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ABSTRACT

We define general algebraic frameworks for shortest-distance problems based on the
structure of semirings. We give a generic algorithm for finding single-source shortest
distances in a weighted directed graph when the weights satisfy the conditions of our
general semiring framework. The same algorithm can be used to solve efficiently clas-
sical shortest paths problems or to find the k-shortest distances in a directed graph.
It can be used to solve single-source shortest-distance problems in weighted directed
acyclic graphs over any semiring. We examine several semirings and describe some
specific instances of our generic algorithms to illustrate their use and compare them
with existing methods and algorithms. The proof of the soundness of all algorithms
is given in detail, including their pseudocode and a full analysis of their running time
complexity.
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Classical shortest-paths problems in a weighted directed graph arise in various
contexts. The problems divide into two related categories: single-source shortest-
paths problems and all-pairs shortest-paths problems. The single-source shortest-path
problem in a directed graph consists of determining the shortest path from a fixed
source vertex s to all other vertices. The all-pairs shortest-distance problem is that
of finding the shortest paths between all pairs of vertices of a graph.

In the classical shortest-paths problems, edge weights may represent distances,
costs, or any other real-valued quantity that can be added along a path, and that one
wishes to minimize. Edge weights are real numbers (elements of R), and the specific
operations used are: addition (+) along a path, and minimum (min) applied to path
weights.

Classical shortest-paths problems can be generalized to other weight sets, and to
other operations. The weights, elements of a set K, may be real numbers, strings,
regular expressions, subsets of another set, or any other quantity that can be multiplied
along a path using an operation ⊗, and that can be summed using an operation ⊕.
The weight of a path is obtained by multiplying edge weights along that path using
⊗, and the shortest distance from a vertex p to a vertex q is the sum of the weights
of all paths from p to q using ⊕.
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We call the problems of finding the shortest distances with this generalized def-
inition of shortest distances shortest-distance problems. For these problems to be
well-defined, certain restrictions such as the distributivity of ⊗ over ⊕ are required.
More precisely, the algebraic structure that provides the appropriate framework for
these problems is that of semirings: the system (K,⊕,⊗) is a semiring in the prob-
lems that we consider. The notion of shortest path is not pertinent anymore for these
general problems since for some semirings and weighted graphs there might be no
path between two vertices p and q with a weight equal to the shortest distance from
p to q.

The absence of a unifying framework for single-source shortest paths problems was
pointed out by Alfred Aho et al. [2, p. 207]. We define a general algebraic framework
for single-source shortest-distance problems based on the structure of semirings. We
give a generic algorithm for solving these problems. The algorithm is generic in two
senses: it works with any semiring covered by our general framework, and is correct
regardless of the queue discipline chosen for the implementation of the algorithm.
Classical algorithms such as that of Bellman-Ford [4, 17] are specific instances of this
generic algorithm.

We give the proof of the correctness and termination of the algorithm, including a
full analysis of its running time complexity with respect to the times to compute the ⊕
and ⊗ operations. We also give a generic algorithm for solving single-source shortest-
distance problems in weighted directed acyclic graphs. The algorithm works with any
semiring. The algorithm of Lawler [24] is a specific instance of this algorithm.

We then describe several specific semirings that verify the conditions of our gen-
eral framework for single-source shortest distance problems, give for various queue
disciplines the complexity of our algorithm and compare them with existing methods
and algorithms. We show, in particular, that the same generic algorithm can be used
to solve classical shortest-paths problems, k-shortest-distance problems, and other
problems by using each time the appropriate semiring.

The all-pairs shortest-distance problem is known as the algebraic path problem
and has been studied by numerous authors in the past with semiring frameworks of
varying degrees of generality [17, 18, 19, 4, 9, 35, 16, 41, 42, 7, 3, 2, 25] starting
with the work of Stephen Kleene and his proof of the equivalence of finite automata
and regular expressions [21] (see [15] for a survey of the algebraic path problem).
The axioms of the closed semirings presented by some of these authors were not
correct [42, 7, 3, 2]. These inaccuracies were corrected by Daniel Lehmann who also
provided a general semiring framework including non-idempotent semirings [25]. We
will describe a general framework for all-pairs shortest-distance problems and refer
to previous work for the generic algorithms working within that framework which are
generalizations of the Floyd-Warshall or Gauss-Jordan elimination algorithms.1

The paper is organized as follows. In section 1, we give a brief introduction to

1See [8] for a modern presentation in the idempotent case, [20, 7, 43, 40] for various applications
and specific instances of the algebraic path problem, and [33, 34] for a clear summary of the problem
and corresponding solutions and applications. G. Rote [33] also presents a systolic algorithm for
solving the algebraic path problem, see [15] for an extensive bibliography and description of systolic
algorithms for the algebraic path problem.
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the algebraic concepts and results needed for the following sections. In section 2, we
define the general single-source shortest-distance problems and introduce our general
semiring framework. Section 3 describes in detail a generic algorithm for computing
single-source shortest distances for all semirings covered by our framework. Section 4
introduces the generic topological order queue discipline for computing single-source
shortest distances and the specific case of acyclic graphs. Section 5 clarifies the
relationship between classical shortest-paths algorithms and our generic algorithm.
Some problems such as the computation of the k shortest distances from a fixed
source to any other vertex of a graph can also be solved using that algorithm. Section
6 introduces the appropriate semirings to use to solve those problems and analyzes
the complexity of our algorithm when used with these semirings.

1. Algebraic foundations

The general frameworks used in later sections are based on the algebraic structure of
semirings. Thus, we first briefly review some definitions and properties of semirings
and give classical and new theorems that are relevant to the rest of this paper.

1.1. Semirings

Definition 1 A semiring is a system (K,⊕,⊗, 0, 1) such that:

1. (K,⊕, 0) is a commutative monoid with 0 as the identity element for ⊕,

2. (K,⊗, 1) is a monoid with 1 as the identity element for ⊗,

3. ⊗ distributes over ⊕: for all a, b, c in K,

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b)

4. 0 is an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0.

The Boolean semiring ({0, 1},∨,∧, 0, 1) is the most well-known semiring. The semi-
ring (R+ ∪ {∞}, min, +,∞, 0) is the underlying algebraic structure of many classical
shortest-paths algorithms and is called the tropical semiring.

1.2. Properties

In this section, we give some general definitions of semirings and describe some of
their properties relevant to the next sections of this paper.2

A semiring (K,⊕,⊗, 0, 1) is said to be commutative when the multiplicative oper-
ation ⊗ is commutative:

∀a, b ∈ K, a⊗ b = b⊗ a

2See [23] for basic definitions of semirings and their properties.
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Definition 2 Let (K,⊕,⊗, 0, 1) be a semiring. An element a ∈ K is idempotent if
a + a = a. K is said to be idempotent when all elements of K are idempotent.

Both the tropical semiring and the Boolean semirings are idempotent. Given an
idempotent semiring K, one can define a specific partial order on K. Under certain
conditions, this partial order is unique.

Lemma 1 Let (K,⊕,⊗, 0, 1) be an idempotent semiring, then the relation ≤K defined
by:

(a ≤K b)⇔ (a⊕ b = a)

defines a partial order over K, called the natural order over K.3

Proof. The reflexivity and antisymmetry of ≤K follow immediately its definition.
Let a, b, and c be elements of K, and assume that: a ⊕ b = a and b ⊕ c = b. Then:
a⊕ c = (a⊕ b)⊕ c = a⊕ (b⊕ c) = a⊕ b = a. This shows the associativity of ≤K. 2

Definition 3 Let (K,⊕,⊗, 0, 1) be a semiring, and ≤ a partial order over K. K is
negative if 1 ≤ 0, positive if 0 ≤ 1.

An important property of semirings when dealing with shortest paths problems is
monotonicity. When monotonicity holds, the computation of shortest distances can
be factored.

Definition 4 Let (K,⊕,⊗, 0, 1) be a semiring, and ≤ a partial order over K. We
say that K is monotonic if for all a, b, c ∈ K:4

1. (a ≤ b)⇒ (a⊕ c ≤ b⊕ c),

2. (a ≤ b)⇒ (a⊗ c ≤ b⊗ c),

3. (a ≤ b)⇒ (c⊗ a ≤ c⊗ b).

Note that in a negative idempotent monotonic semiring: ∀a ∈ K, a ≤ 0. This justifies
the use of the term negative semiring.

Lemma 2 Let (K,⊕,⊗, 0, 1) be an idempotent semiring, then K provided with the
natural order ≤K is negative and monotonic.

