

? This work was partially funded by the New York State Office of Science Technology
and Academic Research (NYSTAR).

This motivates the design of efficient algorithms for the computation of the
relative entropy of two weighted automata. One approximate solution would
consist of sampling sequences from the distributions represented by each of the
automata and of using those to compute the KL-divergence by simply summing
their contributions. But, sample sizes guaranteeing a small approximation error
could be very large, which would significantly increase the computation, while
still providing only an approximate solution.

We present a detailed analysis of the problem of the computation of the
relative entropy of weighted automata in the case where they are deterministic
or, more generally, unambiguous, i.e., no two successful paths are labeled with the
same string. We show that the problem can be formulated naturally as a single-
source shortest-distance problem over an intersection automaton defined on an
appropriate semiring that we will refer to as the entropy semiring. We describe
simple and efficient algorithms for the computation of relative entropy and report
the results of experiments demonstrating the practicality of our algorithms for
very large weighted automata.

A procedure for the approximate computation of the relative entropy was
given by [3]. The procedure applies to deterministic weighted automata and
cannot be generalized to the case of unambiguous weighted automata because
of the specific sum decomposition it is based on (the partitioning assumed in [3]
[eq. 15, page 6] does not hold for unambiguous automata). Our algorithms apply
to the larger class of unambiguous weighted automata. For some unambiguous
weighted automata, the size of any equivalent deterministic weighted automaton
is exponentially larger. Since the size of the machine directly affects the com-
plexity of the computation, it is important to be able to compute the entropy
directly from the unambiguous automaton. We give the first exact algorithms
for the computation of the relative entropy. We also describe approximate algo-
rithms that are conceptually simpler than the procedure of [3] and have a better
time and space complexity.

The paper is organized as follows. Section 2 introduces the preliminary semir-
ing and automata definitions used in the remaining of the paper. Section 3 in-
troduces the entropy semiring and formulates the computation of the relative
entropy in terms of shortest-distances over that semiring. Section 4 describes
both an exact and a fast approximate algorithm for the computation of the rel-
ative entropy. Section 5 briefly reports the results of experiments demonstrating
the practicality of our algorithms for very large weighted automata.

2 Preliminaries

Weighted automata are automata in which each transition carries some weight
in addition to the usual alphabet symbol [7, 18, 1]. For various operations to be
well-defined, the weight set must have the algebraic structure of a semiring [10].
A semiring is a ring that may lack negation.

Definition 1. A semiring is a system (K,⊕,⊗, 0, 1) such that: (K,⊕, 0) is a
commutative monoid with 0 as the identity element for ⊕; (K,⊗, 1) is a monoid
with 1 as the identity element for ⊗; ⊗ distributes over ⊕: for all a, b, c in K:
(a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c) and c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b), and 0 is
an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0.

Some familiar semirings are the Boolean semiring ({0, 1},∨,∧, 0, 1) or the trop-
ical semiring (R+ ∪ {∞}, min, +,∞, 0) related to classical shortest-paths prob-

lems and algorithms. A semiring is idempotent if for all a ∈ K, a ⊕ a = a. It is
commutative when ⊗ is commutative.

Definition 2. A weighted automaton A = (Σ, Q, I, F, E, λ, ρ) over a semiring
(K,⊕,⊗, 0, 1) is a 7-tuple where: Σ is the finite alphabet of the automaton, Q is
a finite set of states, I ⊆ Q the set of initial states, F ⊆ Q the set of final states,
E ⊆ Q×Σ ∪ {ε}×K×Q a finite set of transitions, λ : I → K the initial weight
function mapping I to K, and ρ : F → K the final weight function mapping F
to K.

The weighted automata considered in this paper are assumed not to contain
ε-transitions. A pre-processing ε-removal algorithm can be used to remove such
transitions for the automata considered here [14]. Furthermore, it is assumed
that the automata are trim, i.e. all states in the automata are both accessible
and co-accessible.

We denote by |A| = |E|+|Q| the size of an automaton A = (Σ, Q, I, F, E, λ, ρ),
that is the sum of the number of states and transitions of A. Given a transition
e ∈ E, we denote by i[e] its input label, p[e] its origin or previous state and
n[e] its destination state or next state, w[e] its weight (weighted automata case).
Given a state q ∈ Q, we denote by E[q] the set of transitions leaving q.

