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Abstract. Weighted finite-state transducers have been used successfully in a variety
of natural language processing applications, including speech recognition, speech
synthesis, and machine translation. This paper shows how weighted transducers
can be combined with existing learning algorithms to form powerful techniques for
sequence learning problems.
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Introduction

Weighted transducer algorithms have been successfully used in a variety of applications
in speech recognition [21, 23, 25], speech synthesis [28, 5], optical character recognition
[9], machine translation, a variety of other natural language processing tasks including
parsing and language modeling, image processing [1], and computational biology [15, 6].
This paper outlines the use of weighted transducers inmachine learning.

A key relevance of weighted transducers to machine learningis their use in kernel
methods applied to sequences. Weighted transducers provide a compact and simple rep-
resentation of sequence kernels. Furthermore, standard weighted transducer algorithms
such as composition and shortest-distance algorithms can be used to efficiently compute
kernels based on weighted transducers.

1. Overview of Kernel Methods

Kernel methods are widely used in machine learning. They have been successfully used
to deal with a variety of learning tasks including classification, regression, ranking, clus-
tering, and dimensionality reduction. This section gives abrief overview of these meth-
ods.

Complex learning tasks are often tackled using a large number of features. Each
point of the input spaceX is mapped to a high-dimensional feature spaceF via a non-
linear mappingΦ. This may be to seek a linear separation in a higher-dimensional space,
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which was not achievable in the original space, or to exploitother regression, ranking,
clustering, or manifold properties easier to attain in thatspace. The dimension of the
feature spaceF can be very large. In document classification, the features may be for
example the set of all trigrams. Thus, even for a vocabulary of just 200,000 words, the
dimension ofF is 2 × 1015.

The high dimensionality ofF does not affect the generalization ability of large-
margin algorithms such as support vector machines (SVMs). Remarkably, these algo-
rithms benefit from theoretical guarantees for good generalization that depend only on
the number of training points and the separationmargin, and not on the dimensionality
of the feature space. But the high dimensionality ofF can directly impact the efficiency
and even the practicality of such learning algorithms, as well as their use in prediction.
This is because to determine their output hypothesis or to make predictions, these learn-
ing algorithms rely on the computation of a large number of dot products in the feature
spaceF .

A solution to this problem is the so-calledkernel method. This consists of defining
a functionK : X × X → R called akernel, such that the value it associates to two
examplesx andy in input space,K(x, y), coincides with the dot product of their images
Φ(x) andΦ(y) in feature space:

∀x, y ∈ X, K(x, y) = Φ(x) · Φ(y). (1)

K is often viewed as a similarity measure. A crucial advantageof K is efficiency: there is
no need anymore to define and explicitly computeΦ(x), Φ(y), andΦ(x) ·Φ(y). Another
benefit ofK is flexibility: K can be arbitrarily chosen so long as the existence ofΦ is
guaranteed, which is called Mercer’s condition. This condition is important to guarantee
the convergence of training for algorithms such as SVMs. Some standard Mercer kernels
over a vector space are the polynomial kernels of degreed ∈ N, Kd(x, y) = (x ·y +1)d,
and Gaussian kernelsKσ(x, y) = exp(−‖x − y‖2/σ2), σ ∈ R+.

A condition equivalent to Mercer’s condition is that the kernelK bepositive definite
and symmetric(PDS), that is, in the discrete case, the matrix(K(xi, xj))1≤i,j≤m must
be symmetric and positive semi-definite for any choice ofn pointsx1, . . . , xm in X .
Thus, the matrix must be symmetric and its eigenvalues non-negative.

The next section briefly describes a general family of kernels for sequences that is
based on weighted transducers,rational kernels.

2. Rational Kernels

We start with some preliminary definitions of automata and transducers.

2.1. Weighted Transducers and Automata

Finite-state transducersare finite automata in which each transition is augmented with
an output label in addition to the familiar input label [8, 16]. Output labels are concate-
nated along a path to form an output sequence and similarly with input labels.Weighted
transducersare finite-state transducers in which each transition carries some weight in
addition to the input and output labels. The weights of the transducers considered in this
paper are real values and they are multiplied along the paths. The weight of a pair of in-



put and output strings(x, y) is obtained by summing the weights of all the paths labeled
with (x, y). The following gives a formal definition of weighted transducers.