Proof. In view of lemma 1, ≤K defines a partial order on K. Since 1 ⊕ 0 = 1, K is
negative. Let a, b and c be in K and assume that a ≤K b, then a ⊕ b = a. Hence:
(a⊕b)⊕c = (a⊕c). Since K is idempotent we also have: (a⊕b)⊕(c⊕c) = (a⊕c), thus
(a⊕c)⊕ (b⊕c) = (a⊕c)⇔ (a⊕c) ≤K (b⊕c). (a⊗c) ≤K (b⊗c) and (c⊗a) ≤K (c⊗a)
directly result from right and left multiplication of both sides of a⊕ b = a by c. 2

3As always, the reverse order of ≤K also defines a partial order.
4One can define in a similar way right and left monotonicity by imposing only the first two

conditions or the first and third conditions. In all that follows, unless otherwise specified, one can
replace monotonic by right monotonic.
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Idempotence combined with monotonicity and negativity makes the partial order over
K unique.

Proposition 1 Let (K,⊕,⊗, 0, 1) be a semiring provided with a partial order ≤. As-
sume that K is negative, idempotent, and monotonic, then ≤ coincides with the natural
order ≤K.

Proof. Since 1 ≤ 0, by monotonicity we have ∀b, b ≤ 0, and: ∀(a, b) ∈ K2, b⊕ a ≤ a.
The monotonicity of ≤ and the idempotence of K give: ∀(a, b) ∈ K2, (a ≤ b)⇒ (a(=
a⊕ a) ≤ b⊕ a). Since ≤ is antisymmetric, these inequalities imply: ∀(a, b) ∈ K2, (a ≤
b) ⇒ (a = b ⊕ a = a ⊕ b). Thus ∀(a, b) ∈ K2, (a ≤ b) ⇒ (a ≤K b). Conversely, let
a and b be in K and assume that a ≤K b, thus a ⊕ b = a. Since 1 ≤ 0, a ≤ 0, and
(a ⊕ b) ≤ b, that is a ≤ b. Thus: ∀(a, b) ∈ K2, (a ≤K b) ⇔ (a ≤ b). This ends the
proof of the proposition. 2

A similar proposition holds in the case of positive idempotent semirings with the
reverse order of ≤K.

Definition 5 Let (K,⊕,⊗, 0, 1) be a semiring. K is bounded if 1 is an annihilator
for ⊕: ∀a ∈ K, 1⊕ a = 1.

The Boolean semiring B = ({0, 1},∨,∧, 0, 1) is an example of a bounded semiring:
1 ∨ 0 = 1 ∨ 1 = 1. We will see other examples of bounded semirings such as the
tropical semiring.

Lemma 3 Let (K,⊕,⊗, 0, 1) be a bounded semiring. Then, K is idempotent.

Proof. Since K is bounded, 1⊕1 = 1. The multiplication of both sides of this equality
by a gives: ∀a, a⊕ a = a. 2

For a bounded semiring (K,⊕,⊗, 0, 1) provided with the natural order ≤K we have:
∀a ∈ K, 0 ≤K a ≤K 1. This justifies the choice of the term bounded.

Our general framework for single-source shortest distance problems is based on
k-closed semirings.5

Definition 6 Let k ≥ 0 be an integer. A semiring (K,⊕,⊗, 0, 1) is k-closed if:

∀a ∈ K,

k+1
⊕

n=0

an =

k
⊕

n=0

an

When k = 0, the previous expression can be rewritten as: ∀a ∈ K, 1⊕a = 1. Thus, the
notion of 0-closedness coincides with that of boundedness for commutative semirings.

5See [13, 14] for the definition of the class of locally closed semirings which includes k-closed
semirings. Our semiring framework for single-source shortest-distance problems includes locally
closed semirings.
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Lemma 4 Let (K,⊕,⊗, 0, 1) be a k-closed semiring, then for any integer l > k and
a ∈ K:

∀a ∈ K,

l
⊕

n=0

an =

k
⊕

n=0

an

Proof. The proof is by induction on l. By definition, the equality holds with l = k+1.
Assume now that it holds for l ≥ (k + 1). By distributivity of ⊗ over ⊕ and by
hypothesis:

∀a ∈ K,

l+1
⊕

n=0

an =

l−k−1
⊕

n=0

an ⊕ al−k ⊗ (

k+1
⊕

n=0

an) =

l−k−1
⊕

n=0

an ⊕ al−k ⊗ (

k
⊕

n=0

an) =

l
⊕

n=0

an

This proves the lemma. 2

The following definition provides a general framework for all-pairs shortest-distance
problems.

Definition 7 A semiring (K,⊕,⊗, 0, 1) is closed if:

• For all a ∈ K, the infinite sum
⊕∞

n=0 an is well-defined and in K;

• Associativity, commutativity, and distributivity apply to countable sums. Thus,
for any three countable sets (ai)i∈I and (bj)j∈J with:

A =
⊕

i∈I

ai ∈ K B =
⊕

j∈J

bj ∈ K

the following properties hold.

– associativity: for any partitioning of I in Ik, k ∈ K,
⊕

i∈Ik
ai ∈ K and

A =
⊕

k∈K(
⊕

i∈Ik
ai), and a similar property holds with ⊗;

– commutativity: let I ′ be a permutation of I, then
⊕

i∈I′ ai ∈ K and: A =
⊕

i∈I′ ai;

– distributivity:
⊕

i∈I,j∈J (ai ⊗ bj) ∈ K and: A⊗B =
⊕

(i,j)∈I×J (ai ⊗ bj).

This definition of closed semirings is more general than the one used by Cormen et
al. [8] since it does not assume idempotence. However, idempotence is not necessary
for the proof of correctness of the generic all-pairs shortest-distance algorithms of
Floyd-Warshall and Gauss-Jordan [25] (see [25, 8, 33] for the presentation of these
algorithms). The running time complexity of these algorithms is:

O(|Q|3(T⊕ + T⊗ + T∗))

where T⊕, T⊗ and T∗ denote the worst cost of⊕, ⊗, and closure. The space complexity
of these algorithms is O(|Q|2). Due to these complexities, these algorithms are often
impractical for graphs of several hundred million vertices and edges. The single-source
shortest-distance algorithms presented in the next section can be used to solve the
all-pairs shortest-distance problem more efficiently for sparse graphs in the case of
some semirings such as the tropical semiring introduced in the next sections.
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2. Single-source shortest-distance problems

In this section, we define the single-source shortest-distance problem. We consider a
semiring (K,⊕,⊗, 0, 1), and a weighted directed graph G = (Q, E, w) over K, where
Q stands for the set of vertices of G, E for the set of edges, and w : E → K the weight
function mapping edges to elements of the semiring. Given an edge e ∈ E, we denote
by n[e] its destination (or next) vertex, by p[e] its origin (or previous vertex), and by
w[e] its weight. Given a vertex q ∈ Q, we denote by E[q] the set of edges leaving q.

A path π = e1e2 · · · ek in G is an element of E∗ with consecutive edges: n[ei] =
p[ei+1] for i = 1, . . . , k − 1. We extend n and p to paths by setting: p[π] = p[e1], and
n[π] = n[ek]. A cycle is a path starting and ending at the same vertex: n[c] = p[c].
The weight function w can also be extended to paths by defining the weight of a path
as the result of the ⊗-multiplication of the weights of its constituent edges:

w[π] =

k
⊗

i=1

w[ei]

and can in fact be extended to any finite set of paths by: w[∪n
i=1πi] = ⊕n

i=1w[πi]. We
denote by P (q) the set of paths from s to q ∈ Q.

The classical single-source shortest paths problem is defined by Bellman-Ford equa-
tions [4, 17] with real-valued weights and specific operations: the weights are added
along the paths using addition of real numbers (+ operation), and the solution of the
equation gives the shortest distance to each vertex q ∈ Q (min operation). We gen-
eralize this problem by considering an arbitrary semiring (K,⊕,⊗, 0, 1). The weights
are then elements of a set K, they are ⊗-multiplied along the paths, and the solution
of the equations is the ⊕-sum of the weights of the paths from the source to each
vertex q ∈ Q.

Let s ∈ Q be a fixed vertex of G called the source. For any vertex q ∈ Q, we denote
by δ(s, q) the shortest distance from s to q associated to the weighted directed graph
G and define it by:6











δ(s, s) = 1

∀q ∈ Q− {s}, δ(s, q) =
⊕

π∈P (q)

w[π] (1)

when all these summations are well-defined and in K. In the following, we will consider
a class of semirings for which this assumption holds. Note that in general the notion
of shortest path is not meaningful since with some semirings there might be no path
from s to q with weight δ(s, q). Thus, in general, we will restrict ourselves to the use
of the term shortest distance.

Given a graph G, we can extend the definition of k-closed semirings in the following
way.

