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Abstract. Weighted finite-state transducers have been used suctgssauvariety
of natural language processing applications, includirgesp recognition, speech
synthesis, and machine translation. This paper shows haghteel transducers
can be combined with existing learning algorithms to forrvedul techniques for
sequence learning problems.
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Introduction

Weighted transducer algorithms have been successfultyinsevariety of applications
in speech recognition [21, 23, 25], speech synthesis [2®diical character recognition
[9], machine translation, a variety of other natural larggiprocessing tasks including
parsing and language modeling, image processing [1], amgatational biology [15, 6].
This paper outlines the use of weighted transducensénhine learning

A key relevance of weighted transducers to machine learisitigeir use in kernel
methods applied to sequences. Weighted transducers prawddmpact and simple rep-
resentation of sequence kernels. Furthermore, standaghted transducer algorithms
such as composition and shortest-distance algorithmseasdd to efficiently compute
kernels based on weighted transducers.

1. Overview of Kernel Methods

Kernel methods are widely used in machine learning. Theg lhaen successfully used
to deal with a variety of learning tasks including classiima, regression, ranking, clus-
tering, and dimensionality reduction. This section givdsiaf overview of these meth-
ods.

Complex learning tasks are often tackled using a large numbfeatures. Each
point of the input spac&’ is mapped to a high-dimensional feature spAcéa a non-
linear mappingb. This may be to seek a linear separation in a higher-dimaakspace,
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which was not achievable in the original space, or to exmthier regression, ranking,
clustering, or manifold properties easier to attain in tgéce. The dimension of the
feature spacé’ can be very large. In document classification, the featurag loe for
example the set of all trigrams. Thus, even for a vocabul&jyst 200,000 words, the
dimension ofF is 2 x 105,

The high dimensionality o' does not affect the generalization ability of large-
margin algorithms such as support vector machines (SVMasjndkably, these algo-
rithms benefit from theoretical guarantees for good germatadn that depend only on
the number of training points and the separatitergin and not on the dimensionality
of the feature space. But the high dimensionality'oéan directly impact the efficiency
and even the practicality of such learning algorithms, als agetheir use in prediction.
This is because to determine their output hypothesis or temeedictions, these learn-
ing algorithms rely on the computation of a large number dgfgtoducts in the feature
spacer'.

A solution to this problem is the so-callé@rnel methodThis consists of defining
a functionK: X x X — R called akerne| such that the value it associates to two
examples: andy in input spaceK (x, y), coincides with the dot product of their images
®(z) and®(y) in feature space:

Vr,y € X, K(z,y) = 2(z) - 2(y). 1

K is often viewed as a similarity measure. A crucial advantddé is efficiency: there is
no need anymore to define and explicitly compiife), ®(y), and®(z) - ®(y). Another
benefit of K is flexibility: K can be arbitrarily chosen so long as the existencé &f
guaranteed, which is called Mercer’s condition. This ctindiis important to guarantee
the convergence of training for algorithms such as SVMs. &standard Mercer kernels
over a vector space are the polynomial kernels of degired, Ky(z,y) = (z-y+1)%,
and Gaussian kernel§, (z,y) = exp(—|z — y||*/0?), o € Ry.

A condition equivalent to Mercer’s condition is that thetkelrK” bepositive definite
and symmetri¢PDS), that is, in the discrete case, the matfiX(z;, z;))1<;,j<m Must
be symmetric and positive semi-definite for any choicexqfointsz1, ..., z,, in X.
Thus, the matrix must be symmetric and its eigenvalues regative.

The next section briefly describes a general family of kexf@l sequences that is
based on weighted transduceegjonal kernels

2. Rational Kernels
We start with some preliminary definitions of automata aadsducers.
2.1. Weighted Transducers and Automata

Finite-state transducerare finite automata in which each transition is augmenteld wit
an output label in addition to the familiar input label [8 ]16utput labels are concate-
nated along a path to form an output sequence and similattyimput labelsWeighted
transducersare finite-state transducers in which each transition esusome weight in
addition to the input and output labels. The weights of thasducers considered in this
paper are real values and they are multiplied along the pahesweight of a pair of in-



put and output stringér, y) is obtained by summing the weights of all the paths labeled
with (z, y). The following gives a formal definition of weighted transéus.