Definition 1. A weighted finite-state transducerT over(R, +, ·, 0, 1) is an 8-tupleT =
(Σ, ∆, Q, I, F, E, λ, ρ) whereΣ is the finite input alphabet of the transducer,∆ is the
finite output alphabet,Q is a finite set of states,I ⊆ Q the set of initial states,F ⊆ Q
the set of final states,E ⊆ Q× (Σ∪{ǫ})× (∆∪{ǫ})×R×Q a finite set of transitions,
λ : I → R the initial weight function, andρ : F → R the final weight function mapping
F to R.

For a pathπ in a transducer, we denote byp[π] the origin state of that path and
by n[π] its destination state. We also denote byP (I, x, y, F ) the set of paths from the
initial statesI to the final statesF labeled with input stringx and output stringy. The
weight of a pathπ is obtained by multiplying the weights of its constituent transitions
and is denoted byw[π]. We shall say that a transducerT is regulatedif the output weight
associated byT to any pair of strings(x, y) by:

T (x, y) =
∑

π∈P (I,x,y,F )

λ(p[π])w[π] ρ[n[π]] (2)

is in R ∪ {∞} and if this definition does not depend on the order of the termsin the
sum. By convention,T (x, y) = 0 whenP (I, x, y, F ) = ∅. In the absence ofǫ-cycles,
the set of accepting pathsP (I, x, y, F ) is finite for any(x, y) ∈ Σ∗ × ∆∗, and thusT is
regulated. The transducers considered in this paper are allregulated. Figure 1 shows an
example of a weighted transducer.

The standard rational operations, sum+, product or concatenation·, and Kleene-
closure∗ can be defined for regulated transducers [27, 18]. For any pair of strings(x, y),
and any three weighted regulated transducersT, T1, T2,

(T1 + T2)(x, y) = T1(x, y) + T2(x, y) (3)

(T1 · T2)(x, y) =
∑

x1x2=x
y1y2=y

T1(x1, y1)T2(x2, y2) (4)

T ∗(x, y) =

+∞
∑

n=0

T n(x, y). (5)

For any weighted transducerT , we denote byT−1 its inverse, that is the transducer ob-
tained fromT by swapping the input and output label of each transition. Thecomposition
of two weighted transducersT1 andT2 with matching input and output alphabetsΣ, is a
weighted transducer denoted byT1 ◦ T2 when the sum:

(T1 ◦ T2)(x, y) =
∑

z∈Σ∗

T1(x, z)T2(z, y) (6)

is well-defined and inR for all x, y ∈ Σ∗ [27, 18]. There exists an efficient algorithm for
the composition of two weighted transducers [26, 24]. The worst case complexity of that
algorithm is quadratic, that isO(|T1||T2|), where|Ti| denotes the size of transducerTi.
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Figure 1. Example of a weighted transducerT . A bold circle indicates an initial state and a double-circle a
final state. A final state carries a weight indicated after theslash symbol representing the state number. The
initial weights are not indicated in all the examples in thispaper since they are all equal to one. There are two
paths in the transducer with input labelabb and ouput labelbaa, thus the weight associated byT to the pair
(abb, baa) is T (abb, baa) = .1 × .2 × .3 × .1 + .5 × .3 × .6 × .1.

2.2. Definition

As mentioned earlier, kernels can be viewed as similarity measures. It is often natural
to define a similarity measure between two sequences, e.g., two documents or two bio-
logical sequences, as a function of the number of subsequences of some type that they
share. These subsequences could be for examplen-gram sequences, gappyn-grams, or
substrings of any length. A sequence kernel is then typically defined as the sum of the
product of the counts of these common subsequences.

Similarity measures of this kind can typically be computed using weighted finite-
state transducers. This leads naturally to the following definition of a family of kernels
overs strings.

Definition 2. A kernel functionK : Σ∗×Σ∗ → R is rationalwhen there exists a weighted
transducerU such thatK(x, y) = U(x, y) for all sequencesx andy.