6If P (q) = ∅, the summation is defined to be 0. The first equation (δ(s, s) = 1) can be omitted.
Its presence does not affect the generality of the problem and the algorithm described later however.
Indeed, the addition of a new source vertex s connected to the previous source by an edge with
weight 1 leads to an equivalent problem where δ(s, s) = 1.
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Definition 8 Let (K,⊕,⊗, 0, 1) be a commutative semiring, G = (Q, E, w) a weighted
directed graph over K and k ≥ 0 an integer. K is k-closed for G if for any cycle π in
G:

k+1
⊕

n=0

w[π]n =

k
⊕

n=0

w[π]n

For each vertex q ∈ Q, we denote by Pk(q) the set of paths from s to q with at most
k occurrences of a cycle. It is not hard to show that the set of paths in Pk(q) is finite.
When k = 0, Pk(q) is the set of simple paths from s to q. By lemma 4, for a semiring
K k-closed for G, we have:

∀ l ≥ k,
⊕

π∈Pl(q)

w[π] =
⊕

π∈Pk(q)

w[π]

Since P∞(q) = P (q), this leads us to define:

⊕

π∈P (q)

w[π] =
⊕

π∈Pk(q)

w[π]

and thereby define the shortest distances δ(s, q) when K is k-closed for G. The
semiring framework that we consider in the following is that of commutative semirings
K k-closed for G. As an illustration of the choice of our framework, consider the
semiring (R ∪ {∞} , min, +,∞, 0) used in classical shortest-paths problems. It is not
bounded since min {−1, 0} 6= 0. But, if the graph G has no negative cycle, this
semiring is 0-closed (bounded) for G: the weight w[c] of any cycle c is non-negative,
thus min {w[c], 0} = 0.

3. Generic single-source shortest-distance algorithm

In this section, we present a generic algorithm to compute single-source shortest
distances for semirings covered by our framework. The algorithm is generic in two
senses: it works with any semiring that falls within this framework and with any
choice of the queue discipline.

Our framework includes semirings that are not idempotent. For example, we may
consider the ring (Rn×n, +, ·, 0n, In) of square n× n matrices over R, n > 0, which is
not idempotent (In +In 6= In). If G = (Q, E, w) is a weighted directed graph over this
ring such that its cycles are all weighted with powers of a nilpotent matrix N then
(Rn×n, +, ·, 0n, In) is n-closed for G since Nn+1 = 0. In section 6.2, we will present an
infinite family of non-idempotent k-closed semirings, k-tropical semirings, and their
application to the computation of the k-shortest distances from a given source vertex
to each vertex of a graph.

Before presenting our generic algorithm, let us first mention that a straightforward
extension of the classical algorithms based on a relaxation technique would not pro-
duce the correct result for non-idempotent semirings. Indeed, consider the weighted
graph of figure 1. Regardless of the order in which the vertices are visited, the result-
ing shortest distances will not be correct.
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Figure 1 Single-source shortest distances for non-idempotent semirings.

The successive values of a tentative shortest distance from the source 0 to the
vertex 1 will be: a, then a⊕ (a⊗ b) = a⊗ (1⊕ b), then a⊗ (1⊕ b)⊕ a⊗ (1⊕ b)⊗ b =
a⊗ (1⊕ b)2, . . . , a⊗ (1⊕ b)n, . . . Thus, assuming that the algorithm converges within
a finite number of iterations N , then the result will be: a⊗ (1⊕ b)N which in general
could be different from the expected and correct result a⊗ b∗, even if bN = b∗ for the
semiring considered.

3.1. Proofs and algorithm

We present a generic algorithm for solving single-source shortest-distance problems.
Our algorithm is based on a generalization of the classical relaxation technique. As
seen earlier, a straightforward extension of the relaxation technique would lead to
an algorithm that would not work with non-idempotent semirings. To deal properly
with multiplicities in the case of non-idempotent semirings, we keep track of the
changes to the tentative shortest distance from s to q after the last extraction of q

from the queue. The following is the pseudocode of the algorithm.

Generic-Single-Source-Shortest-Distance (G, s)
1 for i← 1 to |Q|

2 do d[i]← r[i]← 0

3 d[s]← r[s]← 1

4 S ← {s}

5 while S 6= ∅

6 do q ← head(S)

7 Dequeue(S)

8 r′ ← r[q]

9 r[q]← 0

10 for each e ∈ E[q]

11 do if d[n[e]] 6= d[n[e]]⊕ (r′ ⊗ w[e])

12 then d[n[e]]← d[n[e]]⊕ (r′ ⊗ w[e])

13 r[n[e]]← r[n[e]]⊕ (r′ ⊗ w[e])

14 if n[e] 6∈ S

15 then Enqueue(S, n[e])

16 d[s]← 1
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We use a queue S to maintain the set of vertices whose leaving edges are to be
relaxed. S is initialized to {s} (line 4). For each vertex q ∈ Q, we maintain two
attributes: d[q] ∈ K an estimate of the shortest distance from s to q, and r[q] ∈ K

the total weight added to d[q] since the last time q was extracted from S. Lines 1− 3
initialize arrays d and r. After initialization, d[q] = r[q] = 0 for q ∈ Q − {s}, and
d[s] = r[s] = 1.

Given a vertex q ∈ Q and an edge e ∈ E[q], a relaxation step on e is the sequence of
instructions of lines 11-13 and denoted by Relax(q, e). r′ is the value of r[q] just after
the last extraction of q from S if q has ever been extracted from S, its initialization
value otherwise.

Each time through the while loop of lines 5-15, a vertex q is extracted from S

(lines 6-7). The value of r[q] just after extraction of q is stored in r′, and then r[q]
is set to 0 (lines 8-9). Lines 11-13 relax each edge leaving q. If the tentative shortest
distance d[n[e]] is updated during the relaxation and if n[e] is not already in S, the
vertex n[e] is inserted in S so that its leaving edges be later relaxed (lines 14-15).
r[n[e]] is updated whenever d[n[e]] is to keep track of the total weight added to d[n[e]]
since n[e] was last extracted from S or since the time after initialization if n[e] has
never been extracted from S. Finally, line 16 resets the value of d[s] to 1.

To prove the correctness and termination of the algorithm, we define for each vertex
q ∈ Q two subsets of P (q), D(q) and R(q), such that at any time during the execution
of the algorithm:

d[q] =
⊕

π∈D(q)

w[π] and r[q] =
⊕

π∈R(q)

w[π]

These sets and a working subset R′ are defined as follows. Just after each execution
of the instruction of:

• line 2: D(i)← R(i)← ∅;

• line 3: D(s)← R(s)← {ǫ};7

• line 8: R′ ← R(q);

• line 9: R(q)← ∅;

• line 10: D(n[e])← D(n[e]) ∪R′e;

• line 13: R(n[e])← R(n[e]) ∪R′e.

Since R(q) is set to the empty set after each extraction of vertex q from the queue
S and augmented with the set of paths R′ whenever d[q] is updated, R(q) represents
at any time the set of all paths whose weight has been added to d[q] since the last
extraction of q (R(q) = ∅ before any extraction of q).

Similarly, D(q) represents the set of all paths π such that π belonged to R′ at some
time, thus the set of all paths whose weight was compared to d[q] via the relaxation
of lines 11-15 and by construction:

d[q] =
⊕

π∈D(q)

w[π]

7We use the following convention in what follows: w[ǫ] = 1.
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The following lemma shows that the instruction D(n[e]) ← D(n[e]) ∪ R′e is always
executed with R′e ∩ D(n[e]) = ∅, in other words that only new paths are added to
D(n[e]).

Lemma 5 At any time during the execution of the algorithm, just after extraction of
vertex q from queue S (line 6), for any edge e leaving q: R(q)e ∩D(n[e]) = ∅.

Proof. The proof is by induction on the number of queue extractions. The property
clearly holds before any queue extraction since only D(s) is non-empty at that point
and R(q)e ∩D(s) = R(q)e ∩ {ǫ} = ∅ for any edge e regardless of the value of R(q).

Assume now that the property holds just after any queue extraction before extrac-
tion of q = p[e] at time t0. If R(q)e∩D(n[e]) 6= ∅ at time t0, then there exists a path
π1 such that π1e ∈ R(q)e ∩D(n[e]). Thus, at time t0, π1 ∈ R(q) and π1e ∈ D(n[e]).

Since π1e ∈ D(n[e]), there exists a time t′ < t0 where edge e has been relaxed with:
π1 ∈ R′, R[q] = ∅ and π1e ∈ D(n[e]). Let t′0 be the time of the most recent queue
extraction before t′. At time t′0, q has been extracted from the queue with π1 ∈ R(q),
thus π1 ∈ D(q) at time t′0.