A path π = e1 · · · ek in A is an element of E∗ with consecutive transitions:
n[ei−1] = p[ei], i = 2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek]
and p[π] = p[e1]. We denote by P (q, q′) the set of paths from q to q′ and by
P (q, x, q′) the set of paths from q to q′ with input label x ∈ Σ∗. The labeling
functions i and the weight function w can also be extended to paths by defining
the label of a path as the concatenation of the labels of its constituent transitions,
and the weight of a path as the ⊗-product of the weights of its constituent
transitions: i[π] = i[e1] · · · i[ek], w[π] = w[e1]⊗ · · · ⊗ w[ek].

The output weight associated by an automaton A to an input string x ∈ Σ∗

is defined by:

[[A]](x) =
⊕

π∈P (I,x,F)

λ[p[π]]⊗ w[π] ⊗ ρ[n[π]]. (1)

Our algorithms for the computation of the entropy of a weighted automata or
the computation of the relative entropy of two automata apply to unambiguous
weighted automata. A weighted automaton is said to be unambiguous if for any
x ∈ Σ∗ it admits at most one accepting path labeled with x. Thus, the class
of unambiguous weighted automata includes deterministic weighted automata.
A weighted automaton A is said to be deterministic or subsequential if it has a
deterministic input, that is if it has a unique initial state and if no two transitions
leaving the same state share the same input label.

Fig. 1 (a) shows an unambiguous weighted automaton that does not admit
an equivalent deterministic weighted automaton (the proof will be included in a
future journal version). Previous work on the computation of the relative entropy
[3] was limited to deterministic finite automata. We present the first algorithms
for the computation of the relative entropy of unambiguous weighted automata.

Let s[A] denote the ⊕-sum of the weights of all successful paths of A when it
is defined and in K. s[A] can be viewed as the shortest-distance from the initial
states to the final states. When the sum of the weights of all paths from any
state p to any state q is well-defined and in K, we can define the shortest distance
from p ∈ Q to q ∈ Q as:

d[p, q] =
⊕

π∈P (p,q)

w[π], (2)

where the summation is defined to be 0 when P (p, q) = ∅. Let A be a weighted
automaton defined over the probability semiring (R+, +,×, 0, 1). We will say that
A is probabilistic if for any state q ∈ Q,

⊕

π∈P (q,q) w[π], the sum of the weights

of all cycles at q, is well-defined and in K and
∑

x∈Σ∗ [[A]](x) = 1. Stochastic
automata are probabilistic automata such that at each state the weights of the
outgoing transitions and the final weight sum to one.

Let A1 and A2 be two weighted automata with Ai = (Σ, Qi, Ii, Fi, Ei, λi, ρi)
for i = 1, 2. The intersection A of A1 and A2 is denoted by A = A1 ∩A2. It is a
weighted automaton accepting the language L(A1) ∩ L(A2) and defined by the
tuple A = (Σ, Q1×Q2, I1×I2, F1×F2, E, (λ1, λ2), (ρ1, ρ2)), where the transitions
E are defined according to the following rule:

(q1, a, w1, q2) ∈ E1 and (q′1, a, w′
1, q

′
2) ∈ E2 ⇒ ((q1, q

′
1), a, (w1⊗w′

1), (q2, q
′
2)) ∈ E.

There exists a general algorithm for the computation of the intersection over an
arbitrary semiring, even in presence of ε-transitions [16]. The time complexity
of the algorithm is quadratic O(|A1||A2|) since in the worst case the outgoing
transitions of each state of A1 match all those of each state of A2.

3 Formulation of the Problem

The problem that we are interested in is that of computing D(A‖B), the relative
entropy of two unambiguous probabilistic automata A and B.

3.1 Relative entropy

The entropy H(p) of a probability mass function p defined over a discrete set X
is defined as [5]:

H(p) = −
∑

x∈X

p(x) log p(x), (3)

where by convention 0 log 0 = 0. The relative entropy, or Kullback-Leibler diver-
gence of two probability mass functions defined over a discrete set X is defined
as:

D(p‖q) =
∑

x∈X

p(x) log
p(x)

q(x)
= Ep[log

p(X)

q(X)
], (4)

where we use the standard conventions: 0 log 0
q = 0 and p log p

0 = ∞. It is easy

to show using Jensen’s inequality and the concavity of the log function that the
relative entropy is a non-negative number and that D(p‖q) = 0 if and only if
p = q. Note that D(p‖q) is not a metric because it is not symmetric and does
not satisfy the triangle inequality.