Thus, for a rational kernel defined byU , U(x, y) is the similarity measure between
two stringsx andy.2

2.3. Algorithm

U(x, y) can be computed using the composition of weighted transducers [26, 24].
Let Mx be a trivial weighted transducer representingx, that is a transducer such that
Mx(x, x) = 1 andMx(y, z) = 0 for y 6= x or z 6= x. Mx can be constructed from
a linear finite automaton representingx by augmenting each transition with an output
label identical to the input label and by setting all transition and final weights to one.
Similarly, we can construct a weighted transducer representing My. Then, by definition
of composition,(Mx ◦ U ◦ My)(x, y) = Mx(x, x)U(x, y)My(y, y) = U(x, y) and
(Mx ◦ U ◦ My)(z1, z2) = 0 for (z1, z2) 6= (x, y). Thus,

∑

u,v(Mx ◦ U ◦ My)(u, v) =
U(x, y), that is the sum of the weights of all paths ofMx ◦ U ◦ My is exactlyU(x, y).

This gives a two-step algorithm to computeK(x, y) = U(x, y): (a) use composi-
tion to computeN = Mx ◦ U ◦ My; (b) use ashortest-distance algorithmor forward-
backward algorithm to compute the sum of the weights of all paths ofN . We can assume
thatU does not contain any(ǫ, ǫ) cycle, that is a cycle with inputǫ and outputǫ. Other-
wise, an equivalent weighted transducer withoutǫ-transitions could be constructed from
U by application of anǫ-removal algorithm [22]. WhenU contains noǫ-transition,N is
necessarily acyclic sinceMx andMy are acyclic, and the computation of the sum of the

2This definition can be generalized to the case of an arbitrarysemiring [12].



Figure 2. General count-based transducerT , for Σ = {a, b}. The figure illustrates the use ofT in the special
case where the automatonX accepts only the stringx = ab, to count the number of occurrences ofx in an
input sequence such asbbabaabba.

weights of its paths can be done in linear time. Thus, the overall complexity of the com-
putation of a rational kernel using that algorithm isO(|U ||Mx||My|), where|U | remains
constant in the calculation of a large number of kernels. In the particular case of many
kernels used in practice, the complexity of the compositionalgorithm is in fact linear,
which reduces the total cost of the application of the algorithm toO(|U |+ |Mx|+ |My|).
A new and more generaln-way composition algorithm can also be used to dramatically
improve the computational speed in other cases [2, 4].

2.4. Properties

To guarantee the convergence of algorithms such as support vector machines, the ratio-
nal kernelK used must be positive definite symmetric. The following theorem gives a
general method for constructing a PDS rational kernel from any weighted tranducer.

Theorem 1([12]). LetT be an arbitrary weighted transducer, thenU = T ◦T−1 defines
a PDS rational kernel.

In this construction, the weighted transducerT can be viewed as the mapping from
the input spaceX = Σ∗ to a high-dimensional feature space, compactly represented
by the output ofT . The construction ofU from T is straightforward and very efficient
since it requires only applying composition. Our inspection of the sequence kernels used
in computational biology, natural language processing, orother sequence learning tasks,
e.g., mismatch kernels [19], gappyn-gram kernels [20], locality-improved kernels [29],
convolutions kernels for strings [17], tree kernels [11],n-gram kernels [12], and moment
kernels [13], seem to show that they are all rational kernelsof the formT ◦ T−1 [12].
In fact, we have conjectured that all PDS rational kernels are of this form and proven a
number of results favoring that thesis [12].

Standard weighted transducer operations can be used to combine simpler PDS ratio-
nal kernels to form more complex ones, as shown by the following theorem.

Theorem 2 ([12]). PDS rational kernels are closed under sum, product, and closure
operations.

3. Applications

As already pointed out, to the best of our knowledge, the sequence kernels used in prac-
tice are all special instances of PDS rational kernels. Herewe will briefly describe a



general and important family of rational kernels,count-based kernels, and show how a
sequence kernel recently introduced in computational biology can be represented by as
a weighted transducer.

3.1. Count-based kernels

The definition of many sequence kernels relies on the counts of some subsequences in
the sequencesx andy to compare. These subsequences can be of different nature, they
may be for example arbitrary substrings,n-grams, gappyn-grams, or subsequences of
ancestor sequences, where ancestor sequences are defined assequences with a fixed num-
ber of mutations relative to the given sequence [19]. We willrefer to such kernels as
count-based kernels. These sequence kernels can typically be conveniently represented
by weighted transducers and form rational kernels. This is because there exists a gen-
eral weighted transducer that can be used to count the numberof occurrences of the
sequences described by an arbitrary regular expression.