Since π1 ∈ R(q) at time t0 and R(q) = ∅ at time t′ < t0, there exists a time t” with
t′ < t” < t0 where π1 has been added to R(q). This implies in particular that π1 6= ǫ,
thus there exists a path π0 and an edge e1 such that π1 = π0e1. Let t”0 be the most
recent queue extraction before t”, we have t′0 < t”0 < t” < t′0 < t0. At time t”0, p[e1]
has been extracted from the queue with π0 ∈ R(p[e1]) and π1 ∈ R(p[e1])e1. Thus, at
time t”0, R[p[e1]]e1 ∩D(q) 6= ∅, but this contradicts the induction hypothesis. 2

Lemma 6 At any time during the execution of the algorithm and for any vertex
q ∈ Q:

π = π1π2 ∈ D(q)⇒ π1 ∈ D(p[π2])

Proof. By construction of D, a path πe is added to the set D(n[e]) only if π is a path
in R′. Hence, π is in R(p[e]) at the time of the previous extraction of p[e]. All the
paths in R(p[e]) have been added to D(p[e]) since the last extraction of p[e], therefore
π is in D(p[e]). Thus πe ∈ D(n[e])⇒ π ∈ D(p[e]) and a repeated application of this
implication proves the lemma. 2

Lemma 7 Assume that the equality d[p[e]] = d[p[e]] ⊕ x holds at time t during the
execution of the algorithm for some x ∈ K and assume that edge e is later relaxed at
time t′ > t, then at any time after that relaxation:

d[n[e]] = d[n[e]]⊕ (x ⊗ w[e])

Proof. The new value of d[p[e]] at time t′ is of the form: d[p[e]]⊕ y. Let d0 (respec-
tively d1) be the value of d[n[e]] just before (respectively just after) relaxation. By
definition of relaxation, we have:

d1 = d0 ⊕ ((d[p[e]]⊕ y)⊗ w[e])
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Thus:

d1 ⊕ (x ⊗ w[e]) = d0 ⊕ ((d[p[e]]⊕ x⊕ y)⊗ w[e])

= d0 ⊕ ((d[p[e]]⊕ y)⊗ w[e]) = d1

Future modifications of d[n[e]] will only ⊕-add some value z ∈ K to d[n[e]] and won’t
affect the equality. This proves the lemma. 2

Corollary 1 Let π = e1 · · · en be a path of G. Assume that the equality d[p[e1]] =
d[p[e1]]⊕ x holds at time t during the execution of the algorithm for some x ∈ K and
assume that edges e1 . . . en are later relaxed respectively at times t1 < · · · < tn, t < t1,
then at any time after tn:

d[n[π]] = d[n[π]]⊕ (x ⊗ w[π])

Proof. The result is a direct consequence of a repeated application of lemma 7. 2

Lemma 8 Let π0, . . . , πn be paths in G and c a cycle. Assume that
π0cπ1c · · ·πn−1cπn ∈ D(q) at some time t during the execution of the algorithm,
then π0 · · ·πn ∈ D(q) or there exists x ∈ K such that d[q] = d[q]⊕ w[π0 · · ·πn]⊕ x at
any time after t.

Proof. Let π1π2 · · ·πn = e1 · · · em. Since c is a cycle and π0c · · ·πn−1cπn ∈ D(q),
edges e1, . . . , em have been relaxed first (at least once) at times respectively t1 < . . . <

tm and by lemma 6, π0 ∈ D(p[cπ1c · · ·πn−1cπn]) = D(n[π0]). Assume that π0 · · ·πn 6∈
D(q), then there exists i < m maximum such that π0e1 · · · ei ∈ D(n[π0e1 · · · ei]). By
definition of i, π0e1 · · · eiei+1 cannot be in R(n[π0e1 · · · ei]) at any time before t. Thus,
the test of line 11 must not have been passed during the relaxation of edge ei−1, and
at time ti−1:

d[n[π0e1 · · · ei]] = d[n[π0e1 · · · ei]]⊕ (w[R(n[π0e1 · · · ei−1])]⊗ w[ei])

Since ti−1 is the first relaxation of ei−1 after ti−2, we have: π0e1 · · · ei−1 ∈
R(n[π0e1 · · · ei−1]). Thus, there exists x such that:

d[n[π0e1 · · · ei]] = d[n[π0e1 · · · ei]]⊕ w[π0e1 · · · ei]⊕ x

By corollary 1, this implies that:

d[n[π0e1 · · · em]] = d[n[π0e1 · · · em]]⊕ (w[π0e1 · · · ei]⊕ x)⊗ w[ei+1 · · · en]

Since n[π0e1 · · · em] = n[π0π1 · · ·πn], this proves the lemma. 2

Lemma 9 At any time during the execution of the algorithm, if R′e ∩ Pk(n[e]) = ∅,
then the test of line 11 is not passed.
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Proof. Let π be a path such that πe ∈ R′e − Pk(n[e]) at time t. By definition of
Pk(n[e]), πe is a path with strictly more than k occurrences of a cycle c and there
exist paths π1 . . . πk+1 such that:

πe = π1c · · ·πk+1c

Since π ∈ R(p[e]), by lemma 6, π1c · · ·πkcπk+1 ∈ D(n[e]). Let Πi =
π1cπ2c · · ·πicπi+1πi+2 · · ·πk+1 for i = 1, . . . , k + 1 and Π0 = π1 · · ·πk+1. By
lemma 8, at time t, for any i, Πi ∈ D(n[e]) or there exists xi ∈ K such that:
d[n[e]] = d[n[e]] ⊕ w[Πi] ⊕ xi. Thus, at time t just before the relaxation of e, there
exists X ∈ K such that:

d[n[e]] =

k
⊕

i=0

w[Πi]⊕X = w[π1 · · ·πn]⊗
k

⊕

i=1

w[c]i ⊕X

Since K is k-closed for G:

d[n[e]]⊕ w[πe] = w[π1 · · ·πn]⊗
k

⊕

i=1

w[c]i ⊕X ⊕ w[π1 · · ·πn]⊗ w[c]k+1

= w[π1 · · ·πn]⊗
k

⊕

i=1

w[c]i ⊕X = d[n[e]] (2)

Thus, if R′e ⊆ P (q)− Pk(n[e]), then:

d[n[e]]⊕ (r′ ⊗ w[e]) = d[n[e]]⊕ w[R′e] = d[n[e]]

and the test of line 11 is not passed. 2

Theorem 1 Let G = (Q, E, w) be a weighted directed graph over K and s a fixed
source vertex. Assume that K is k-closed for G, then if we run the Generic-Single-

Source-Shortest-Distance algorithm on the weighted graph G and source s ∈ Q,
the algorithm terminates and at termination for any vertex q, d[q] = δ(q).

Proof. By lemma 9, the instructions of lines 12-15 are executed only if R′ contains
at least one path in Pk(n[e]) and by lemma 5 that path does not already belong to
D(n[e]). Thus, for each vertex q = n[e], the instructions of lines 12-15 can be executed
at most card(Pk(q)) times and a vertex q can only be inserted in S a finite number
of times. This proves that the algorithm terminates.

By construction, at any time during the execution of the algorithm, for any vertex
q, d[q] = w[D(q)], with D(q) ⊆ P (q). The proof of lemma 9 shows that the paths in
D(q) that are not in Pk(q) do not contribute to the value of d[q], thus in fact we can
write: d[q] = w[D′(q)], with D′(q) = D(q) ∩ Pk(q).

Assume that the algorithm does not compute the correct shortest-distances, then
at termination, there exits a vertex q and a path π = e1 · · · en ∈ Pk(q) −D′(q) such
that d[q] 6= d[q] ⊕ w[π]. Let q and π be such that π is the shortest path having
this property. π cannot be reduced to just one transition (n = 1), since vertex s is
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extracted at least once and thus e1 has been relaxed at least once and e1 ∈ D(n[e1])
after that relaxation. Thus, n ≥ 2 and by definition of π:

d[qn−1] = d[qn−1]⊕ w[e1 · · · en−1] (3)

with qn−1 = n[e1 · · · en−1], and:

d[q] 6= d[q]⊕ w[e1 · · · en] (4)

Eq. (4) implies that w[e1 · · · en] 6= 0, thus we also have w[e1 · · · en−1] 6= 0 and in view
of Eq. (3), we also have d[qn−1] 6= 0. Since d[qn−1] 6= 0, qn−1 has been inserted in S

at least once and thus en has been relaxed at least once. Let t be the time at which
en was last relaxed before termination. If the Eq. (3) held at time t, then by corollary
1 the following holds after relaxation and at any time after:

d[q] = d[q]⊕ w[e1 · · · en−1]⊗ w[en]

which contradicts Eq. (4). It the Eq. (3) did not hold at time t, then the value of
d[qn−1] must have been changed after t and there must have been a later relaxation
of the edges leaving qn−1 at time t′ > t which contradicts the definition of t. 2

The proof of the correctness and termination of the algorithm did not require specify-
ing the queue discipline used. In other words, vertices can be extracted from S in any
chosen order and this won’t affect the correctness of the algorithm or its termination.
The algorithm is thus generic in that sense and also in the sense that it works for dif-
ferent semirings. The choice of the queue discipline can directly affect the complexity
of the algorithm however.