These definitions can be naturally extended to probabilistic automata which
define distributions over sets of strings. The relative entropy of A and B can be
written as the sum of two terms:3

D(A‖B) =
∑

x

[[A]](x) log[[A]](x) −
∑

x

[[A]](x) log[[B]](x). (5)

The next section introduces a semiring, the entropy semiring, showing that each
term can be viewed as a single-source shortest-distance for an automaton defined
over that semiring.

3 The first term is simply −H(A), where H(A) is the entropy of A.

0

a/.33
b/.33

1/.5a/.33

b/.5

q q’b/w

q0

a/0 a/0
b/0

(a) (b)

Fig. 1. (a) An unambiguous weighted finite automaton that cannot be determinized.
0 is the initial state and 1 the final state. The automaton accepts the set of strings
(a∗b∗)∗ab∗. (b) Illustration of the completion operation.

3.2 Entropy semiring

Let K denote (R∪{+∞,−∞})×(R∪{+∞,−∞}). For pairs (x1, y1) and (x2, y2)
in K, define the following :

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2) (6)

(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + x2y1) (7)

Lemma 1. The system (K,⊕,⊗, (0, 0), (1, 0)) defines a commutative semiring.

Proof. The proof is rather straightforward and will be included in the journal
version. ut

We call the semiring just defined the entropy semiring due to its relevance in
the computation of the entropy and the relative entropy. This semiring arises in
other contexts and can be defined in terms of an S-module [2, 8].

3.3 Semiring formulation

The unambiguous weighted automata A and B are not necessarily complete: at
some states, there may be no outgoing transition labeled with a given element
of the alphabet a ∈ Σ. We can however make them complete in a way similar
to the standard construction in the unweighted case. We introduce a new state
q0 with final weight 0, add self-loops with weight 0 at that state labeled with all
elements of the alphabet, and for any a ∈ Σ and q ∈ Q, add a transition from
state q to q0 labeled with a with weight 0 when q does not have an outgoing
transition labeled with a (see Figure 1 (b)). This construction leads to a complete
and unambiguous weighted automaton equivalent to the original one since the
transitions added have all weight 0. The completion operation is only applied to
handle the boundary case when there exists a string x ∈ Σ∗ such that [[B]](x) = 0
and [[A]](x) 6= 0. In this case, the completion operation ensures that the future
computation of the relative entropy would correctly lead to ∞. Note that the
completion operation can be done on-demand. States and transitions can be
created only when necessary for the application of other operations. We can thus
assume that A and B are unambiguous and complete. At the cost of introducing a
super-initial and a super-final state, we can also assume in the following, without
loss of generality, that the initial weight λ and the final weights ρ(q) are all equal
to 1 in A and B.

Let log A denote the weighted automaton derived from A by replacing each
weight w ∈ R+ by log w and let Φ1(A) (Φ2(A)) denote the weighted automaton

over the entropy semiring derived from A by replacing each weight w by the
pair (w, 0) (resp. (1, w)). The construction of log A, Φ1(A), or Φ2(A) from A is
straightforward and can be done in linear time.

Proposition 1. The relative entropy of A and B satisfies the following identity
in the entropy semiring:

(0, D(A‖B)) = s[Φ1(A) ∩ Φ2(log A)]− s[Φ1(A) ∩ Φ2(log B)]. (8)

Thus, the relative entropy is expressed in terms of single-source shortest-distance
computations over the entropy semiring.

Proof. Since A is unambiguous and complete, both Φ1(A) and Φ2(log A) are
also unambiguous and complete. Thus, for a given string x, there is at most
one accepting path in Φ1(A) or Φ2(log A) labeled with x. Then, by definition of
intersection, the weight associated by Φ1(A) ∩ Φ2(log A) to a string x is

([[A]](x), 0) ⊗ (1, log[[A]](x)) = ([[A]](x), [[A]](x) log[[A]](x)). (9)

Thus, the shortest-distance from the initial states to the final states in Φ1(A) ∩
Φ2(log A) is

s[Φ1(A) ∩ Φ2(log A)] =
⊕

x

([[A]](x), [[A]](x) log[[A]](x)) (10)

= (
∑

x

[[A]](x),
∑

x

[[A]](x) log[[A]](x)) (11)

= (1,
∑

x

[[A]](x) log[[A]](x)). (12)

Similarly, we can show that

s[Φ1(A) ∩ Φ2(log B)] = (1,
∑

x

[[A]](x) log[[B]](x)). (13)

The statement of the proposition follows directly from the identities 12 and 13
and Equation 5. ut

Thus, the computation of the relative entropy is reduced to two single-source
shortest-distance computations over the entropy semiring. The next section dis-
cusses two general algorithms for computing these distances.