Indeed, letX be an arbitrary finite automaton and thus representing an arbitrary
regular expression. Then, the transducer defined by Figure 2can be used to count all
occurrences of the sequences accepted byX in any input sequencex. This is illustrated
in the special case whereX represents the single sequencex = ab and for an input
sequencebbabaabba.

The loop at the first state ofT maps input symbols toǫ until a match with a sequence
in X is found. Then the sequence matched is mapped to itself and the remaining suffix
of the input sequence mapped toǫ at the final state ofT . In the case of the sequence
bbabaabba and for the particularX considered, there are two possible occurrences ofab
and thus two possible matches. The figure shows the alternative outputs generated byT .
Since two paths are generated, each with weight one, the total weight associated byT to
the input sequence is the sum two, which is the expected and correct count.

By theorem 1, transducerT can be used to construct a PDS rational kernelU =
T ◦ T−1. This gives a very general method for the definition and construction of count-
based sequence kernels. In fact, many sequence kernels successfully used in practice
coincide precisely with this construction. This includes in particularn-gram kernels or
gappyn-gram kernels.

3.2. Locality-improved kernel

A family of kernels was introduced by Zien et al. for the problem ofrecognition of trans-
lation initiation sitesin computational biology. This problem consists of determining
whether a start codon position in a DNA sequence is a translation initiation site (TIS).

The locality-improved kernelintroduced by [29] is based on matching scores over
windows of length2l + 1. It is defined as follows.

Definition 3 ([29]). Let l andd be positive integers andwj , j ∈ [−l, +l] the weights
associated to a match at positionj in a window of size2l+1. Then, the locality-improved
kernel for two sequencesx andy of lengthm is defined by

K(x, y) =

m
∑

p=1

winp(x, y), with winp(x, y) =





+l
∑

j=−l

wjmatchp+j(x, y)





d

. (7)
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Figure 3. Fraction of the locality-improved kernel represented as aU = T ◦ T−1 rational kernel for the
alphabetΣ = {a, b} andl = 1. For the full transducer, all symmetric paths (obtained by exchanginga andb)
should be added.

This kernel can be naturally combined with polynomial kernels to form more com-
plex kernels and can be straightforwardly represented by a weighted transducer. Figure 3
shows the corresponding weighted transducerU = T ◦ T−1 for Σ = {a, b} andl = 1
for the input sequencex = aaa. The corresponding weighted transducerT has the same
topology asU , but the output label of all the transitions from state 0 to 3 with a mismatch
between input and output should instead be a special mismatch symbol, sayz, and the
transition weight should be the square root of the weight inU .

The loops of state0 and3 allow for arbitrary prefixes and suffixes around a window
in which the mismatches are evaluated.U contains a unique path from state0 to state3
for each possible sequence of matches and mismatches. The weight of each sequence is
marked at the last transition and equals the sum of the weights of the matching symbols
taken to the power ofd, the other transitions weights being one.

With this locality-improved kernel, Zien et al. obtain a 25%performance improve-
ment over previous results on a task with about13,500 sequences of which3,300 are
positive TIS examples and the rest are considered negative examples.

4. Conclusion

Weighted transducers give a general framework for the representation and computation
of sequence kernels. All sequence kernels used in natural language processing, compu-
tational biology, and other sequence-related tasks are special instances of rational ker-
nels. This has an important algorithmic advantage since a single general and efficient
algorithm can be used to compute such kernels. State-of-the-art implementations of the
general algorithms for the use of weighted transducers are available as part of the open-
source software library OpenFst [7] and the algorithms for their use as sequence kernels
exist as part of the open-source project OpenKernel library[3], freeing up the machine
learning practitioner to focus on designing effective kernels for the problem at hand. The
OpenKernel library interfaces with the popular software package LIBSVM [10] for easy
experimentation with novel PDS rational kernels for classification and regression tasks.



Any weighted transducerT can be used to define a PDS sequence kernel by com-
posing it with its inverse, and existing PDS rational kernels can be combined via stan-
dard rational operations to defined more complex PDS rational kernels. This has an im-
portant consequence for the design and improvement of sequence kernels. Furthermore,
the graphical representation of rational kernels makes it convenient to augment or mod-
ify them. For all these reasons, we believe that rational kernels constitute just theright
algorithmic and representational framework for sequence kernels. Furthermore, sample
points can be used tolearn rational kernels themselves [14]. This helps optimally se-
lecting the specific rational kernel, or the proper transition weights, for the learning task
considered.
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