3.2. Complexity

The running time complexity of the Generic-Single-Source-Shortest-Distance

algorithm depends on the semiring K and the operations ⊕ and ⊗ used. We denote
by T⊕ the time to compute ⊕ and by T⊗ the time to compute ⊗.8 We denote by
N(q) the number of times the vertex q is inserted in S when the generic algorithm
is run on the directed graph G. We denote by C(E) the worst cost of removing a
vertex q from the queue S (lines 6-7 of the pseudocode) and by C(I) the worst cost
of inserting q in S. During a relaxation call, a tentative shortest distance may be
updated (line 12). This may also affect the queue discipline. We denote by C(A) the
worst cost of an assignment including the possible cost of reorganizing the queue to
perform this assignment.

The initialization step of the algorithm (lines 1-3) takes O(|Q|) time, each relaxation
(lines 11-13) takes O(T⊕ +T⊗+C(A)) time. There are exactly N(q)|E[q]| relaxations
at q. The total cost of the relaxations is thus: O((T⊕ +T⊗ +C(A))|E|maxq∈Q N(q)).
Since each vertex q is inserted in S N(q) times (line 15), it is also extracted from S

N(q) times (lines 6-7), and the total complexity of the algorithm is:

8In general, these computation times might heavily depend on the operands. We make the
assumption here that they are still bounded and that T⊕ and T⊗ correspond to the upper bounds.
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O(|Q|+ (T⊕ + T⊗ + C(A))|E|max
q∈Q

N(q) + (C(I) + C(E))
∑

q∈Q

N(q))

As mentioned before, the Generic-Single-Source-Shortest-Distance algo-
rithm works with any queue discipline. Some queue disciplines are better than oth-
ers. The appropriate choice depends on the semiring K and the specific restrictions
imposed on G. With a good choice, the maximum number of times a vertex is in-
serted in S (maxq∈Q N(q)) can be limited.9 The algorithm is then very efficient. In
the next sections, we will present some classical algorithms using the following queue
disciplines: topological order, shortest-first order, first-in first-out order. In the worst
case, since the number of simple paths from s to q may be exponential in the size of
the graph (|Q|+ |E|), the complexity of the algorithm is exponential.

The results presented in this section can be extended to cover the case of non-
commutative semirings [28]. Our framework can also be generalized by introducing
right and left semirings [28].10 A right semiring is an algebraic structure similar to
a semiring except that it may lack left distributivity. A left semiring is defined in a
similar way. An example of left semiring is the string semiring (Σ∗ ∪ {∞} ,∧, ·,∞, ǫ)
defined on the set of strings over an alphabet Σ [29]. Our generic shortest-distance
algorithm can be used with the left semiring in the first step of the minimization of
subsequential transducers [29]. Apart from generalizations of this type, it seems that
our general framework covers essentially all semirings for which the algorithm works.
Indeed, the condition in the definition of k-closed semirings on the convergence after
k iterations is necessary for the computation of the weight of the shortest distance in
presence of a loop.

Some semirings such as R = (R, +, ·, 0, 1) do not verify the conditions of the frame-
work for our general single-source shortest-distance algorithm, but are covered by the
general framework of the all-pairs shortest-distance algorithm we described in a pre-
vious section. The generalized algorithms of Floyd-Warshall or Gauss-Jordan can be
used to solve the single-source shortest problem with such semirings but their cubic
time complexity makes them impractical for many large graphs of several hundred
million edges encountered in many applications. One can decompose the graph into its
strongly connected components, use Floyd-Warshall or Gauss-Jordan’s algorithms for
computing the all-pairs shortest-distances within each strongly connected component
and then find all-pairs shortest-distances by considering the acyclic component graph
[30]. But the solution remains impractical in presence of large strongly connected
components.

One can then have recourse to various approximations of Floyd-Warshall and
Gauss-Jordan algorithms, but such algorithms do not fully exploit the sparsity of
the graphs. We have devised an approximate single-source shortest-distance algo-
rithm that can be viewed as an alternative and that is orders of magnitude faster in
practice to compute single-source shortest distances in such cases. The algorithm is

9This number is a constant or is linear in |Q| in many classical algorithms.
10These generalizations tend to lengthen the proofs and the overall presentation, thus we chose

not to present them here. The same generic algorithm can be used in those generalized cases.
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derived from our generic single-source shortest distance algorithm when K is provided
with a metric ∆ by replacing the relaxation condition d[n[e]] 6= d[n[e]] ⊕ (r′ ⊗ w[e])
by an approximate test:

∆(d[n[e]], d[n[e]]⊕ (r′ ⊗ w[e])) ≤ ǫ

where 0 ≤ ǫ is a positive number used for approximation.
In the next section, we present a variant of the generic algorithm which guarantees

a linear time complexity when used with acyclic weighted directed graphs.

4. Generic topological order single-source shortest-distance algorithm

As mentioned before, the generic single-source shortest-distance algorithm works with
any queue discipline. Here, we restrict the queue discipline so that in the case of acyclic
graphs the order be topological.

A weighted directed graph G = (Q, E, w) can be decomposed into strongly con-
nected components [39]. The strongly connected components of a directed graph,
SCCs in short, are the equivalence classes of its vertices under the relation R defined
by: q R q′ if there is a path in G from q to q′, and a path from q′ to q. The corre-
sponding decomposition, the component graph of G, is an acyclic directed graph that
has one vertex for each SCC of G, and an edge from u to v if there exists an edge
from the SCC of G corresponding to u to the SCC of G corresponding to v. Since the
component graph is acyclic, its vertices, which correspond to the SCCs of G, can be
topologically sorted. A topological sort of a graph G′ is an ordering of its vertices such
that if G′ contains an edge e from q to q′, then q appears before q′ in the ordering.
The computation of the SCCs of G and that of the topological sort of the SCCs can
all be done in linear time O(|Q| + |E|) [22, 2, 8].

Assume that the SCCs of G are defined and topologically ordered. We can then
number them according to the topological order: S1, S2, . . . , SN . The queue discipline
used for S in the Generic-Single-Source-Shortest-Distance algorithm can be
restricted by imposing that the SCC containing the vertex extracted from S have the
lowest number. In other words, as long as S contains vertices that are in S1 the next
vertex extracted must be in S1, then we proceed with S2 and so forth. By definition
of the topological order, if the vertices contained in G are all in ∪i>i0Si, 1 ≤ i0 ≤ N

at time t, then a vertex of Si0 cannot be inserted in the queue S at any time after t,
since there is no edge from a vertex in ∪i>i0Si to a vertex in Si0 .

This defines a variant of the generic algorithm, Generic-Topological-Single-

Source-Shortest-Distance, which consists of computing the shortest distances
for the vertices in the SCC S1, then proceed with S2, etc. Figures 2-3 give the
pseudocode of the algorithm. The arrays d and r are initialized as in the previous
generic algorithm (lines 1-3, figure 3). Then, for each SCC X of G considered in
topological order, the procedure SCC-Single-Source-Shortest-Distance (G, X)
is called. Line 1 (figure 2) inserts in the queue S the set of vertices q in X such that
r[q] 6= 0, that is the vertices q whose shortest distances have been modified since
the initialization. The pseudocode is then identical to that of the generic algorithm,
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SCC-Single-Source-Shortest-Distance (G, X)
1 S ← {q ∈ X : r[q] 6= 0}

2 while S 6= ∅

3 do q ← head(S)

4 Dequeue(S)

5 r ← r[q]

6 r[q]← 0

7 for each e ∈ E[q]

8 do if d[n[e]] 6= d[n[e]]⊕ (r ⊗ w[e])

9 then d[n[e]]← d[n[e]]⊕ (r ⊗ w[e])

10 r[n[e]]← r[n[e]]⊕ (r ⊗ w[e])

11 if n[e] 6∈ S and n[e] ∈ X

12 then Enqueue(S, n[e])

Figure 2 Single-source shortest-distance algorithm restricted to the set X.

except from line 11, which imposes the vertex n[e] to be in X in order to be inserted
in S. This corresponds to the restriction over the queue discipline that we defined
above which imposes that the vertices of X be considered before those of SCCs that
come after X in the topological order. Line 6 resets the value of d[s] to 1 as in the
generic algorithm.

Note that within each SCC X an arbitrary queue discipline can be chosen for S.

Theorem 2 Let G = (Q, E, w) be a weighted directed graph over K and s a fixed
source vertex. Assume that (K,⊕,⊗, 0, 1) is a semiring k-closed for G, then if we
run the Generic-Topological-Single-Source-Shortest-Distance algorithm
on the weighted graph G and source s ∈ Q, the algorithm terminates, and at ter-
mination for any vertex q ∈ Q, d[q] = δ(s, q).