4 Algorithms

This section describes two algorithms for computing a single-source shortest
distance over the entropy semiring, an exact algorithm, and a more efficient and
more practical approximate algorithm.

4.1 Exact solution

A generalization of the classical Floyd-Warshall algorithm can be used to com-
pute all-pairs shortest distances d[p, q] (p, q ∈ Q) over a closed semiring not

necessarily idempotent [13, 15]. This algorithm can thus also be used to com-
pute s[A] for a weighted automaton A over a non-idempotent semiring, which is
needed for our purpose.

In what follows, we assume a definition of closed semirings [11] that is more
general than the classical one used by Cormen et al. [4] in that it does not
assume idempotence. This is because idempotence is not necessary for the proof
of the correctness of the generic all-pairs shortest-distance algorithms of Floyd-
Warshall and Gauss-Jordan [13, 15]. More generally, given a graph or automaton
A, we introduce the following definition.

Definition 3. A semiring is closed for A if the infinite sum (closure) is defined
for any cycle weight c of A and if associativity, commutativity, and distributivity
apply to countable sums of cycle weights.

Clearly, the generic Floyd-Warshall algorithm can also be applied to any au-
tomaton A for which the semiring considered is closed. The following lemma
shows that the entropy semiring has the desired property.

Lemma 2. Let A be a weighted automaton over the entropy semiring such that
for any cycle weight w = (x, y), 0 ≤ x < 1. Then, the entropy semiring is closed
for A.

Proof. For any (x, y) ∈ K and k ≥ 0, define Rk as:

Rk =

k times
︷ ︸︸ ︷

(x, y)⊗ . . .⊗ (x, y) . (14)

with R0 = (1, 0). We can show by induction that Rk = (xk, kyxk−1). The base
case is readily established for k = 0. Assume that the hypothesis holds for all
i < k. Then

Rk = Rk−1 ⊗ (x, y) (15)

= (xk−1, (k − 1)yxk−2)⊗ (x, y)

= (xk, kyxk−1).

For N ≥ 0, define SN by: SN =

N⊕

i=0

Ri. It is easy to prove by induction as above

that SN verifies

SN =
(1− xN+1

1− x
, y ·

[1− xN

(1− x)2
−

NxN

1− x

])

. (16)

Thus, for 0 ≤ x < 1, the closure of (x, y) is well-defined and in K:4

(x, y)∗ = lim
N→∞

SN = (
1

1− x
,

y

(1 − x)2
). (17)

The associativity, commutativity, and distributivity properties follow the asso-
ciativity, commutativity, and distributivity of the sums SN with other elements
of the entropy semiring and the corresponding properties of their pointwise lim-
its. ut
4 The right-hand side can be written as: (x∗, y(x∗)2), if we denote by x∗ =

P

∞

n=0
xn.

Let A be a probabilistic automaton, then the weight u of a cycle must verify
0 ≤ u < 1, otherwise the automaton is not closed. The weight of a cycle of
Φ1(A) ∩ Φ2(log A) is (u, u logu) (see Equation 9), where u is the weight of a
cycle of A, and similarly, the weight of a cycle of Φ1(A) ∩ Φ2(log B) is of the
form (u, u log v), where v is the weight of a matching cycle in B.

Thus, the entropy semiring is closed both for Φ1(A)∩Φ2(log B) and Φ1(A)∩
Φ2(log A) and the generic Floyd-Warshall algorithm can be applied to compute
the shortest-distances s[Φ1(A) ∩ Φ2(log B)] and s[Φ1(A) ∩ Φ2(log A)].

The generic Floyd-Warshall admits an in-place implementation [13]; the fol-
lowing gives the corresponding pseudocode.