Definition 1. A weighted finite-state transduc€rover (R, +, -, 0, 1) is an 8-tuplel’ =
(3,A,Q, 1, F, E, )\, p) whereX is the finite input alphabet of the transducéy,is the
finite output alphabety is a finite set of stated, C @ the set of initial statesF” C @
the set of final stated; C Q x (X U{e}) x (AU{e}) x R x @ afinite set of transitions,
A: I — R the initial weight function, ang: F' — R the final weight function mapping
FtoR.

For a pathr in a transducer, we denote yr] the origin state of that path and
by n[r] its destination state. We also denote ByI, =, y, F') the set of paths from the
initial statesI to the final stateg” labeled with input string: and output stringy. The
weight of a pathr is obtained by multiplying the weights of its constituergrtsitions
and is denoted by[r]. We shall say that a transducBis regulatedif the output weight
associated b§" to any pair of stringgz, y) by:

T(z,y)= Y. Aplr])wlx] plnla]] )

n€P(I,x,y,F)

is in R U {oo} and if this definition does not depend on the order of the tamtke
sum. By convention]'(z,y) = 0 whenP(I,z,y, F) = (). In the absence af-cycles,
the set of accepting patii¥(1, =, y, F) is finite for any(z, y) € £* x A*, and thusl is
regulated. The transducers considered in this paper aregailated. Figure 1 shows an
example of a weighted transducer.

The standard rational operations, samproduct or concatenation and Kleene-
closure* can be defined for regulated transducers [27, 18]. For amypafrings(z, ),
and any three weighted regulated transdu@efs, , Ts,

(Th + T2)(z,y) = Ti (2, y) + Ta(z,y) 3)
(Ty - To)(w,y) = Z T1(z1,y1) Ta(z2, Y2) (4)
oo Yi1y2=y
n=0

For any weighted transduc@, we denote by~ ! its inverse that is the transducer ob-
tained fromI" by swapping the input and output label of each transitioe.cdmposition
of two weighted transducef§ and7, with matching input and output alphabétsis a
weighted transducer denoted By o T, when the sum:

(TioT)(wy) = S Tilw,2) Ta(zy) ©)

ZEX*

is well-defined and ifR for all z, y € X* [27, 18]. There exists an efficient algorithm for
the composition of two weighted transducers [26, 24]. Thestwcase complexity of that
algorithm is quadratic, that i9(|71||7%|), where|T;| denotes the size of transdudgr



Figure 1. Example of a weighted transducér A bold circle indicates an initial state and a double-eiral
final state. A final state carries a weight indicated afterslash symbol representing the state number. The
initial weights are not indicated in all the examples in théger since they are all equal to one. There are two
paths in the transducer with input lahéglb and ouput labebaa, thus the weight associated @yto the pair
(abb, baa) is T(abb,baa) = .1 x .2 x .3 x.1+.5%.3x.6x .1

2.2. Definition

As mentioned earlier, kernels can be viewed as similaritasuees. It is often natural
to define a similarity measure between two sequences, w@ddcuments or two bio-
logical sequences, as a function of the number of subseqaarisome type that they
share. These subsequences could be for exampglam sequences, gappygrams, or
substrings of any length. A sequence kernel is then typichdfined as the sum of the
product of the counts of these common subsequences.

Similarity measures of this kind can typically be computsthg weighted finite-
state transducers. This leads naturally to the followinfinden of a family of kernels
overs strings.

Definition 2. A kernel functionk : ¥* x¥* — R isrationalwhen there exists a weighted
transducerV such thatk (z,y) = U(x, y) for all sequences andy.

Thus, for a rational kernel defined Y, U (z, y) is the similarity measure between
two stringse andy.?

2.3. Algorithm

U(z,y) can be computed using the composition of weighted transdy@s, 24].
Let M, be a trivial weighted transducer representinghat is a transducer such that
My(z,z) = 1 andM,(y,z) = 0fory # x or z # z. M, can be constructed from
a linear finite automaton representingoy augmenting each transition with an output
label identical to the input label and by setting all traiesitand final weights to one.
Similarly, we can construct a weighted transducer reptesgn/,. Then, by definition
of composition,(M, o U o M,)(z,y) = My(z,z)U(x,y)My(y,y) = U(z,y) and
(Mg oU o My)(z1,22) = 0for (21, 22) # (x,y). Thus,>,, (M, o U o My)(u,v) =
U(z,y), that is the sum of the weights of all pathsdf, o Uo M, is exactlyU (z, y).