Proof. The topological single-source shortest-distance algorithm is a specific case of
the generic algorithm where the choice of the queue discipline is more restricted. By
theorem 1, Generic-Single-Source-Shortest-Distance works with any queue
discipline. Thus, Generic-Topological-Single-Source-Shortest-Distance

terminates and computes exactly the shortest distance to each vertex q ∈ Q. 2

When the graph G is acyclic, the algorithm works with any semiring.

Corollary 2 Let (K,⊕,⊗, 0, 1) be a semiring. Let G = (Q, E, w) be an acyclic
weighted directed graph over K and s a fixed source vertex. If we run the Generic-

Topological-Single-Source-Shortest-Distance algorithm on the weighted
graph G and source s ∈ Q, the algorithm terminates, and at termination for any
vertex q ∈ Q, d[q] = δ(s, q).
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Generic-Topological-Single-Source-Shortest-Distance (G, s)
1 for i← 1 to |Q|

2 do d[i]← r[i]← 0

3 d[s]← r[s]← 1

4 for each SCC X considered in topological order

5 do SCC-Single-Source-Shortest-Distance (G, X)

6 d[s]← 1

Figure 3 Generic topological single-source shortest-distance algorithm.

Proof. When G is acyclic, by definition, any semiring (K,⊕,⊗, 0, 1) is right k-closed
for G. 2

The algorithm of Lawler [24] is a special case of Generic-Topological-

Single-Source-Shortest-Distance algorithm when used with an acyclic graph
weighted with real-valued numbers. The Generic-Topological-Single-Source-

Shortest-Distance algorithm is useful among other things for computing the coef-
ficients of a rational power series represented by a weighted automaton or a weighted
transducer [5, 6, 10, 36, 23].

An efficient implementation of the Generic-Single-Source-Shortest-

Distance algorithm with various queue disciplines including the generic topological
order can be found in the latest version of the FSM library [30].

4.1. Complexity

The complexity of the Generic-Topological-Single-Source-Shortest-

Distance algorithm is not different from that of Generic-Single-Source-

Shortest-Distance in the general case. But we can show that the complexity of
the topological single-source shortest-distance algorithm is linear when G is acyclic.

When G is acyclic, each strongly connected component X is reduced to a sin-
gle vertex q. q cannot be reinserted in S after relaxation of the edges leav-
ing q since G is acyclic. Thus, each vertex q is inserted in S at most once:
∀q ∈, N(q) ≤ 1. There are exactly |E[q]| relaxations calls made in the procedure
SCC-Single-Source-Shortest-Distance (G, X) for each vertex q. As mentioned
earlier, the topological sort can be done in linear time O(|Q| + |E|). The test of
line 11 (figure 2) can be done is constant time since X is reduced to a single vertex.
The cost of the extraction from S is constant since S contains at most one vertex,
C(E) = O(1). The cost of an assignment C(A) is also constant since it does not affect
the topological order.

Thus, based on the general complexity formula given in the previous section for the
Generic-Single-Source-Shortest-Distance algorithm, the running time com-
plexity of the Generic-Topological-Single-Source-Shortest-Distance algo-
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rithm is:
O(|Q|+ (T⊕ + T⊗)|E|)

In next sections, we will examine the use of the generic algorithms just presented with
various semirings. This will show how the same algorithm can be used in different
contexts by just modifying the underlying algebra.

5. Classical shortest-distance algorithms

Classical shortest-distance algorithms such as Dijkstra’s algorithm and the Bellman-
Ford algorithm are special cases of the generic single-source shortest-distance algo-
rithm. They correspond to the case where (K,⊕,⊗, 0, 1) is the tropical semiring.

5.1. Tropical semirings

The operations used in many optimization problems are min and +. Traditional
shortest-paths problems used in various applications are specific instances of such
general optimization problems. The semirings associated to these operations are
called tropical semirings due to the extensive work of Imre Simon in Brazil relating to
these semirings [38]. See [1] and [32] for more specific presentations and discussions
of tropical semirings.

It is not hard to verify that the system T = (R+ ∪ {∞}, min, +,∞, 0) defines a
semiring over the set of non-negative numbers R+ completed with the infinity element
∞, when the min and + operations are extended in the following way:

∀a ∈ R+ ∪ {∞}, min{∞, a} = min{a,∞} = a

and:
∀a ∈ R+ ∪ {∞},∞+ a = a +∞ =∞

We will use the term tropical semiring to refer to the semiring T . Note that the
natural order over T is just the usual order of real numbers (see lemma 1):

∀a, b ∈ R+ ∪ {∞}, (min{a, b} = a)⇔ (a ≤ b)

In the same way, we can define other tropical semirings such as:

1. (N ∪ {∞}, min, +,∞, 0): non-negative natural tropical semiring,

2. (Z ∪ {∞}, min, +,∞, 0): natural tropical semiring,

3. (Q ∪ {∞}, min, +,∞, 0): rational tropical semiring,

4. (R ∪ {∞}, min, +,∞, 0): real tropical semiring,

5. (N ∪ {ω,∞}, min, +,∞, 0): ordinal tropical semiring, with the following order
[26]:

0 ≤ 1 ≤ 2 ≤ · · · ≤ ω ≤ ∞,

and the following extension of addition:

∀a ∈ N ∪ {ω,∞}, a + ω = ω + a = max{a, ω}
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These semirings can be extended to include −∞. For example, (R ∪
{−∞, +∞} , min, +, +∞, 0) is also a semiring. From our perspective here, an es-
sential property of many of the tropical semirings is that they are all idempotent and
that some such as the tropical semiring T are bounded:

∀a ∈ R+ ∪ {∞}, min{0, a} = 0

Thus, the generic algorithms presented in previous sections can be used with the trop-
ical semiring. In particular, the classical shortest-path algorithm of Dijkstra [9] is a
special case of the Generic-Single-Source-Shortest-Distance algorithm where
the semiring K is taken as the tropical semiring T and where the queue discipline is
based on the shortest-first order.

Similarly, the classical Bellman-Ford algorithm [4, 17] is a special case of the
Generic-Single-Source-Shortest-Distance algorithm where the semiring K is
taken as the tropical semiring T , and where the queue discipline is based on the
first-in first-out order.

Bellman-Ford’s algorithm can also be used with directed graphs with negative
weights that have no negative cycles [8]. Indeed, the corresponding algorithm is
a special case of our generic algorithm when used with the real tropical semiring
(R∪ {∞} , min, +,∞, 0). As noticed earlier (section 2), this semiring is not bounded,
but it is 0-closed (bounded) for a graph with no negative cycle.11

6. k-shortest-distance algorithms

Given a weighted graph G = (Q, E, w) over real-valued numbers and a fixed source
vertex s, the k-shortest distance problem consists of determining the k shortest dis-
tances from s to each vertex q ∈ Q. Another slightly different problem is the k-
distinct-shortest distance problem, which consists of determining the k distinct short-
est distances from s to each vertex q ∈ Q.

These problems arise in a variety of domains ranging from network routing to speech
recognition, where one wishes to find not just the shortest path, but the k shortest
paths (see [11, 12] for an extensive bibliography on k-shortest-paths algorithms).
Using the k (distinct) shortest distances from s to q, one can easily find the k (distinct)
shortest paths from s to q. The k-shortest distance problem is the main problem
encountered in most applications such as in speech recognition, or computational
biology where one wishes to determine the k most likely alternatives, since two paths
with different labels may share the same weight and thus both belong to the k shortest
paths. The k-distinct-shortest distance problem is often of less interest in that context.

We will show that the k-shortest-distance problem and the k-distinct-shortest-
distance problem can both be viewed as specific instances of the general shortest-
distance problem where the semiring considered is a k-tropical semiring. We describe
k-tropical semirings, and show that generic single-source shortest-distance algorithm

11Note that by theorem 1 any other queue discipline, in particular the shortest-first order used in
Dijkstra’s algorithm can also be used in that case. This in general does not result in a better time
complexity however.
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can be used to solve these problems. We also give the complexity of a simple imple-
mentation of the algorithm for a specific choice of the queue discipline.

6.1. k-tropical semirings

We define two semirings that can be used to solve k-shortest paths problems.

6.2. The k-tropical semiring Tk

Let k ≥ 1 be a positive integer. mink is a mapping from the set of m-tuples of
R ∪ {∞}, m ≥ k, to (R ∪ {∞})k such that for any (x1, . . . , xm) ∈ (R ∪ {∞})m:
mink(x1, . . . , xm) = (y1, . . . , yk), where (y1, . . . , yk) is the ordered list of the k shortest
elements of (x1, . . . , xm) with repetitions using the natural order of R ∪ {∞}. As an
example: min2(1, 1, 2, 3) = (1, 1).