1 for i← 1 to |Q|
2 do for j ← 1 to |Q|

3 do d[i, j]←
⊕

e∈P (i,j)

w[e]

4 for k ← 1 to |Q|
5 do for i← 1 to |Q|
6 do for j ← 1 to |Q|
7 do d[i, j]← d[i, j]⊕ (d[i, k]⊗ d[k, k]∗ ⊗ d[k, j])
8 return d

The ⊕- and ⊗-operations of the entropy semiring can be performed in constant
time. For (x, y) with 0 ≤ x < 1, the closure (x, y)∗ = (1

1−x , y
(1−x)2) can also be

computed in constant time. Thus, the running time complexity of the algorithm
is Θ(|E|+ |Q|3) and its space complexity is Ω(|Q|2) when applied to a weighted
automaton A = (Q, I, F, Σ, δ, σ, λ, ρ) over the tropical semiring.

The intersection Φ1(A) ∩ Φ2(log A) can be computed in linear time O(|A|)
but the worst cost computation of Φ1(A) ∩ Φ2(log B) is quadratic, O(|A||B|).
The total time complexity of the computation of the relative entropy is thus in
Θ(|A ∩B|3). Its space complexity is in Θ(|A ∩B|2).

This provides an exact algorithm for the computation of the relative en-
tropy. The cubic time complexity of the algorithm with respect to the size of the
intersection automaton makes it rather slow for large automata.

Its quadratic lower bound complexity with respect to the size of the inter-
section machine makes it prohibitive for use in many applications. In text and
speech processing applications, a weighted automaton may have several hun-
dred million states and transitions. Even, if A has only about 100,000 states and
A∩B has about the same number of states, the algorithm requires maintaining
a matrix d with 10 billion entries.

The next section presents an algorithm that exploits the sparseness of the
graph and does not impose these space requirements.

4.2 Approximate Solution

A generic single-source shortest-distance algorithm was presented for directed
graphs defined over a k-closed semiring in [15]. The algorithm can be viewed as
a generalization to these semirings of classical shortest-paths algorithms. This
generalization is not trivial and does not require the semiring to be idempotent.
The algorithm is also generic in the sense that it works with any queue discipline.

Definition 4. Let k ≥ 0 be an integer. A semiring (K,⊕,⊗, 0, 1) is k-closed if:

∀a ∈ K,

k+1⊕

n=0

an =

k⊕

n=0

an. (18)

More generally, we will say that K is k-closed for a graph G or automaton A, if
Equation 18 holds for all cycle weights a ∈ K.

By definition, the entropy semiring is k-closed for any acyclic automaton A
and thus the generic single-source shortest distance can be used to compute the
relative entropy exactly in such cases. But, in general, the entropy semiring is
not k-closed for a non-acyclic automaton A since by definition of SN ,

∀k > 0, Sk+1 − Sk = Rk+1 = (xk+1, (k + 1)yxk). (19)

But, given a weighted automaton A over the entropy semiring such that all cycle
weights w = (x, y) verify 0 ≤ x < 1, there exists KA sufficiently large such that
for all k ≥ KA, ||Sk+1−Sk||∞ ≤ ε. Indeed, let X denote the maximum value of x

for all cycles and Y the maximum |y|. Then, for k ≥ log(Y/ε)
log(1/X) , ||Sk+1−Sk||∞ ≤ ε

for all (x, y). This leads us to consider an approximate version of the generic
single-source shortest distance algorithm in non-acyclic cases, where the equality
test is replaced by an ε-equality: u =ε v if ||u− v||∞ ≤ ε. The following gives the
pseudocode of the modified algorithm.

1 for i← 1 to |Q|
2 do d[i]← r[i]← 0
3 d[s]← r[s]← 1
4 S ← {s}
5 while S 6= ∅
6 do q ← head(S)
7 Dequeue(S)
8 r′ ← r[q]
9 r[q]← 0
10 for each e ∈ E[q]
11 do if d[n[e]] 6=ε d[n[e]]⊕ (r′ ⊗ w[e])
12 then d[n[e]]← d[n[e]]⊕ (r′ ⊗ w[e])
13 r[n[e]]← r[n[e]]⊕ (r′ ⊗ w[e])
14 if n[e] 6∈ S
15 then Enqueue(S, n[e])

d[q] denotes the tentative shortest distance from the source s to q. r[q] keeps
track of the sum of the weights added to d[q] since the last queue extraction
of q. The attribute r is needed for the shortest-distance algorithm to work in
non-idempotent cases. The algorithm uses a queue S to store the set of states to
consider for the relaxation steps of lines 11-15 [15]. Any queue discipline, e.g.,
FIFO, shortest-first, topological (in the acyclic case), can be used. The test of
line 11 is based on an ε-equality.