This gives a two-step algorithm to computgx,y) = U(x,y): (a) use composi-
tion to computeV = M, o U o M,; (b) use ashortest-distance algorithmor forward-
backward algorithm to compute the sum of the weights of alhigaf N. We can assume
thatU does not contain anfg, ) cycle, that is a cycle with inputand outpuk. Other-
wise, an equivalent weighted transducer withetransitions could be constructed from
U by application of are-removal algorithm [22]. Whel/ contains na-transition,N is
necessarily acyclic sincké/,, and M/, are acyclic, and the computation of the sum of the

2This definition can be generalized to the case of an arbisanyiring [12].
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Figure 2. General count-based transdu@@&rfor = {a, b}. The figure illustrates the use @fin the special
case where the automatdn accepts only the string = ab, to count the number of occurrencesaofn an
input sequence such asabaabba.

weights of its paths can be done in linear time. Thus, theadMeomplexity of the com-
putation of a rational kernel using that algorithn@i§|U || M, || M, |), where|U| remains
constant in the calculation of a large number of kernelshingarticular case of many
kernels used in practice, the complexity of the composiéityorithm is in fact linear,
which reduces the total cost of the application of the athatito O (|U |+ | M|+ | M, ).

A new and more generalway composition algorithm can also be used to dramatically
improve the computational speed in other cases [2, 4].

2.4. Properties

To guarantee the convergence of algorithms such as supgzidrimachines, the ratio-
nal kernelK used must be positive definite symmetric. The following teeogives a
general method for constructing a PDS rational kernel fragnvaeighted tranducer.

Theorem 1([12]). LetT be an arbitrary weighted transducer, theh= T o7~ defines
a PDS rational kernel.

In this construction, the weighted transdu@ecan be viewed as the mapping from
the input spaceX = X* to a high-dimensional feature space, compactly repredente
by the output off". The construction ot/ from 7' is straightforward and very efficient
since it requires only applying composition. Our inspattid the sequence kernels used
in computational biology, natural language processingtloer sequence learning tasks,
e.g., mismatch kernels [19], gappygram kernels [20], locality-improved kernels [29],
convolutions kernels for strings [17], tree kernels [XEgram kernels [12], and moment
kernels [13], seem to show that they are all rational kerokthe formT o 7! [12].

In fact, we have conjectured that all PDS rational kernedsadithis form and proven a
number of results favoring that thesis [12].

Standard weighted transducer operations can be used tdro@gilmpler PDS ratio-

nal kernels to form more complex ones, as shown by the foliguheorem.

Theorem 2 ([12]). PDS rational kernels are closed under sum, product, anducis
operations.

3. Applications

As already pointed out, to the best of our knowledge, the secgikernels used in prac-
tice are all special instances of PDS rational kernels. kerawill briefly describe a



general and important family of rational kernetsunt-based kerneland show how a
sequence kernel recently introduced in computationabipkan be represented by as
a weighted transducer.

3.1. Count-based kernels

The definition of many sequence kernels relies on the codrderne subsequences in
the sequences andy to compare. These subsequences can be of different ndtaye, t
may be for example arbitrary substringsgrams, gappy:-grams, or subsequences of
ancestor sequences, where ancestor sequences are defieqdexsces with a fixed num-
ber of mutations relative to the given sequence [19]. We eilér to such kernels as
count-based kernel¥hese sequence kernels can typically be convenientlgsepied
by weighted transducers and form rational kernels. Thissabse there exists a gen-
eral weighted transducer that can be used to count the nuafitmcurrences of the
sequences described by an arbitrary regular expression.

Indeed, letX be an arbitrary finite automaton and thus representing aitramb
regular expression. Then, the transducer defined by Figuwanze used to count all
occurrences of the sequences accepted by any input sequence. This is illustrated
in the special case whert¥ represents the single sequence= ab and for an input
sequencébabaabba.