We define Tk as the set of nonnegative k-tuples in (R+ ∪ {∞})k ordered for the
natural order of R ∪ {∞}:

Tk = {(a1, . . . , ak) ∈ (R+ ∪ {∞})
k : 0 ≤ a1 ≤ . . . ≤ ak}

The following two operations can be defined for all a, b ∈ Tk:

a⊕k b = mink((ai)i ∪ (bj)j) a⊗k b = mink((ai + bj)i,j)

For example, for k = 2,

(1, 2)⊕2(2, 3) = min2(1, 2, 2, 3) = (1, 2) and (1, 2)⊗2(2, 3) = min2(3, 4, 4, 5) = (3, 4)

It is not hard to verify that 0k and 1k as defined by:

0k = (∞, . . . ,∞) 1k = (0,∞, . . . ,∞)

are the identity elements for ⊕k and ⊗k.

Proposition 2 The system Tk = (Tk,⊕k,⊗k, 0k, 1k) is a (k−1)-closed commutative
semiring. For k ≥ 2, Tk is not idempotent.

Proof. Clearly, for any a, b ∈ Tk, a⊕k b ∈ Tk, and ⊕k is commutative. To show the
associativity of ⊕k, it suffices to note that:

∀a, b, c ∈ Tk, (a⊕k b)⊕k c = mink((ai) ∪ (bj) ∪ (ck))

0k is the identity element for ⊕k: ∀a ∈ Tk, a ⊕k 0k = mink(a1, . . . , ak,∞) = a.
Thus, (Tk,⊕k, 0k) is a commutative monoid. For k ≥ 2, Tk is not idempotent. As an
example, let x, y be two elements of R∪{∞} with x < y, and let a ∈ Tk be defined by:
a = (x, . . . , x, y). Then, if k ≥ 2: a⊕ a = (x, . . . , x) 6= a. Clearly, for any a, b ∈ Tk,
a ⊗k b ∈ Tk, and ⊗k is commutative. To show the associativity of ⊗k, it suffices to
note that:

∀a, b, c ∈ Tk, (a⊗k b)⊗k c = mink((ai + bj + cl)i,j,l)
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⊕k distributes over ⊗k, ∀a, b, c ∈ Tk:

(a⊗k c)⊕k (b⊗k c) = mink(mink((ai + cj)i,j), mink((bj + cl)j,l))

= mink((ai + cj)i,j), (bj + cl)j,l))

= (a⊕k b)⊗k c

0k is an annihilator for ⊗k: ∀a ∈ Tk, a ⊗k 0k = mink((ai +∞)i) = 0k. Thus, Tk =
(Tk,⊕k,⊗k, 0k, 1k) is a commutative semiring. Let a = (a1, . . . , ak). For i = 0, . . . , k,
ai = mink(Ai) where Ai is the set of all sums of i elements chosen from {a1, . . . , ak}
with repetitions, (A0 =

{

1k

}

= {(0,∞, . . . ,∞)}). We have:

k
⊕

i=0

k ai = mink(A0, A1, . . . , Ak)

Let x = ai1 + · · · + aik
be an element of Ak. Then, the k following sums: 0, and

ai1 + · · ·+air
, with r = 1, . . . , k−1, are elements of A0, . . . , Ak−1 and are all less than

or equal to x. Thus, x can be omitted in the computation of mink(A0, A1, . . . , Ak),
mink(A0, . . . , Ak) = mink(A0, . . . , Ak−1) and Tk is (k − 1)-closed. 2

The proposition shows that the k-tropical semirings are covered by our general frame-
work for single-source shortest-distance algorithms. We will show that they can be
used to solve k-shortest-distance problems. For k = 1, Tk is the more familiar tropical
semiring which, as already shown in a previous section, is 0-closed or bounded.

6.3. The k-tropical-distinct semiring T ′
k

Let k ≥ 1 be a positive integer. We define <s as the strict order over R+ completed
in the following way:

∀x ∈ R+, y ∈ R ∪ {∞}, (x <s y)⇔ (x < y) and (∞ <s y)⇔ (y =∞)

min′
k is a mapping from the set of m-tuples of R ∪ {∞}, m ≥ k, to (R ∪ {∞})k

such that for any (x1, . . . , xm) ∈ (R ∪ {∞})m: min′
k(x1, . . . , xm) = (y1, . . . , yk),

where (y1, . . . , yk) is the ordered list of the k shortest distinct elements of (x1, . . . , xm)
without repetitions using the order <s, completed with∞ when the number of distinct
elements is less than k. As an example: min2(1, 1, 2, 3) = (1, 2), and min3(1, 1, 1, 2) =
(1, 2,∞). We define T′

k as the set of nonnegative k-tuples in (R+ ∪ {∞})
k ordered

according to <s: T′
k = {(a1, . . . , ak) ∈ (R+ ∪ {∞})k : 0 ≤ a1 <s . . . <s ak}. The

following two operations ⊕′
k and ⊗′

k can be defined for all a, b ∈ T′
k:

a⊕′
k b = min′

k((ai)i ∪ (bj)j) a⊗′
k b = min′

k((ai + bj)i,j)

As an example, for k = 3,

(1, 2, 3)⊕′
3 (0, 1, 2) = min′

3(1, 2, 3, 0, 1, 2) = (0, 1, 2)

(1, 2, 3)⊗′
3 (0, 1, 2) = min′

3(1, 2, 3, 2, 3, 4, 3, 4, 5) = (1, 2, 3)

0k and 1k are the identity elements for ⊕′
k and ⊗′

k.
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Proposition 3 The system T ′
k = (T′

k,⊕′
k,⊗′

k, 0k, 1k) is a (k−1)-closed commutative
semiring. T ′

k is idempotent. T ′
k provided with its natural order ≤T ′

k
is negative and

monotonic.

Proof. Clearly, for any a, b ∈ T′
k, a⊕′

k b ∈ T′
k, and ⊕′

k is commutative. As with ⊕k,
we note that:

∀a, b, c ∈ T′
k, (a⊕′

k b)⊕′
k c = min′

k((ai) ∪ (bj) ∪ (ck))

which shows the associativity of ⊕′
k. 0k is the identity element for ⊕′

k:

∀a ∈ T′
k, a⊕′

k 0k = min′
k(a1, . . . , ak,∞) = a

Thus, (T′
k,⊕′

k, 0k) is a commutative monoid. Furthermore, (T′
k,⊕′

k, 0k) is idempotent:

∀a ∈ T′
k, a⊕′

k a = min′
k(a1, a1, . . . , ak, ak) = a

Clearly, for any a, b ∈ T′
k, a ⊗′

k b ∈ T′
k, and ⊗′

k is commutative. To show the
associativity of ⊕′

k, it suffices to note that:

∀a, b, c ∈ T′
k, (a⊕′

k b)⊕′
k c = min′

k((ai + bj + cl)i,j,l)

⊕′
k distributes over ⊗′

k, ∀a, b, c ∈ T′
k:

(a⊗′
k b)⊕′

k (b ⊗′
k c) = min′

k(min′
k((ai + cj)i,j), min′

k((bj + cl)j,l))

= min′
k((ai + cj)i,j), (bj + cl)j,l))

= (a⊕′
k b)⊗′

k c

0k is an annihilator for ⊗′
k:

∀a ∈ T′
k, a⊗′

k 0k = min′
k((ai +∞)i) = 0k

Thus, T ′
k = (T′

k,⊕′
k,⊗′

k, 0k, 1k) is a commutative semiring. Since T ′
k is idempotent,

by lemma 1 it can be provided with a natural order ≤T ′
k
. T ′

k provided with that
order is negative and monotonic (lemma 2). Furthermore, the order ≤T ′

k
is the

unique order making T ′
k monotonic and negative (proposition 1). The proof of the

(k − 1)-closedness of T ′
k is similar to that of Tk (proposition 2). 2

The proposition shows that the k-tropical distinct semirings also fall within the general
framework for single-source shortest-distance algorithms. We will show that they can
be used to solve k-distinct-shortest-distance problems. For k = 1, T ′

k is the tropical
semiring which is bounded, as shown in the previous sections. The semirings T ′

k

were first introduced by Schier [37] for solving k-distinct-shortest-distance problems
but with an algorithm different from the general algorithm we presented in previous
sections. These semirings are also discussed by [34] for solving the algebraic path
problem.
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6.4. k-shortest-distance algorithm

Let G = (Q, E, w) be a weighted graph over non-negative real-valued numbers, and
let s be a fixed source vertex of G. For q ∈ Q, we denote by δk(s, q) ∈ Tk the ordered
set of the k shortest distances from s to q with repetitions. δk(s, q) is defined by:

∀q ∈ Q, δk(s, q) = mink(w[π] : π ∈ P (q))

The problem of determining δk(s, q), q ∈ Q, can be viewed as a single-source shortest-
distance problem with the graph Gk = (Q, E, wk) weighted over Tk, if we define wk

by: ∀e ∈ E, wk(e) = (w[e],∞, . . . ,∞). Indeed, we have:

∀q ∈ Q, δk(s, q) =
⊕

π∈P (q)

k wk[π]

Thus, the generic single-source shortest-distance algorithm can be used to solve k-
shortest-distance problems.