Different queue disciplines yield different running times for our algorithm.
The choice of the best queue discipline to use can be based on the structure of

the two automata, which can be exploited to obtain a more efficient algorithm to
compute the relative entropy. More specifically, let Q, E denote (respectively) the
set of states and edges in the intersection automata. Further, let N(q) denote the
number of times a state q is inserted in the queue. Then, using the Fibonacci heap
with a shortest first queue discipline (as in Dijkstra’s algorithm), the complexity
of the algorithm is given by:

O(|Q| + |E|max
q∈Q

N(q) + log |Q|
∑

q∈Q

N(q)). (20)

If the underlying automata are acyclic, then using the queue discipline cor-
responding to the topological order yields the best time complexity, and the
problem can be solved in linear time: O(|Q|+ |E|).

Using a breadth-first queue discipline (as in the Bellman-Ford shortest dis-
tance algorithm), updates to the shortest distance estimates in iteration k can be
formulated as Dk = MDk−1, where M is the matrix associated to the automaton,
that is the matrix representing the weighted graph defined by the automaton.
Note that the matrix multiplication here is over the ⊕ and ⊗ operations of the

semiring, so that Dk[i] = ⊕
|Q|
j=1M [i, j]⊗Dk−1[j].

We now analyze the convergence rate of the approximate algorithm with the
breadth-first queue discipline. Let us focus only on the first component of the
distance pair. Let M1 be the matrix obtained by taking the first part of each
element of M . Assume that the matrix M is a stochastic matrix.

By the Perron-Frobenius theorem, we know that the largest eigenvalue is 1
and has a multiplicity of 1. Furthermore, all other eigenvalues λ are such that
|λ| < 1. Using the Jordan canonical form of M , it is not hard to show that the
matrix multiplication operation converges in O(|λ2|k), where λ2 is the second
largest eigenvalue of M (see [9] for a similar analysis). Thus, the updates in

the kth iteration are proportional to λk
2 , hence, k = log(1/ε)

log(1/|λ2|)
. Plugging in this

expression for N(q), the overall complexity of the approximate algorithm is:

O(|Q| + (|E|+ |Q|)
log(1/ε)

log(1/|λ2|)
). (21)

For ε exponentially smaller than |λ2| (ε = |λ2|d), the cost in complexity is only
linear: O(|Q|+ d(|E|+ |Q|)).

It is possible to use different queue disciplines in different parts of the graph
and improve the running time of the algorithm. For example, for a large graph
with several strongly connected components, one can use a topological order on
the component graph, with shortest-first queue discipline in each strongly con-
nected component [15]. If there are k strongly connected components, with the
ith component having ni vertices, then the running time is given by O(|Q| +
|E|maxq∈Q N(q)+log |maxi ni|

∑

q∈Q N(q)). If the largest component has O(n/k)
vertices, then this improves the general complexity by an additive factor of∑

q∈Q N(q) log k. Our experience with such computations for very large graphs of
several million states shows that the generic topological order with the shortest-
fist queue discipline within each strongly connected component often leads to
the most efficient results in practice.

4.3 Comparison with previous work

In [3], the author describes a procedure for an approximate computation of the
relative entropy of two deterministic stochastic automata. The procedure is based
on an iterative method (which can be viewed as approximating the inverse of
a matrix) for computing, for a stochastic automaton A, the probability of each
state q, that is the sum of the weights of all paths going through q. The con-
vergence is claimed but not proved and no bound is indicated on the maximum
number of iterations.

The author reports no complexity result for the procedure described, which
makes it difficult to compare with our algorithm. Our most favorable estimate of
its complexity is Ω(|A|2|B|2(T + |Σ|)), where T denotes the maximum number
of iterations executed. This is because the procedure requires using a matrix of
size |A|2|B|2. The complexity of the procedure also depends on the size of the
alphabet, which, in some applications such as natural language processing ap-
plications, may be very large. Furthermore, the lower bound space complexity of
this procedure is Ω(|A|2|B|2). This makes it unsuitable for computing the rela-
tive entropy of large weighted automata. Note that the experiments reported by
the author were carried out with very small grammars of about 30 rules. Never-
theless, the procedure bears some resemblance with our approximate algorithm.
It can be viewed as an alphabet-dependent non-sparse implementation of that
algorithm for the particular case of a FIFO queue discipline.