The loop at the first state @f maps input symbols teuntil a match with a sequence
in X is found. Then the sequence matched is mapped to itself @nekthaining suffix
of the input sequence mappeddat the final state of". In the case of the sequence
bbabaabba and for the particulaX considered, there are two possible occurrences of
and thus two possible matches. The figure shows the alteer@miiputs generated 1y.
Since two paths are generated, each with weight one, thentetght associated by to
the input sequence is the sum two, which is the expected anelct@ount.

By theorem 1, transducdr can be used to construct a PDS rational kefiiek
T o T~'. This gives a very general method for the definition and aortibn of count-
based sequence kernels. In fact, many sequence kerneksssfudly used in practice
coincide precisely with this construction. This includearticularn-gram kernels or
gappyn-gram kernels.

3.2. Locality-improved kernel

A family of kernels was introduced by Zien et al. for the praiblofrecognition of trans-
lation initiation sitesin computational biology. This problem consists of deterimg
whether a start codon position in a DNA sequence is a traoslatitiation site (TIS).

The locality-improved kerneintroduced by [29] is based on matching scores over
windows of length2/ + 1. It is defined as follows.

Definition 3 ([29]). Let/ andd be positive integers and;, j € [—[,+I] the weights
associated to a match at positigrin a window of siz&[+ 1. Then, the locality-improved
kernel for two sequencasandy of lengthm is defined by

m +1 d
K(z,y) = Zwinp(x,y), with  win, (z,y) = Z w;matchpyj(z,y) | . (7)

p=1 J==l
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Figure 3. Fraction of the locality-improved kernel represented d$ a= 7" o 7! rational kernel for the
alphabet: = {a, b} andl = 1. For the full transducer, all symmetric paths (obtained shanginga andb)
should be added.

This kernel can be naturally combined with polynomial késrie form more com-
plex kernels and can be straightforwardly represented bgighted transducer. Figure 3
shows the corresponding weighted transduc¢er T o T~! for ¥ = {a,b} andl = 1
for the input sequence = aaa. The corresponding weighted transduéénas the same
topology ad/, but the output label of all the transitions from state 0 toitha mismatch
between input and output should instead be a special mibnsgitobol, say:, and the
transition weight should be the square root of the weiglif.in

The loops of staté and3 allow for arbitrary prefixes and suffixes around a window
in which the mismatches are evaluatédcontains a unique path from stdi¢o state3
for each possible sequence of matches and mismatches. Tdiet wkeach sequence is
marked at the last transition and equals the sum of the weaftthe matching symbols
taken to the power af, the other transitions weights being one.

With this locality-improved kernel, Zien et al. obtain a 25f#formance improve-
ment over previous results on a task with abd8b00 sequences of whicB,300 are
positive TIS examples and the rest are considered negaivepes.

4. Conclusion

Weighted transducers give a general framework for the sgmtation and computation
of sequence kernels. All sequence kernels used in natungliégge processing, compu-
tational biology, and other sequence-related tasks argadpestances of rational ker-
nels. This has an important algorithmic advantage sinceglesigeneral and efficient
algorithm can be used to compute such kernels. State-edstimplementations of the
general algorithms for the use of weighted transducers\aitaéle as part of the open-
source software library OpenFst [7] and the algorithmstieirtuse as sequence kernels
exist as part of the open-source project OpenKernel libj2yfreeing up the machine
learning practitioner to focus on designing effective ledsrfor the problem at hand. The
OpenKernel library interfaces with the popular softwarekame LIBSVM [10] for easy
experimentation with novel PDS rational kernels for clisafion and regression tasks.



Any weighted transduceF can be used to define a PDS sequence kernel by com-
posing it with its inverse, and existing PDS rational kesnedn be combined via stan-
dard rational operations to defined more complex PDS rdti@raels. This has an im-
portant consequence for the design and improvement of sequ@rnels. Furthermore,
the graphical representation of rational kernels makesrivenient to augment or mod-
ify them. For all these reasons, we believe that rationatddsrconstitute just theght
algorithmic and representational framework for sequerradds. Furthermore, sample
points can be used tearn rational kernels themselves [14]. This helps optimally se-
lecting the specific rational kernel, or the proper transitiveights, for the learning task
considered.
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