Theorem 3 Let G = (Q, E, w) be a weighted directed graph over non-negative real-
valued numbers, and let s be a fixed source vertex. Then, if we run the Generic-

Single-Source-Shortest-Distance algorithm on the graph Gk = (Q, E, wk)
weighted over Tk, the algorithm terminates, and at termination, for any vertex q ∈ Q,
d[q] = δk(s, q), the ordered list of the k shortest distances from s to q with repetitions.

Proof. By proposition 2, Tk is a k-closed semiring. Thus, the semiring is covered by
our general framework and by theorem 1, the Generic-Single-Source-Shortest-

Distance algorithm computes the k shortest distances from s to each vertex q ∈ Q.
2

Complexity

We gave the general expression of the complexity of the Generic-Single-Source-

Shortest-Distance algorithm in a previous section. The ⊕k operation can be per-
formed in O(k) using a 2-merge sort. The ⊗k can also be performed efficiently because
it is only used in a relaxation step (computation of r′ ⊗k wk[e]), and because wk[e]
has a specific form. Indeed, since wk[e] = (w[e],∞, . . . ,∞), with r′ = (r1, . . . , rk),

r′ ⊗k wk[e] = mink((ri + w[e])i)

Thus, k additions are sufficient to compute the result, and T⊗k
= O(k). The number

of times a vertex q is inserted in the queue S depends on the queue discipline chosen.
We define a new queue discipline that coincides with the shortest-first order used

in Dijkstra’s algorithm when k = 1. For each vertex q, we maintain an attribute X [q]
which gives the number of times q has been extracted from S, and define µ(a, l) for
a = (a1, . . . , ak) ∈ Tk and any non-negative integer l by:

µ(a, l) = al+1 if (l + 1 ≤ k), ak otherwise
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Figure 4 Consecutive steps of the execution of the Generic-Single-Source-Shortest-

Distance algorithm used to compute 2-shortest distances.

Our queue discipline is based on the following pre-order over the vertices Q:

q ≤X q′ ⇐⇒ µ(d[q], X [q]) ≤ µ(d[q′], X [q′])

In many applications such as routing problems, one is only interested in determining
the k-shortest distances or paths from s to a fixed destination or final vertex t. The
efficiency of the algorithm can then be improved by defining the queue discipline as:

q ≤X q′ ⇐⇒ µ(d[q], X [q]) + f [q] ≤ µ(d[q′], X [q′]) + f [q′]

where f [q] and f [q′] denote the shortest distance from q and q′ to t. f can be
precomputed using a single-source shortest-distance algorithm with source t.

Using the array X , the comparison of two vertices q and q′ for this pre-order can
be done in constant time. Let Nk be the maximum number of insertions of a vertex in
the queue S using the order ≤X .12 In view of the general formula of the complexity

12We will leave the proof of the fact that Nk = k to a separate study.
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of the Generic-Single-Source-Shortest-Distance algorithm, if we use classical
binary heaps to implement the queue discipline ≤X we defined, the complexity of the
algorithm for finding the k-shortest distances from s to each vertex q is: O(|Q|+(k +
k+log(|Q|))|E|Nk+(log |Q|+log |Q|)Nk|Q|). Hence O(Nk(|Q|+|E|) log |Q|+kNk|E|).
If we use Fibonacci heaps, the complexity of the algorithm is:

O(Nk|Q| log |Q|+ kNk|E|)

When the graph is acyclic, the Generic-Topological-Single-Source-Shortest-

Distance algorithm can be used. The complexity of the algorithm is then:

O(|Q|+ k|E|)

The Generic-Single-Source-Shortest-Distance algorithm can also be used to
determine the k shortest paths from s to each vertex q ∈ Q. Since in the worst case
the length of the ith shortest path can be i × |Q|, the total length of the k shortest
paths is in O(k2|Q|). Thus, using Fibonacci heaps, the complexity of the computation
of the k shortest paths is: O(Nk|Q| log |Q|+ k(k|Q|+ Nk|E|)).

Figure 4 illustrates the execution of the Generic-Single-Source-Shortest-

Distance algorithm based on the queue discipline ≤X for k = 2. Each step cor-
responds to the extraction from the queue S of a vertex q. The tentative shortest
distance pairs are indicated for each vertex at each step of the execution of the algo-
rithm.

In some applications such as speech recognition where weighted automata are used,
one wishes to determine the k shortest paths to each state labeled with distinct
strings. To determine these paths, one can use on-the-fly weighted determinization of
automata followed by a k-shortest distance algorithm [27, 31].

The complexity of the k-shortest-distance algorithm we presented can be substan-
tially improved with a more careful choice of the data structures specific to this
problem and with a finer analysis of the algorithm. Our main objective here was
to illustrate the application of the Generic-Single-Source-Shortest-Distance

algorithm to the k-shortest-distance problem.

6.5. k-distinct-shortest-distance algorithm

Let G = (Q, E, w) be a weighted graph over non-negative real-valued numbers, and
let s be a fixed source vertex of G. For q ∈ Q, we denote by δ′k(s, q) ∈ T′

k the ordered
set of the k distinct shortest distances from s to q. δ′k(s, q) is defined by:

∀q ∈ Q, δ′k(s, q) = min′
k(w[π] : π ∈ P (q))

The problem of determining δ′k(s, q), q ∈ Q, can be viewed as a single-source shortest-
distance problem with the graph Gk = (Q, E, wk) weighted over T′

k. Indeed, we have:

∀q ∈ Q, δ′k(s, q) =
⊕

π∈P (q)

′

k wk[π]

Thus, the generic single-source shortest-distance algorithm can be used to solve k-
distinct-shortest-distance problems.
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Theorem 4 Let G = (Q, E, w) be a weighted directed graph over non-negative real-
valued numbers, and let s be a fixed source vertex. Then if we run the Generic-

Single-Source-Shortest-Distance algorithm on the graph Gk = (Q, E, wk)
weighted over T ′

k, the algorithm terminates, and at termination, for any vertex q ∈ Q,
d[q] = δ′k(s, q), the ordered list of the k distinct shortest distances from s to q.

Proof. By proposition 3, T ′
k is a k-closed semiring. The semiring is covered by our

general framework, thus, by theorem 1, the Generic-Single-Source-Shortest-

Distance algorithm computes the k distinct shortest distances from s to each vertex
q ∈ Q. 2

Complexity

The complexity of the Generic-Single-Source-Shortest-Distance algorithm for
computing the k-distinct-shortest distances can be determined in a way similar to
what was presented for the case of k-shortest distances. Using the queue discipline
≤X defined in the previous section and classical binary heaps the complexity is:

O(Nk(|Q|+ |E|) log |Q|+ kNk|E|)

With Fibonacci heaps the complexity is:

O(Nk|Q| log |Q|+ kNk|E|)

When the graph is acyclic, the Generic-Topological-Single-Source-Shortest-

Distance algorithm can be used and the complexity of the algorithm is:

O(|Q|+ k|E|)

7. Conclusion

We presented new generic algorithms for single-source shortest-distance problems
based on the structure of semirings, gave the general expression of their complex-
ity in terms of the costs of elementary operations depending on the choice of the
queue discipline and the cost of the semiring operations, and illustrated their use
in various problems such as the k-shortest-distance problems. Single-source shortest
distance algorithms can be used in a variety of other applications with various other
semirings.

Our approach consists of defining general algebraic frameworks for shortest-distance
problems and of devising generic algorithms, algorithms that work with any algebra
falling within our general frameworks, for solving these problems. It follows a general
principle of separation of algorithms and algebras that seems to us as important as
the classical software engineering principle of separation of programs and data.

A general algebraic framework helps to bridge the gap between theoretical com-
puter science and software design. It increases considerably the reusability of code
avoiding one to reinvent the wheel: a single generic algorithm can be used to solve a
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variety of different problems. Furthermore, an efficient implementation of the alge-
braic operations can make the algorithm practical for each problem. The separation
of algorithms and algebra also often helps in anticipating on the computational and
algorithmic needs, and leads to a better understanding of the deep mechanisms of
some algorithms.
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[3] R. C. Backhouse and B. Carré, Regular Algebra Applied to Path-Finding
Problems, Journal of the Institute of Mathematics and Its Applications, 15
(1975), pp. 161–186.

[4] R. Bellman, On a Routing Problem, Quarterly of Applied Mathematics, 16
(1958).

[5] J. Berstel, Transductions and Context-Free Languages, Teubner Studien-
bucher: Stuttgart, 1979.

[6] J. Berstel and C. Reutenauer, Rational Series and Their Languages,
Springer-Verlag: Berlin-New York, 1988.
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