5 Experiments

We implemented both the generic Floyd-Warshall algorithm and the approx-
imate algorithm for the computation of the relative entropy of unambiguous
probabilistic automata.

To avoid the numerical instability issues related to the multiplications of
probabilities, we used instead negative log probabilities. This corresponds to
taking the image of the entropy semiring by the semiring morphism log×I where
I is the identity over the second element of the weights.

To evaluate the efficiency of our approximate algorithm for computing the
relative entropy we created two n-gram statistical models trained on a large
corpus – one a bigram model (n = 2) and one a trigram model (n = 3). The
minimal deterministic weighted automaton representing the bigram model had
about 200,000 transitions, that of the trigram model about 400,000 transitions.
It took about 3s on a single 2GHz Intel processor with 128MB of RAM to
compute the relative entropy of these large weighted automata using a FIFO
queue discipline. With a shortest-first queue discipline, the time was reduced to
2s.

6 Conclusion

We described several algorithms for the computation of the relative entropy of
two deterministic weighted automata or the entropy of a single deterministic
weighted automaton by formulating the problem as a shortest-distance compu-
tation over the entropy semiring. We presented both an exact algorithm and an
approximate algorithm that was shown to be very efficient even for very large
automata of several hundred thousand transitions. The results demonstrate the
benefit of a semiring-theory formulation of the problem. Our algorithms can be

used similarly to compute the so-called unnormalized relative entropy of two
weighted automata, which is defined by:

D(A‖B) =
∑

x

[[A]](x) log
[[A]](x)

[[B]](x)
− [[A]](x) + [[B]](x) (22)

simply by replacing Φ1 and Φ2 by Φ′
1 and Φ′

2, where Φ′
1(A) (Φ′

2(A)) is the
weighted automaton over the entropy semiring derived from A by replacing each
weight w with the pair (w, 1) (resp (w, w)). The entropy semiring can also be
used to give a conceptually simple formulation of the computation of the relative
entropy of tree automata and to derive similar computation algorithms.

References

1. Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages.
Springer-Verlag: Berlin-New York, 1988.

2. Stephen Bloom and Zoltan Ésik. Iteration Theories. Springer-Verlag, Berlin, 1991.
3. Rafael C. Carrasco. Accurate computation of the relative entropy between stochas-

tic regular grammars. Informatique Théorique et Applications (ITA), 31(5):437–
444, 1997.

4. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Press: Cambridge, MA, 1992.

5. Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John
Wiley & Sons, Inc., New York, 1991.

6. Karel Culik II and Jarkko Kari. Digital Images and Formal Languages. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 599–616. Springer, 1997.

7. Samuel Eilenberg. Automata, Languages and Machines, volume A–B. Academic
Press, 1974–1976.

8. Jason Eisner. Expectation Semirings: Flexible EM for Finite-State Transducers.
In Proceedings of the ESSLLI Workshop on Finite-State Methods in NLP, 2001.

9. G. H. Golub and C. F. V. Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 1996.

10. Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Number 5
in EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin,
Germany, 1986.

11. Daniel J. Lehmann. Algebraic Structures for Transitive Closures. Theoretical
Computer Science, 4:59–76, 1977.

12. Mehryar Mohri. Finite-State Transducers in Language and Speech Processing.
Computational Linguistics, 23(2), 1997.

13. Mehryar Mohri. General Algebraic Frameworks and Algorithms for Shortest-
Distance Problems. Technical Memorandum 981210-10TM, AT&T Labs - Re-
search, 62 pages, 1998.

14. Mehryar Mohri. Generic Epsilon-Removal and Input Epsilon-Normalization Algo-
rithms for Weighted Transducers. International Journal of Foundations of Com-
puter Science, 13(1):129–143, 2002.

15. Mehryar Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Prob-
lems. Journal of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

16. Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted Automata
in Text and Speech Processing. In Proceedings of the 12th biennial European Con-
ference on Artificial Intelligence (ECAI-96), Workshop on Extended finite state
models of language, Budapest, Hungary. John Wiley and Sons, Chichester, 1996.

17. Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted Finite-State
Transducers in Speech Recognition. Computer Speech and Language, 16(1):69–88,
2002.

18. Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power
Series. Springer-Verlag, 1978.

